CHAPTER IV

THEORY OF LOC"LIZED STATE IN MET’LS.

The primary purpose of this chapter is to review
briefly the theory of localized state in metals, and to
discuss scme points of special interest in detail. The
theory is developed with the aim of attacking the general
problems of magnetism in metalse. "n attempt is made to
understand the magnetic properties of a single transition-
element impurity in 2 metallic environment. For an isolated
atom, it is the Coulomb repulsion that makes the moment
aligned parallel in accordance with Hund's rule. There is no
doubt that the same interaction also plays a dominant role in
the formation of the moment in metals.s It should be noted,
however, that the atomic orbital are no longer the exact
eigen-states of the one-electron problem in metals and that
there exist a tendency to delocalize the electron from the
atomic orbital. This tendency acts against the formation of
the moment. The Hume-Rothery rules suggest that the impurity
atom will lose some of its wvalence electrons to the conduction
band of metals and leave ion core with excess charge +Ze
(relative to the host metals ion core charge). Thus, the
density of conduction electron around the impurity ion core
is relatively high, in order that the charge +Ze be neutralized.

Similarly for negative excess charge-Ze, it should be observed
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that around the impurity ion core there will be 2a concentration
of positive charge (or hole). The problem is to understand the
behavior of the elcctron gas scattering by the spherical potential

field arisinrg from the impurity ion core.

. . . 6-78
4,1 The behavior of an electron in spherical potential fleld.? 7

Let an eclectron be enclosed in a sphere of large radius
R and move in a spherical symmétric field of potential V(r).
This V(r) is usually taken to be a screened Coulomb potential.

The Schrddinger equation for free electron is

" 4 kY. 4 (F) = 0 , (4.1.1)

while the cjuation for electron in potential field v(r) is

(¥ + ko-Tr)). ¥(3) = 0 (4.1.2)

In these two equations, we define

-~
1

2mE/h2

and U(r)

I

omv(r)me .

For spherical symmetric space, the wave function ‘%(F} and y(r)

can be separated into radial amd spherical harmonics functions.

Since the spherical harmonics solution for the two cases are the

identical, our interest center on the radial part of the two

equations. The corresponding radial part of 4.1.1 and h.1.2

are
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3
(1 ir(ra. gr) + k2- iiiél) l . Ro(r) =0 (4.1.3)
2 o

- -

1.4 ,2 @ 2 p(g+1) _
and {;2 3t e Gt K- al U(r)].Ro(r) =0 (4.1.%)

L

These two equations can be simplified by defining

Po(r)

1!

R (r)/r (ho1.5.2)

il

and P(r) R(I‘)/r . ('Ll'o’lnslb)

Introducing a parameter €, the two equations become

Pr(r) + ko - £i&i%l g au<r)].p(r) - 0. (4.1.6)
L e |

4

This equation reduces to the case of electron in free space when
£=0 and to the case of clectron in the potential V(r) when €=1.

The asymtotic solution for lamge w of H.)1,6 is

P(r) = Cosif(kr = Sun +.q, (k) (4.1.7)
or R(r) = C/r.sin(kr - ;iﬂ +n (k). (4.1.8)
i %

This asymtotic expression has been Adiscussed by Mott and Masse
.

)79

(1949)77. They showed that the solution exist only if V(r) tend

to zero faster than 1/r. nn(k) is ¢alled phase shift and depend
X
directly to & and k. For €=0, nz(k) is zero, while for £=1, ng(k)

can only be find by numerieal calculaﬁion. The boundary condition
is that the wave function vanishes at r=R. Thus the allowed

value of k satisfys
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kKR - %E,Tt + n_g'(k) =nnt 3 n =0, 1y 2y 3 «ce (4.1.9)

C is the normalization reaquired for radial wave function to

satisfy the condition
R B w3 :
£arbnr® p%(r) = bn g A P% ) = 1. (441.10)
o]

We now define P(r) to be the function corresponding to k = k + dk,

and so we have

2= _fi.%.;_"_) S | Be) = 0 (4o1411)

r |

=

ﬁn(r) +

Multiplying 4.1.6 by P(r) /and 4:1.11 by P(r), and then subtracting

the two, as well as integrating from O to any r, we get

- n T e -
olr dr.(PP - PP ) # (k°-E°)., Jf dr.PP = O,

which is equivalent to
r d P .y - =
4 dr.ar(PP - PP ) + (ka- kz) . g1dr.PP =0 .

