CHAPTER ITI

METAL SUPFACE.

In this chapter we will discuss the finite bounded
metallic crystal, in which there are no intrinsic localized
states. There are three important approaches to the surface

problem, the crystal orbital (CO) method,60 the crystal

1=
potential method61 and the density functional fo:mn.':\].:lsrn.1+ 45
The first two methods have been reviewed by Davison and Levine
(1970)6 with the aim of studying the surface states, espeoially

624,63

the intrinsic surface states. 0f these two methods the

erystal potential method has more advantag « The Mathieu
crystal potential methcds4 gan—lisplay-a smooth conceptual
transition between NFE and TCAO limit ; this method can be
worked out relativistically6 thus generalizing Tamm's classic
work (1952).62 The third approach has been reviewed by Lang
(19?3),? using the density functional formalism to calculate

spatial charge density directly.65'66

This approach has the
advantage of being able to take into account correlation effect.
Its disadvantage is that the wave function can not be directly
calculated, This formalism can only be work well, self-
eonsistently for small varying or nearly constant charge density.

All of the methods at present time have been applied

to a model metal surface, Nearly all of the models used 1is the
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semi-infinite c¢rystal (SIC) model. Usually, the one - dimensional
(1-D) model is studied. This model is believed to be a good
representation of crystal surface. However, no one has proved
that it is a really good model. Like others we will use SIC asz

our model.

%.1 Semi-infinite crystal (SIC) model.

The best known crystal model, that has been used to
discuss the chemisorption pheénomenon, is SIC model. In this
model, there is a single surface plane which divides the space
into two half, the crystal and vacuum. Any SIC can be built from
various suitable 2-D infinite planar crystal sheet. We can label
the first layer, the surface, by 0 and the next by 1,2,3,...,
iy eesy M=1, where M is large number. Then the combined sheet
system is SIC. One simple example is simple cubic crystal (SCC)
with (001) plane as crystal surface., All 2-D crystal layers to
he chosen to have the same 2-D lattice structure as (001) surface
plane (sece Fige 3el.la). Another example is face center cubic
crystal (FCC) with (111) as surface plane. Since we know that
FCC can be built from ABC-closest pack, all layers parallel to
(111) plane has the same 2-D lattice structure. There are
three different configurations correspond to A, B and C packing
layers(see Fige. 3e7.7.b).

Clearly, the crystal have 2-D translation symmetry
parallel to the surface plane., This means that Bloch's theorem
is satisfied for every layers. We now define z to be normal to

the surface plane and
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R = f.3, + 2.Bj " (3.741)
where aj and Bj are translation vectors for j-layer in

L
xy-direction, 2and & are arbitrary integers. Then the wave

function Ki(?) for 7 layer have boundary conditions

n Jezy - xi(zr ) = kLB Jez
T, « %) = XGE-R ) = explik.R ) K(r) , (3.1.2)
J J J
and lim.Xf(;+E) = By (3.1.3.a)
Z =+ < -
lim. d_ xﬂ(?iz) £ 0 (3.1.3.b)
7 > o 4z

If Xi(f) is known for all layers, the crystal wave

function, Rk(F), can be expanded by linear combination of layer

orbitals similar to LCAO.
a £ AR
'*' = Le ° -ty e e |la
4 62) % Cj(k) Xk(r zJ) (3e1ak)

We now let Hm be the one-electron Hamiltonian of the crystal. Then

we have

H - ?k(E) = Ek.wk(;) : (3:1.5)

: : i* - - ;
Multiplying 3.1.5 by Xk (r-zi), interrnting over all space and

substituting wk(;) by 3.1.4, we get

(H - Ek.S)ij.Cj(E) =0 3 (3-1-6)
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which is the secular equation. The repeated indices imply

summation. The explicit expressions of the matrix elements are

L Tl .
Hij Sd7r.Xy (r—Zi).hm.Xk(r—Zj) "

& 3
bij sd

Il

i* - = j= =
r.xk (r-zi).xk(r"zj)t

(3:1.7)

(3.1.8)

Since Hm can be separated out into two part, J-layer's

Hamiltonian Hg and V.= V = Vj , where V is total one-electron

potential and Vj is j=layer's one-electron potential. So that

H = H? + § 1
m J J
2
0_“h-92+‘~f..
where Ha = 3

Then we have
o vizy - 22(R).xI(F
Hj.xk(r) = Ej(k).xk(r) .