&

or

- 2 =
PP - PP | + (k - kz). {)r dr.PP = 0. (4.1.412)

Since k = k¥ + dk, we can write

§=P+-;§°dk



L7

and P(0) = 0 . Then 4.1.12 becomes

2
o r 2
3P. 3% _ 5, 2P _ k. far.pc. (be1.13)
a3k ar ko o

For large r we can 2nply 4.1.7 and the normalization condition

4,1.,10 to 4.1.1% to get

C2.[(r+<iﬂi).k - %sina(kr - %1ﬁ 3 I%)]: 2k/bn {fdr.Han. (ho1.14)
dk 2 "

If r=R, we have

=Y
C = iEnR.H ¥ %- é";"i)] - (2@)‘% . (4.1.15)

If we now go back to equation 4,114 and break it into two equations,

corresponding to theg = 1 and O; we get

sin n_
b o cos(2kr-2n +n£) , (L.1.16)

r =
f dr-hﬂ-(‘P‘-—' Pz) —— 1- l'—a-ﬂ- &
8 &% TRU By K

where we have substracted the two and divide by k. This is the
localization due to 2 single C-state. Since the degeneracy of
g-state is 2(2%4+ 1), the total number of f-ctate Dbetween k and

k+dk is

x 2 3
2% (2%41). [ dAr.4n(P™- P7)
2 o ©

=
]

an sinn

Ne(2%4 1), | —% = ———% . cos(2kr - a® + 1, )
) 3k k L

i
=u] NaV]
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From 4.1.9 the allowed number of state in dk is Rdk/n. Thus

the total number of electron accumulated is given by

<

AN = {)de.awk.n/n ,

}{ aTIp sin n£
o AN = 2 Ze(2241) ST dk. | — = ———Ccos(kr-n+ng) [ (4.1.17)
T Tm R g ok
76,77

The second term is called oscillation term. This oscillation

term can be integrated by part to give
sinfy (k)

the oscillaticon integrzl term = —————— . sin(2k_r-un+ nék ))+0(1/r
- kFr F F

2\

sin nz(k_)

. | it '
Thus AN = % 2o (Rhr 1l lné‘fF) EET sin(2k r-21 + Ny (k) [o (4.1.18)

The local density charge p(r) is related to aN by

N
e ™ —
Lqp z
= il . & (2241).8inn (k) .cos(2k_r-im+n (k)
52,0 | & _ AR F A
-1

b3 5.
o ﬂ.(2g+1).(~1) .sinn, (kF).cos(ZkFr+n2(kF)).

(4¢1.19)

By discardin- the oscillation term in 4.1.18, we have total number

of electron needed to screen the excess charge *Ze. Thus

p o 2 1;;.(23+1).nﬁ (kp) o (4.1.20)
T
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This is the famous Friedel's sum rule,78 which is the important

self-consistency condition required of the potential V(r).
Let R be the radius where the potential V(r) vanish

(Thomas-Fermi screening radius). Tt is a well known result of

von Laue's theorem (1914) that the electronic density far away
(greater than 1/kF or about lattice constant) from boundary

surface is independent of boundary condition on the surface.

From 4.1.19 and von Laue's theorem it can be concluded that the
valence electron of impurity atom, which are lost to the conduction
band, are still localized around the impurity ion core. More
details about this localization will be discussed in the next
section . Note ﬁhat, the localized electron around the

impurity ion core are coming from conduction band.

76

L.,2 Virtual bound state.

If the potential V(r) is strong enough to accept a
certain bound state with quantum number L, one of valence ' - =
electrons of the impurity will remain bound in the impurity
site. Its energy will be below the minimum band edge of
conduction band. Thus the imparity atom will act as if |
possessed of excess charge Z-1 rather than Z. The V(r) must be
then reformulated. This bound state may be thought of as being
as subtracted from the bottom of the Fermi distribution of the
conduction band. The réformulated potential V(r) will then be

less attractive. Therefore the bound states increase its
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Pig.4.2.12 the diadrammgiie Shtresentition of the virdunl bound state.

D @\(B)

- Tiged«2.2¢ The density of state change.
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energy and eventually merges themself into the continuum of
conduction band states. It is however useful to think of the

state as still existing as a virtual bound state. These states
have the wave function which the distance of the atomic radius

look very much like atomic wave function, but at large distance
from the impurity site these functions will not decay exponentially
since this type behavior corresponds to positive energy relative to
minimum band edge. However, the wave function will have decayed

to small value by the time it leave the impurity sites (see 4.1,19),.
The virtual state can be represented diagramatically like Fig.4.2.1.
The change in dendity of states is something like Fig 4.2.2. The
width of the density of states change is related to the time that the
electron take to be localized at the impurity site through the

uncertainty principle
T =h /w.
There are many detaills of phase shift analysis 76-78,81
which are beyond the scope of interest. Since we are just
interested in existence of the virtual state, which behaves as

an intermediate between localized and extended states, we shall

not to into the phasc shift analysis.

4.3 The improved model of localized magnetic moment in metals.

Based on Friedel's qualitative idea of the virtual state of

impurity in metals, two important papers have extended the
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understanding of the problem and have »rovided some quantitative

38,82

result.’ These two papers are based on the same idea but

different approach.

The first is Anderson's paper on the hybridization of
localized state and extended states, or s-d covalent admixing.
In this model, the locelized states are nc longer eigen-state
but have a finite width in energy, i.e. we have virtual bound
state associated with the impurity satom. When the interactions
between electron in impurity site are taken into account, the
possibility of spin-spliting ¢f the level and the existence of
localized magnetic moment 'can be determined. This model is

83

considered to be applicable to the following case:

i) trensition impurity atoms in noble and other non-
transition—metals;
ii) rare-earth impurity atoms in various metals including
transition met=ls,
iii) it is also possible to apply this model, with some
modification in its interpretation, to transition

imrurity 2toms in host transition metals.

This model will be shown later in section V to be
applicable to chemisorption of hydrogen on metals, the subject
of this thesis.

A month later Wolff proposed a model which was based on

73-75

Koster and Slater's Grecn function method to formulate the
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mathematical treatment of Friedal's idea.B2 This model has
been improved by Clogaton.sq-86 This model can be applied to
transition metals alloys to which Anderson model is not directly

applicable.

4.4 Anderson model.38

Beginning with the unperturbed Hamiltonian Ho is
taken to be that for the isolated system, Ho is obtain by the
direct combination of Hﬁ and H; , the Hamiltonian of free
impurity atom and free host metals. The localized orbitals set
{||20>} and the Bloch state set {|ko>} of spin o are the sets
of eigen-states of the two isolated Hamiltonian Hg and H§ . As
we already mentioned that the states of the system have the
characteristics of both loc alized and extended state. The
nearer the energ y is to that of the atomic orbital the morec
localize it be. If the {|20>} are all orthogonalized with
{|k o>} , the set {{|20>} , {|%ko>}} form the set of eigen-state
of Ho.

This eigen-state set is overcomplete since {|k:c>} is
complete, However, the overccmpleteness can be easily taken off
by proposing some overlap, which has been proved to give the
result which are independent of such overlap.s? Thus {{|20>}

{|k 0%}} can be used as basis one~electron vectors of the

system.
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The next step is to introduce one-electron coupling
term HAM into the Hamiltonian. Tt would be a great mistake
if we miss the correlation term Hcorr since the existence of
localized magnetic mement is due to this term. The Hamiltonian
of the system becomes

9 . (B.4.1)

AM corr

]
I
jas]
=0
+
jus]
+
o
+
o]

This approximate Hamiltonian is ealled Anderson Hamiltonian.

) .8
It can be written in the second quantization formalism 8 as

o]
HM = 2‘. Ekckﬂckc 3
ko
HO = Ct C y
A G o S
+
Tav™ ;.' (Vkm kg "ot i#:C),
(of
I'{ = iUnZa n n

. + t
R 1 R c + N ec c + 3T (V, ¢ c + H.C)
o k'ko kg ag° ¢ 20 io Ko k¢ ko Zo
1
+ —Ua?‘.-.' s 1 n (4.#-2)
2 g Lo Lo

which contain 211 of the Friedel's idea as an undering shadow. The

t ; . s 1 :
Clg and Cy are defined as creation and annihilation operators
a

for Bloch k-state with spin 0., The same definition are given

+
for ¢ and ¢ of localized state, also.
La Lo
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The spin o denote the opposite of spin o .