Note that, this separation has no effect on the

Equation 3.1.8 becomes

B 3. yi* =3 7 ez
= [d7r.X (P(Zi 7 )).Xk(r) P

S .
ij 3

Similarly, %.1.9 becomes

;%
= Id5r.x;

H, .
1]

(3.1.9.a)

(3.1.9.b)

(3.1.10)

total Hamiltoniah Hm.

(3.1211)

Sy 7 7 -0 7 . 3 g |
(r-(Zi—Zj)).(hj + Vj).xk(r;

(3.1+12)



N

2k

where F.. = fdf’r.xi*(ﬂz.-zj)). \Trj.xf;(r) ; (3.1.13)

If i = s d 1 becomes

the crystal field integral, If i # j, then Jij is the interaction

integral, which is alway negative., 5 For the bulk layers, where

the indices i and j are large, (we have Jij = in.

All of these parameters can not be calcnulated unless the
one-electron Hamiltonian and wave function of the layer j are
known. We now let v(r) be the atomic potential acting on an
electron, where the atomic.core is.at(0,0,0) position in

space. We have

This equivalent to

h2 va
- e @ « e
H o= 3= +‘:.vj(rzn),
J
which can be rewrittcn as
5] ” -
H o= =h-, V2+ V. (r-Z.) N by v o
In T | 2m J J J'A303NE-2. ) (3a1.18)

J



25

This expression is the detail description of %.1.9.2 and b. The

wave function K;(;) of j-layer can be expanded by LCAO with the

boundary conditions 3.1.2 and 3.1.3, i.e.

XH(F) = AuSeexp(-ik.B0) o F (F-R ). (3 1.15)
j “J

In principle, all parameters can then be calculated
since we know v(r) and ﬁd(F) . ‘Practically, it is very
difficult to do so since we would have to do this on grecat number
of different layers. The layers may differ in 2-D inttice
structureitsclf or the same/2-D lattice structure bdut Aifforent

in xy-position. TFor example

O't{.l aa‘:{o 3*04#.5*.6# .-.-oon.-oc-j*-(j'k'l)_'-:!;-c..c--l--n-onc

The simplest example is SCC with (001) plane as surface, which

will be discussed in detail din the next section.

3,2 SIC model of SCC.

In this section, we will study in detail the SIC with

3CC lattice. The primitive translation are given by

= B 2 ¢
qur = p.Ri + q.RJ + r.RR . (3.241)

Here R is the lattice spacing and i, §, k are unit vectors in
X, ¥y 2z direction respectively. The surface plane is chosen
to be perpendicular to ﬁ, indicated by miller indice (001),
and which cuts z-axis at 0. All of the layers are defined by

Z. = j.Rk.
3= 9 ,
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We shall assume that only the Oth

surface potential6.

neighbor (NN)

will be now performed., TFor
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layer is perturbed by

The tight=binding (TB)calculation of pearest-

simple calculation, we

neglect overlap contribution and assume that

e now define

and
for all i=2.
(z~-x
n
0
0
L

There are many ways to solve this ﬁquaticn,6

to guess that

(5

[ Y
1J

e

]
o

1

Gij

(E, - H,.)/H

k ii 011 N

(Hoo - Hii)/Hii+1

Hoa/By5 0/ 7 BaolHis 9

Lquation 3.1.6 now becomes

X 1 0 0 5 y -

Cj = Besin(M-j)& ,

(3e2e202a)
(%.2.2.b)
(3.2.2.¢)
.! rﬁc »
0
5 C1
° 03 = O-
1 )
CM-2
“*] | Cu-1

’The simplest way is

(Ze2.4)

(3.2.3)
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which satisfies the boundary condition that CM = 0 since there
is no M-layer in the SIC. The € must also  satisfy the
surface perturved difference equztion, i = 0 and 1,

(Z-X} .CO + '{].(;1 = 0 (502.5.3)
and
-— - = a ?- e le
'ﬂ.Co XOC‘] + 02 O () 2 5 b)
We can now find that the bulk differencec equation for i = 2,
s = o]
or X = (Ci+1 + Qi-1)/ci .
Applying 3.2.4, we get
x = (sin(M=-i=1)6 + sin(M-i+1)€)/sin(MH=-1)6
= 2 cos® (Fu2e7)
Putting x in 3%.2.7 into 3.2.5, we have
(Z-‘E COS&).CO + T].C1 =0 (3.2.8&3-)
and n.C0 - 2c088.01 + CZ =0 . (3.2.8.b)

Multiplying 3.2.8.2 and b by n and z-2cos @ respectively,

subtracting the first from the later, we ohtsin
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Ny

n C,. + (z-2ca89).(2c059.01—cj) =0 s

Then r|2

n

(2cos@-2).(2cos@ - C,/C,)

(2cos@-z).(2cos@ - sin (M-2)e/sin(1M-1)@)

Ll

(2c0s6-2).(cos@ + cot(M=1)0.5in0) . (3.2.9)

The © solution has M+1 roots and has at least M-1 real roots.6 The
remaining two roots may be either both real or complex number.

The metals have been modeled in such & way that there are no
localized surface states. /Therefore only M+71 real roots exist.
Limitting 3.2.9 to the case of an ideal unperturbed SIC, i.e.

n =1 and z = O,ywe have.

P
1l

2cos8.(cosd + cot(l-1)G.sing)

I

2cosl.sinM8/sin(11-1)6 .

This implies that

5in(M+1)8 = 0 , (3.2.10)
which gives 8 = nn/(M+1) 4, 1< n <M . (3.2.11)
Since for metals n =1 and z = 0 , we have from 3.2.9
2 -
n = (2cos® - z). sinli6/sin(11-1)0 .

Multiplying by sin(M-1)g, we obtain

2
n e« sin(M=1)0 = (2cose - z). sinle .
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The trigonometric function can be expanded to give

nz.(sin(M+1)9.cos29 - cos(li+1)9.5in2€)
= (2c0s® - z).(sin(VM+1)0.cos@ = cos(}M+1).sind),
which can be rearranged to

2 . ;
((ﬂ2-1).cos20 - 2.c080 = 1).5in(#+1)0 -((n =1) .sin26 + z.sind) .

uCOS(M-I"l)g =0 s

This can be recwritten as

A(O,n,2).5in(M+1)6 --B(8,myz)ecos(1M+1)0 = O . (Z.2.12)

The equation 3.2.12 can be solwed by itcration process. Defining

0
430

(n 2-1).c0529i_ $-2,.c089, -1 (3s2:13%e2)

112) 1 i1

(n2~1).sin29i_ +Z,5in®, _. (3.2.12.b)

B; (85 qimz) 1 1-1

Replacing A and B in 3.2.12 by Ai and Bi’ we have

Ai.sin(M+1)Oi - Bi.cos(M+ﬂ)Qi =0 (3.2.14)

or sin((M+‘I)9i - %) =0 4 (3.2.15)
=1

where §; = tan (Bi/Ai) ; (3.2.16)

In the limit i —= <=, these equations should converpge to give
the solution. However, we can work with a sm2l1l 1 ifn and 2z
are sufficiently close to the ideal unpertubed crystal value.

Working with i = 1 or & = 01, we could find that
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" = ]
-7 (q2-1).sin2( 4 Ze.sin€ |
51 = tan | > - it |
| (n"=1).cos2T + z.cosb = 1 |

. 1 2 |

where 1lim 6, = tan =-0(n"=1, 2)! = 0.
1 .
n+1 .
z+0

This imply that we should be able to find a small number, m<<1,
to bound §, as small as (n,z) c¢lose to (1,0) (see Fige 3.2.1)«
However, the results show that our choice has only small effeat
on the density of states since only small shift of @ occurs.