"s with all perturbative problems, the unperturbed system
is taken to be that of an well known system. Such system is described

by HS

A is the energy of free-electron state of

and H; « The €
momentum k. The continuum of free-electron states has a density
of states p(w), which is usually assumed tc be a constant. Tt
has been point out by Anderson that the variation of p(w) has
little effect on the results38(this will be discussed in detail
for the chemisorption problem later,  see also appendix F). The
£, 1is energy of localized orbkital of free impurity atom, which
can be determined with the high accuracy for almost all element.
The coupling term, which will perturb the system, is
L=k interaction or covalent admixing.| The coupling coefficient
an is associated with the probability for electron to tunnel
from impurity site into the continuum of metal, and vice versa.
This will of cause destroy the localized magnetic moment of the
imrurity ateom. Some time the coefficient will be treated as

constant V, the average, or root mean squar of V while

k!
other time it will be expanded in term of the Wannier function

as

V...

1 = &
-of dr. g: (I‘)-HH
Y

3 .exp(lk.Rn).a(r—Rn)

1 I
- .exp(lk.Rn).V(Rn) .

f-N Rn;t‘.fo
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The latter expansion can be obtained directly by a Fourior expansion
of the former expension. If the perturbation is small we need only

cobsider a few of the nearest neighbor terms.

Electron-electron interaction at impurity site can be
approximated by constant 7. The main contribution to this term

is the Coulomb repulsion encrgy of opposite spin

2
J° s

" h 4= 4= | = 2 - - -1 -

U = J d:::*,]dr-e.]9‘5‘“v (r1)j .(|r1—r2 P =|ﬁ£(r

The question of the same spin Coulomb interaction does not arise
since it is not allow by /Pauli exclusion principle. Note that,

this approximation is ‘hot /correct reven for the free impurity atom

since there are many others term arising from exchange and

correlation effects.

4.5 The Green function solution of Anderson Hamiltonian.

To solve the present problem,  there are many techniques
which are used. The easiest and most powerful one is the Green

88,89

function techniques. It is well known that every Hamiltonian

operator have an associate operator called the rrsovent operator
R(w) =[uI - H] -
which is well defined and unique, and which is generally called

the Green operator. Anderson has used this Green operator to

solve the problem, using what is known as Hartree-Fock approximatiOﬂ.38
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His results are limited to some range of value of the parameters

(defined in previous section) . In this section, we would like to
work out the same problem but with a slightly different Green function,

the so-called cdouble-time Green functions9 (see appendix 4). IHubbard
(1963~4)90_92 used this Green function to study the correlation
cffect in narrcw band or transition metals. In the papers

he introduced the new Hamiltonian, now call Hubbard Hamiltonian,
which is the mcdification of Anderson Hamiltonian. The success of
Hubbard arosec tecause of a scheme being introduce . The new scheme went beyond
Hartree-Fock approximation 1is called Hubbard deceupling scheme. The
propagation of the electron in the transition metals is compared to
the propagation of light in /alloys. The analogy between the two is
called "the alloys analoy". Hewson(1965)93 used Hubbard idea to
work on Anderscn Hamiltonian to study the localization of magnetic
moment in metals.

The retarded Green function for electron with spin 0 at

an impurity site is defined as ;89

s

67 .(t) = <<c. (r) ,c  (0)>> = -16(t). <{c (t),c; (0) }>, (4.5.1)
v h¥io & a - -
Going back to 4.4.1 and 4.4.2, a little rearangement is
done in order to acheve the physical meaning of having the free impurity

atom contain H, This then leaves the covalent admixing as perturbation.

orr

The Green function defined in 4.5.1 has physical meaning of an

propagator for electron being created at the impurity site at the
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time 0 and prcpagate in a mannar similar to diagram representation

shown below ;

=t ’/\T 7 /[\
#
| 1
'r ] Lk
!/":i ‘f + !
'-,'-‘Ir J kg. "V
7% 2k
2 I ‘” b a(h5a2)
L/.i 2 v o
H Vok g ek
y <
t=0 -1 |

where 4 represent electron propagator for free impurity atom and §
represent electron propapator in metals. The diagram can be solved

94,95

directly by studyinz the analytic propertics of vertex. This

is however very complicate task and not neccesary to our study.