The number of solution is however the same. Thus the density

of states of slightly perturbed SIC can be approximated by fﬁe

ideal unperturbed SIC's density of states.

Let us now go back to 3.2.2.a, where we have

Q
X = By~ Hy )y
as the unperturbed reduced energy. The following calculation
will show how our layer view point can be related to the

conventional atomic view point. From 3.1.7 and 3.1.13, and

assuming that sij = aij y we get

H.. = E. + J.. (3-2-17tﬂ)
p s B E 5k

and Hiii1 = Jiii1 ' (3:2:17:0b)
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3

where E; = fd’r. x "(F). HS X, (r) ; (3.2.1848)
% e e
Ji5= Jd7reX, (r).vi.}{k(r) (3.2.18.1)
"-;nd J = ;d3r Xl*(;+§k) v xi(F) (3.2.18.¢)
P ii_‘_—'] -— @ k — L] iﬂ k L] - L] L ]

The i-layer wave function X;(;) is the same for all layers and

is obtained from
o i, - (o P P o :
Hi.Xk(r) = Ei.Xk(r) (302019)

with the boundary conditions 3+1.2 and %.1.%3. The solution can

be written in Yannier representation as

X;(F) = pqq. T .exp(-ik.® ),a(§-§£ ) » (3:2.20)
: i

Ly e
i  §

where P2 is total number of unit cell (atom) in the i-layer. 1In
LCAO limit a(r) is the atomic orbital g(r), which is taken to

be non-degenerated orbital. For large i

_

' 3 .
Hy, = f0rax (F)o(H] & 2.0 ov(E-R, -Z48)).X () .
#3 = B

This can be rewritten as

H.y = IdEr.X (r). (H F ¥ .V(r-Rl) + % uv(r-R 7.+ Z ) )X (r) "
i40 1] j

where H? is atomic Hamiltonian. The potential term can be sum

to
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'\-( = z -V(i:-ﬁ “z +2.) °
A g % 2 j 1
{2j.3)£(oi,1) 5

Applying 3.2.2.20 and this summation, we get

H.. =P "o % . ,axpl}-il}..(ﬁ . R )‘1, '3 dar.ﬂ:'(;-ﬁ-).ﬂo+; ). @(r-R )
. : A 3
it Ei'g’i ) Ly Ly . % VA '
o} o= i
Hii = E‘& + E- + E .Exp(—ll{aR ).B e (3-2.21)
1. p#0 Py Py
For nearest neighbor approximation, we have
0 - -
iit1 El’\ + i L v 2u 2(1) o Bi oCOS(k-R '} ° (302-22)
i i
Similarly
Hii'!"] - P-E. ﬂE }.{: DExP[-iEc(ﬁ - §:i } ] e d3r= g* (;-ﬁy.' —Ei 41+zi)
. e B -y T i1 '
u(Hi + Eﬁ)"g (i:"'.ﬁ4 ).
! L
i
Since the shortest interatomic distance in SCC is xyz-direction,
we find that
H.. =b . . 0
(see Fig. 3.1.1.a). If i is large, we could find
o i
Pijeq = Bpi(1) =5 (3.2.23.2)
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and T — T (3.2.23%.b)

Then %.2.2 becomes

x = (B2 =« 2 a®a 2B8. ¥ .cos(ﬁ.ﬁp))/ﬁ

(o]
) k A
‘ p(1)

From 3.2.7, we have X, = 2cos® . So that the above

expression can be rearranged to give

B, = EC 4+ «+ 2B.(cos® + & .cos(K.R )). (%.2.24)
-0 p(1) P

Since B is always negative, 'we can write

£y S -(cos(kx.R) + cos(ky.R) + cos@), | (3.2.25)

.

where €, = (Eiw Ez - x)/2 Hﬁa >

As be shown previously for unperturbod metals, we have
( = mn/(M+1) = 2nRn/(2(M+1R) . (3.2.26.23)

From this relation, we obtain some relationships between infinite

crystal and SIC.

Shockley has pointed out that any surface must created

63

in pair and not as the single surface as proposed by Tamm.
It is well known that the infinite crystal must satisfying the
Born-von Karmar cyclic boundary condition in xyz-direction.

To produce surface, we must take off some atoms from those

cyclic chain. Tn our layer view point we just have to remove
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some layers, perpendicular to z-axis, then two SIC would be

produced (see Fig. 3.2.2)e

We shall assume that the lattice space under consideration
is of a cubic form with the length L in x, y and z direction.

Number of ator in any j-layer is

8% o (L/R)S L

In this simple model the number of layer in z direction is also P.
1f we take off K layersy the/ number of layer for SIC is

M = (P-K)/Z o
Substituting this into 3.2.26.a, we obtain

8 = 2nRu/((P=K+2),R) o

Since P >>K and 2, _that is no-difference.between K = 2 or small

number greater than 2, i.e. K = 5./ So that

8

I

2nRn/L ,

which gives = kR (3.2,26.b)

For ideal unperturbed SIC, we have

€y = -(cos(kx.R) + cos(ky.R) + Cos(kz.R)) s (3.2427)

which is the same as that of the infinite crystal.68 Since we know

that it is impcssible to produce real surfaces without some
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perturbation, the closest we can get to the ideal case is to
take the perturbation as being small. From 3.2.15 and 3e2.26.b,

we have

g — kz.R -+ 2R06/L o
This implies that 3%.2.27 can be developed to be

€y = -(cos(kx.R) i cos(ky.R) + cos(kz.R) + 2R.6/L)) o« (3.2.28)

This slightly perturbed SIC model may not be very good
for metals since the crystal is assumed to be perturbed only in
the O-layer. A more reasonable model for metals would be =
small varying perturbation SIC model. This model would have a
large number of perturbed layers so that it would be difficult
to solve the secular equation or boundary difference equation.
Since TB approximation gives a good result only when the perturbed
potential tends to zero in a short distance from the perturbation
source, we would not be able tﬁ apply this approximation to the
small varying perturbation SIC mocdel.

However, our slightly perturbed SIC model is the only
model which would possibly be studied mathematically at present.6

From 3.1.4, 3.1.15 and 3.2.4, ?k(F) can be expanded by

LCAO of #(T) as

v, (T) = B.B.sin(M-3)0.A.7 cexp(-ik.R ).ﬁ(i-ﬁx -Zj)

J X j A J

]

2
J.{‘,j J J

AB.T.T .sin(M-3)@.exp(-ik.R ).g(?-ﬁic-zj). (3.2.29)

The normalization is

1= f d3r.w£(5).wk(5) :
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Substituting 3.2.29 into this expression, we get

1 = (AB)Z. Y 8 sin(M—j)Q.sin(M—j')Q.exp-iﬁ.(ﬁ - ﬁj s TR
33 ey Rj 3"

). ¥(r-R, -Z.) .

3 ‘* — -
S A,y (r-Ri-. -Zjl 2’3 3

J!

Since the atomic orbital itself is normalized, the expression

becomes

1= (.ﬁnB)a. To'% - Sin2(M-j)9
Ve

(aB)2 . P2/ 7L [ B-1)0 .

J

]

where P2 is number of atom in the j-layer. Since M is very
large, we can change the summation over j to be integral of

Thus we get
1= (ﬂEP)a.(M+1)/n-fg dcj.sin(M - %.(M+1)/n.9) ;

This can easily be integrated to give

sin2 (M- %.(M+1)/n.9)

= (AEP)a.(M+1)/n.%. 3
2(M+1)/ =.8

-
|

sin2® 4+ sin2MQ
2(M+1)e

(AEP)Z. (M), [
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This can be simplified to
(3.2.30)

/
1 = (QBP)E. 1(M+1), sin(M+1)€.cos(M=1)0 -1 .
: (M+1)8

Since (M#1)0 = nm ,
the first term in the bracket of 3.2.30 is zero.