If the covalent admixing term is zer , the Green function

will satisfy the following equation of motion ;

w G?in(ua) = E%}. <{C£c ,c10}> * <<[C£o o ]’Czc 7% (4:543)
where H 1is the unperturbed uamiltonien
H= T . akc]:c‘ckc + g.g“c? c %U.?.nl n_. (k.5.4)
kg L 4o Lg g A0 dag
Since
hkc .;tc} = 1, Lc;o’cicgkci: = O.,:’_”c,?'0 CEGEQU;]_ Gdc,c e
and {CEU,HZU E&ﬂ = ?600‘:1£c, ¢rg”



the equation of motion 4.5.3 becomes

Q c
Gﬂ_5£)°G££U(N) = 1/27 + UerT,

s

F?, (w)

Eo st

where is defined

0]
}&‘Q‘g(m} = g ni‘_

Inturn,

& #+
i-‘p = (U.I) =

i)
v Fold

2n

We know that

+ 2
{n,.czc,czt = Ngz 3 -nzac

-

t
|n c oL & .nillc and n
I 26 "0 g Lo" | - ¢ e Lo -

Since n =n y ' we have
J wd
in_c n . n = 2§ n_c¢

Thus 4.5.7 becomes

4 i
3.;9

'&Jw) L

< e > <<in__C
. znﬂchc,c:ﬂ} + n,-C .
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(k.5.6)

this Grecn function satisfies the equation of motion

+
. ]’C£G>>(4-5.?
1
26 ,n?“ Gy oo (150 8)
00 kO wg

(4.5.9)
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Then, we have

v U.<ngg> ]
1-' 1 :
Gi;_o(w) = -2—1'1:- 3 :
L= EQ (w- EQ;(w—aQ—UH
1 [1=-<ngs > <npz > 1

(4.5.10)

¥

EC ) (w=¢e~U)

The result indicates that there are two type of propagators,

the first has no opposite spin Antaraction while the second has.
The probability of finding thesc two propagators is determinded
by the number of spin eléctron occupy in the impurity site, as

show in the eguation 4.5.10.

Tn contrast, the Hartree-Fnck approximation give us
. o 3
the average of these two propagators. Decoupling T'ooo (w) in

4,5.,6 in the following way

o] . A0
Ty, (wis SnpazeGop ) [

we have
-1
(-.0 () _lo(m"ii_ ) ]
2 g 21 ~0
== E —Un <N _. >
where €gg %0 G

The next step is to perturb the system by the covalent

admixing. A“gain, the equation of motion for Ggi' G%k’ Gﬂl‘ Gﬁk‘

are
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- + -

g 1 7

6on = g <loggacgg Po <o B Taey > 5 qq.0)
+ . +

1 1 e >>

(gk = §E°<{c£c’ckg}>+ << 1—C ",O,I. ] ,ck:j (4&591101})
4 :

g 1 <l , +

& R |
Gki 2n Ckc’(ig}> + <<{ckg,ﬂ } ,c20>> (be5:11.C)

1

1 [} 5 ))
Ckk'_ -é—n-n‘:lcko ’ckb}> 4<< [cw y I ]'Ck'o (1+.5,11_r1)

We also have

{c._,c.#= 5y 8 (4.5.12)
and

e T 4 ) [ 1
’ = | €. Cc s E C., #4C (]
ic:io’H] kg Ck [ %50 %k k01+ 97 730" 09 g |

1. 5 [ { ¥

3 1 o = .53 C
+ 2T_T.0 ‘r j&'nﬁnnﬂﬁ} 5 — { e c:J ,cku %o } + ng [CJU‘ g Ckg]l )

( 13)
where
s + 3

oA = e 5 B i Cc = &. » o4

[cju'ckcchx] GJk 6oocko ! [ 39" "o ro J Jg 600 Lo’
o - a [ o y | = b, . ""‘-5011{')

[Cjo'nic “m] 8¢ 6aén£g S ‘| ng‘ckscﬁoJ ik 606 %o (

[ : c 1 = 6 c
{cjc’czckcj = %5284 ko



. Applying 4.5.14% to 4.5.13 and putting

as j=f or k in the equatiocn, we get

The self-ensrcy Eo

through the covrlent admixing process.
show the two-particlc Green function

Green functione.
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it back to 4.5.11.2, b, c, d

= x')l:" a I+. I1 «a
(1= EQ-GEJL‘ = /2 + Uorth ";'{“’ngGka ) (4.5.15.a)
Lig
c L
_ G 4.5.15.b
(U-E‘Q‘ ).G;:,k = U-Fikg + E: Ukk kk 1 ( 5 5 )
(w-e).0° SNV, ¢ (4.5.15.¢)
k™" 7k kg L=
z : (4.5.15.d)
A G - e /e L]
Substituting GEQ' ng, in ¥,5.15.a, b by the expression
L}.s.‘\s.c‘d, we [:l,‘t
o )
- - = 2 - Kl'f" - (L"o5-16la)
(w €, EO).GR) =1/2n ¥ U 1o
and (o= A ANATURVRINIPA Y(2n. (w-e, ) (4.5.16.b)
2 0" "2k geo ok k
2 :
where g, = quvkﬁl /(w-ek+1a) (4.5:17)
and where the two-particle Green function is defined on
ij t t
= - 2] a - "-I-. .
Py SP18%%5 ko Y™™ (4.5.18)

arise from electron interacting with itself

Bquation 4.5.16.a, b

is dependent on the single=-particle
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ki L8 . . .
Both rﬁ,lc and r.Q,kcr satisfy the equation of motion
2 1 g™ #
NR— << -
Fggo - Pn <{ngac&0 120 * [nzocho o H 'cﬁo>) (4.5.19.2)
and
o | <{n,- g >4 << l-r- Co o | c+ >> (4e5.19.1)
Lko= B Tt Qe x0T 7T M0 se,c'-J’ ko ° kel de

We know that

+

{an}cﬂ,cr ’CRU} = nﬂ,a“ ‘{nﬂ'acgc ’Ckﬂ'} = 0 ] (“‘-5-20)

+ +

[nid 0 ‘H] = nlﬁ[cﬂ.o ‘T‘T] ¥ CE&[CR.E! ‘Hj C£c+[ €15 'H] €6 2o ? (%.5.21)

["zo'H] = €9Chg t/ Vs’ + kK VO (4.5.22.a)
[Cza ,H J = EQCR‘E‘F Uanzccza+ ﬂ vﬂ,kck& (4-5-2201?)
+ . + + 5 + ,
= - & N - L o Jo 29[:
and [CEE'HJ I:Egci'.ﬁ + U n.?.ccﬂ,a + 1 vkngUJ (4.5.2 )

Since n2 =n the result of substitution is
E.O' EU

+ +
20 T -
[nﬂ‘acﬂ'G ,H] _(g£+U)°n%c£c+ Kk ‘zk(nﬂ.& ot %5 Ckécﬂ.c) Vkﬂ.ckb'ciﬁcic .

(4.5.23)

Applying this result to 4.5.19.a, b, we ret

B gk ? o5.2k.a)
- - a l'p'f' = 2 TJ;[U ,( 2’3" r' k‘_v ’ k'ﬂ' ( .50 el
(w €, U) Feos <D£U>/ Ti+k _Q,R'Fkia"-'ﬂ,z.aJ kgruﬁ
- - 1
(e =1)-Tpes = 2 el ol (4.5.24.1)

. gko = k'l_VM;(rk-kowm gk of
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k; - & g : o
If we apply F£§ &9 Fé% 0"&?0 into the equation of motion

again, we would get the equation defining the higher order
Green func=ion. /s Zubarev (1960) surgested, we should
close the cvcle »f equation with some approximation, which
factors the high order Orcen dunction into lower order.

. _ 89
Green function. ~

Let us consider diagramatic representation of all

the two-particle Green function. We have

\ C.T
~ ?\
a N7 28
8 YR Fyge (H)
L@
o \\Fr—%o s
Y
s e s ()
k g
~ A
G WA 2k
—— > Tig (8)
\‘.\. ag ’ k
" ~ Tt
g he B g kg

y g rigo (4)
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k' kg

Similarly Fii s Tk o Fx o can be represented

g ! Fkko 1

{/
.

by similar diagrams. A\s example

. : 2%
\; d I
ke \ 7/ Ko Foalt)

where =+ and ~vy are the electron propagators in impurity site

and in metals.