(see 3.2.11),
Now 302-30 is
1 = (ABP)E. -;(M+1) 9

(3.2.31)

Then
we obtain the normalized

Substituting this result into 3.2.29,

wave function
v (F) = i 2 E L in(Me)0.oxp(-ikeR ). B(E-R, -Z.). (3.2.32
k P M+1 Jﬂ.j 2 f-j

J

To see the 1-D 1limit, we reduce P = 1 and sum ij
agrees exactly with the

= 0 only. The result

contains %
direct 1-D calculation (i.e. see Newns(1969)37, and also

appendix F).

3.3 Density of states.
A quantities of fundamental interest in band theory

is the number of electron states in an interval of energy.

\
J



This quantity is refered to as the density of states function

. . 6
D(E). The density of states is defined 8 as

£ d . 3 R
D(E) = . fd k (3-3.1-r ;
(2“)3 dE

ery Q2 < i_ . das
h T (en)>  GE é vk.'}:k ’ (3.3.1.Db)

winere [ dS is an integration over constant energy surface in
E

k-space. For infinite crystal, we work with Wigner-Seitz cell

3

However, this can not be done for SIC. Thus the usual band
calculation are not appropriate for SIC. We have to attack th«
problem indirectly. As mention proviously, this can be done

by using bulk density of states for unperturbed SIC (see 3.2.27 -

The transition metals are of the most interest for

chemisorption phenomena. We will limit our discussion to d-band.

Many authors have studiegd the band structure of transition
metals, especially the iron series69_?2. The density of states
is related to Green function 73-75 by

D(E) = n-‘I.Im{Tr(G)} ’ (3.3.2)

where G is the matrix representation of Green operator. Here
G is defined by

G = (B.I =M, (3.3.32)
which is the resovent operator. H is diagonalized so that

-1

nGkk' L (3‘3'}4)
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Applying the identity to this expression.

<m|G h* Ek'.<m k><k|G|k"> .<k'|m'> ,

we get

<m|G|m*> E.<m|k>.(E—Ek)"1.<k]m'> .

In the above expressions ‘m> and |m'> are wave vectors in

site representation. Thus

2
-1
° o L E-
TI"(Gmmr) = % E l<m|k>l ( Ek)

' 2 -1
EC E- k ° E_E e
I.(zufemfe>]T) . (B-E)

) [<m|k>|2 is unity for normalized wave function Tk(;),
m

Since
we have
Tr(G) = E'(E_Ek)—1 :
This can be rewritten as
Tr(G) = E.iJF'dt.exﬁ;i(E-Ek).t* . (3.3.5)
o L J

Substituting Fk from %.2.27 into this, we get

Tr(G) = ém dt.i.exp(aiEt).N-(R/En)3o

& djk.exp[-it(cos(kxoR)+cos(ky.R)+cos(kz.R))}-



b1

This can be simplified to

( T
Tr(G) = f”dt.i.exp(-iEt).N/n3. fdk.exp(-itcos(k))]3 .
o] o}

Since we know that the k integral term in this expression is the
zeroth order Bessel function of first kind Jo(t)’ we get

o

Tr(G) = [ dt.i.(cosEt -~ i.sinEt).Nan(t)o (3.3.€)
0
We then have Re[?r(@) ] =N, fndt,sinEt.Jg(t) (Be5sTalt)
o]
and Im[Tr(G)] =N/ /F dt.cosEt.Jz(t) (3e3.7eb)
(8]

Here N is number of site or atom in the crystal. The density
states per atom can then easily be evaluated, i.e.
5(E) = D(E)/N = n oIm ITr(G)/N} = D) [ at.cosEt.Jz(t). (3.3.8)
N - 0

The density of states per atom is normalized so that

I; ai i8¢y S0 (3.3.9)

where n is number of electron per atom (i.e. for d-electron

n = 10)9

For slightly perturbed SIC, we can use the expression

for E, from 3,2,28 in 3.3%.5. Similarly we have



4o
© . . 2
Tr(G) = f dt.i.(cosEt = 1.51nEt).N.JO(t).
o

X fﬂ dk.exp I-itcoa(k + ZRQ/L)}. (3.3.10)

o N A

In analogy to the previous calculation for unperturbed SIC,

the density of states for slightly perturhed SIC can be obtained.
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