Tn the Hartrec-Fock approximation, we factor the

two-particle Green function as following;

To go oeyond the Hartree-Foeck approximation, Hubbard suggested

the following:ga
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This is something similar to Hartree-Fock approximation in

that it average the interaction in the black box as an average

.'-
function <C4zCio>e In this way, the two-particle Green

function r;%c ) rfirT and all single-particle Green functions
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are obtained by making use the symmetric property of \cié ck5> = cckécﬁa
4.,5.24.a, b become
- %8 &
(W= _=U)oT =<n _> /21 + <n__> 8.V G,
X Lo Lo L Lk kg
2L v %0
and (w- E;U}.szc = <n£6>°§f];ﬁgﬁk -
Applying 4.5.15.c,d to these équations, we have
e < .5 = &
et S o = o. n-‘-' L4
(w €, U).Iim = P LT G g
,, —e <11) 28/ /A, o
and (w € U)elikd E <n26>'zo'G$k ’
where T has been defined in 445.17. Thus
= o
| n_ 1+2TL-EO.Grn.].
I-wu. = .?_a. P | (le.5.25.a)
Lio S AT -
Gik
i oA = ’ L) o - L;.
and P?:'— = n.é.E'o m} ' ('Ll- 5.25.b)

where n_= <n 5. If we put these result back into 4.5.16.a,b,
e ) o]

the single-narticle CGreen functions are then given by

—

1. U.n_a(1+2n.?o.GE£)J
— s g '
(w EREO)aGii = 5= L‘1 + o (4.5.26.2a)

5 Ten .ro,r-:?.bk Ve
and |-‘—'.\-: a \T =
e By oGy o=, * Tml-gy) © (4:5.26.0)



Rearranging the term, we get
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Using the expression 4.5.10, we get
Gy g Can)
G-,l(w) BS = 5
1-211:.}: .G (w)
0" B
Similarly, we get
0
3
o i T )
ng(w) = =
‘ 1=2n.% <G (w)
o LL0

(4.5.27.a)

(4.54274

Applying these results back into the equation 4.5.15.c,d, we

obtain all . the single-particle Green function.

b)

can

The equation 4.5.27.a can be put in form of a Dyson's

&
equation 3 by rewriting it as

o o o} o
P = G°% 4+ G 21T G 4+ G, 2T
LR Lio kLo o Liko Lo o
0 o o
+ G,_‘ elTeLl oG o2TaY oG
(9 do; 0 ¢lo O tic

'2“ 08 oGo
O o

+ece (4.5-28)

The Hubbard approximation goes only slightly beyond to

the Hartree-Fock, but leads a significant change in the physical

interpretation.

J
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L,6 The density distribution of g-state.
The density of states function at impurity site is

defined as a projection onto the sub-space {|zo>}, i.e.

pz;(w) = g" C(Em -w) e ]I <mu | Loz | 2

(4.641)

It can be related to double-time Green function by the relation89

=

g g g _— ;
P, () = i.ddm |G (w¥ is) - G,, (w=-is)| (hao6a2)
L S"",O+' %L e 8
[ 0 ;
= 1.11m+ } C1£0(w+15)
549 77} 2 o 0 o
{ 1—Lnn(no 1‘6)'G££a(”+15)
Gy o (w-is)
- : - . ;
1-2n.(io+1ae).cizc(w-15)
where the self-enerpgy TO is splitted into two parts the
absorption (j%) and disversion (Ao) part. We then have
EO = Ao 1&0 1
, . 2 2 2
where by = lim . U;kl /(w—e%) + S
5 >0
| 2
= T[.E:.! Vrk1 .\'S(L'J—E ) (4.6.3.3.)
kW k

=

and

O:

%“P ddet (W) /=& . (4.6.3.b)
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The integrzl Pdw is understood to be Cauchy priciple

interral. . Since G?ic has discreted pole of zero width, we
have GO, (w-is) = G° (w+is) in the limit of s>07. Thus
Lia i Nej :
, 5 : 2.8 02m.G° () |
'gi.,?,([':) = ﬂi‘,ic(w\" i i v s i ,-.5._ f%n_ - > |
{ - .r‘! j £ [ R - : :
| (1=2m.A oo @) T+ Ckzc(w))

:%/n

= . (h.6.4)
o -1 2 2
((2“-Gziofw)) -ﬁo) + A

-~ - = - o
Equation 4.5.4 shows the relationships of p¢ (w) and G2£ (w),
Ak a

ﬁo and ﬂo. By making different approximation for Gian(“)' we will get
the different expression for pis (w), i.e¢. in Hartree-Fock

approximation

o/ 4.6
(!‘.l.l} = — ¥ ( ° -5-&)
— _%)2+ X

0 "o

o}
0
28

while in the Hubbard approximation

Lo/ ™

L w=c )el(p=¢g=1)
% & - A §
o 0

w=-€e+~Tsl(1=-n))
ot g

Generally ﬂn, Ln are treated as parameters which are varied

in order tc obtain an idea of the behavior of the density of
states. Scrie numerical results are shown graphically in Fig.

T - I <
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4,7 Self-consistent condition for localized moment.
In the previous section we obtained 4.6.4, which is
gencral expression for the density of states for a system

containing 2-admixture with the continuum states of energy €, .

In order to determine the number of electrons of a given

spin 5, we interprate L.€.4 up to e

Thus (n},(} . ;]:EE—' dLU.pZL ({u) (!4'-7-1)
S A /L
-~ ftF' dQ{Ua pa 2 2 (4.?.2)
= !_(211.(}2‘;6({0))-1-1\0] + .{,i

This expression is quiteé pemeral. We will now study the

formation of localized moment under Hartree-Fock approximation.

Equation 4.7.2 becomes
€ A /TL
T
l"l*j =War dtve - '5‘ o (Q.?.})
{ -3
(w-ei-ho)
Treating 43, A As parameters, 4.7.3% can be intergrated to
give

e e A
o

n Tecot™ | P g ;
= - J| == | - .

g R L A J (ho7.4)

0
Defining y = U/LO (4.7.5)

= € =t = |
and x ( F EJL i‘b)/U 4
-1 z3
we get n = %.cot y(x-n_ ) (4.7.6)
o



MAGNETIC

x
M .
04}
0.3k
0z}
Q. =
o . - * I 1 " % .
o 5.2 a4 Gs OB aa
7 TS
@masr. Regions of magnetic and etic behavior,
© " Curve gives 3 v8 #/yem [ A
i i NIVER
3%



73

This shows explicitly the dependent of no ocn n.a, or alternately

As already mentioned, there are two processes, the r
covalent admixing process and the intra-atomic Coulomb
interaction of opposite spin, competing against each
other. The larger the intra-atomic Coulomb interaction, the
greater the possibility of the localized moment existing.

The width of the virtual state indicates the destruction of

the former process. Thus large ¥ correésponds to the
magnetic case, while 6mall y corresponds to the non-magnetic
case. At one point we/have y . = Uc/ﬂg, the changing peint of
these two cascs. HMHowever, the competition of the two processes
can not be simply represented by only U and ﬁo' it also is
dependent on the absarption part Ao of the self-energy. There
alsc exists X, = (EF-EE-AE)/UC at the changing point. Generally
speaking, there cxists the boundary curve between the two regions,
the magnetic and non-magnetic, reqiurs as show in Fig.4.7.1,b An
analytic cxpression for the curve is difficult to obtain, even

in the Hartree-Fock approximation.

Let us now consider the approximation which goes beycnd
the Hartree-Fock, for example fubbard approximation. Putting

the expression 4.6.5.b into 4.7.1, we ge

s /m

n =I€F dwe - (""‘-7-7)
o [(w=e )elo-e -U) ] .
...AO i

, g
Lﬁu-EE-U}.(ﬂ-ng
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This can be evaluated if we treat AO and by as parameters.

93

This has been shown by Hewson to give a complicate result.
Howev-r, the dependent of n on n_ is similar to that of the
a a

previous case. The peneral methods of finding the soclution

is to solve the self-consistent condition

F
n{‘ = N(U, EF.' l'.'l:gg i'aol n+) (4.7.842)
and n= NM(Uy e Az, &i, n¢) . (4,7.5%.b)

These two equationg can be solved simultaneously and yield
three solutions, #two of which are magnetic, while the third
is non-magnetic. The single solution exists for some special
value of parameters.  This single solution corresponds to the
non-magnetic cnscs If the system have three solutions, only
two of them arc the ground state solutions and the system is

magnetic.
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