CIIAPTER II
THEORY

1
Lnalysis of Stiffened Circular Cylindrical Shell,

1 Assumptions.

1. %, y,~nd z are reference surface coordinates which are’
orthogonal and along the directions of principal curvatures.

2. The shell is thiu,

3. “he doileoctions are cmnll;

A. The rotations about the inplane axes are much larger than
that about the normal axis.

5. The normels to the reference surface before deformation
remain normal to the reference surface after deformation and they
are inextensional. That id =d =€ = 0.

X% Yz 2%

6o Stiffeners nre along the principal curvatures and their
effects on flexural and extensional stiffness are distributed
mathematically over thewhole surface of the shell(smeared technique),

7. The connection ig monolithic,

8. The stiffeners do not transmit shear force., The shear

membrane force is carried entirely by the skin.

9., Stiffeners are in the uniaxial state of stress,

lUngbhakorn, Vey Ope cit.



10. Stiffonurs sre torsionally weak(opon scoiion sbifEEuors)s
3
That is M__ =1 __ = __Eh -
11, Skin is in a bioxial state of stress,

L

2 stress—-strain relations.

gince the skin of the stiffened cylindrical shell is assumned
to be in a binxinl stress state. The x-nxis is in the longitudinal
direction and the y-axis is in the circumforential direction ( see
Figure 1 ), Thus, the stress-strain rclations in the skin arec
g:{Jt&llc 2 TEW(E:: '”"éy)
yysk = %ﬁ(éy “”Ex)

6 . = sy
sysk = B(3+9)

The stiffeners ~re assumed to be in a uwniaxial stress state

(1)

so that the stress—-strain relations are

dmt -E.€_ (2)

63:;:' v E.v'éy

for the longitudinal and circumferential stiffeners respectively.

3 Strain-displacement relations,

The reference surface of the shell is taken as the midsurface
of the skin, The coordinate system is as showm in Figure 1 and
u, v, and w being the deformations of material points on the
reference surface, The strain-displacement relations are
é_ ==6' +ZK
x -« 4 o 8
€.+ zK

é;? B ¥y (3)
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A Force and moment resnlinnis.

The force and moment resultants per unit length are obtained
by combining the appropriate integrations of the stresses over the
thiclmess of the shell end then adding to these the corresponding
gtiffoners contributions, According to assumption 6, the force and

moment resultonts are W2
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Substitution of the stress—strain and kinematic relations,
from equations (1) and (3), into equations (4) and performing the
indicated integrations. ''hen combine these resulis with assumption
10 and o number of new parameters defined in lppendix A, eaquations
(4) become

Nnv,é+¢!né +enB K

XX XX & XX yy xxxst  xx

I-Iyy =JE men-s Fyy ew + eyEyyr Kﬂ

Hep ™ waw _(5)
M, = (D # eiE +) K+ VD vptw OB L i Cry
I‘[w = ﬁnupr:m+ (DW+ eymm)nw + eyEvy‘réW
LI g Wy =D KW

5 Prcbuckling stresses.

fhen the cylinder is loaded it is assumed that & membrane

state exists, i.c., there is o uniform change in length and radius

on
of the cylinder, Let the superscript O denotes the membrane

state parameters, Under the membrane state u is a linear function

of x only, and v and w are independentof x and y. Therefore

£ ol o8

The membrane state force resultants become
o o %
" = I Y=
1 ) é. sz W ) éu

o Q
P =9 E
vy Gt B g

H = 0.

(6)

For a circular cylindrical sheoll under uniform axial compression

(o} -~ (o]
Nﬂ = "'II 9 N-W = 0.
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Ilence, equations (5) yield the prebuckling stroins
o

€

s E D ? XZp W'P (1)
éo 1) NE:']EE

v " E E e Wp

Substitution of eguntions (7) into equotions (1) and (2)

yield for the prebuckling stresses of the skin, siringers, and

rings in terms of nondimensional pnrnmeters,/xm and %.YZY defined

in Appendix A, os follows:

-1«(1-1-’7\ T\

i n[(n’h )(1+’)\ )- 9]
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§
yysk © [(14,9\ )(1+7\yy) a:‘]
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myv(l—a!z)ff

Tl (A )1k, -9

(8)

5 Buckling equations.

The well-knowm equilibrium ecuations of the linear thin

shell theory are

+ I + qx O.

N
?—x’x xy,y
i + I + q‘v 0.

)

Wy Iy (92)
Moy b Mo 42 (N oot (Mo, )y +
3 Ty xy
2
(M via)ay + ...:Eb: + (W Wy )y~ e = O

where qx, qy, and q_z are the loads in the x, y, and z directions,

respectively.
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A numbers of authors, BDlock,Crrd, BRC Mimlns, Boruch and

. % e % ; 3 5 3 6
singer,; Hedgepeth and Holl,; Deluzio ~ac gtuhlnan; ~nd Simitscs, howe
investigntced the instability of eccentrically stiffened cylinders
under the notion of single load application by using orthotropic
thin shell theory ond they hove reduced the problem to an eigenvalue
problem, with three differential equations., Using the geometry and
sizn convention shown in FPigures (1) and (2), and letting the
mon

guperscrint 1 refer to the additional quantities necessory 1o

bring the membrone state to the adjacent buckled state, These three

governi?g equations are

Z
@4, 1- D
F&xSQﬂﬁ-G --—bbf'+[(6 +VE )--4v1=
@< ¥ oy N TG
@11
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g i R yyp r;bx x :D;sig@ 3
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i( Q VE ) "‘“-__'Juld" iE-\nr 3-2+ G"'\r ?-2] vl .
= X0 Oy =T (O x

(9v)

2ﬂlock, De L., Card, i, F., and Mikulas, M., JTey
Buckling of Bocentricelly Stiffened Orthotropic Cylinders
{ JASL TiD-2960, 1985 ).

3Baruch, M. and Singer, J., Effect of Eccentricity of
gtiffeners on the General Instability of Cylindrical Shells under
Tiydrostatio Pressure(d. liech, Inge Scieyd 1963), ppe 23-27.

4Hcdgepeth, I. M. and liall, D, B., Stability of Stiffened
Cylinders( AIM J., Ho. 3, 1965), ppe 2275-22006,

5Deluzio, I.. and Stuhlman, C., Influence of Stiffener
Bocentricity and Ind loments on Cylinder Compression Stability
(Lockheed Missiles and Space Co., LISC F=804600, 1964).

,

®simitses, G. J., 4 Note on the Goneral Instobility of
fccentrically Stiffened Cylinders (J, Lircraft, Vol. 4, Nos 5y
1967), ppe 473475
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ote that the operntors in equations (9) are commutative ond
squations (9) are the bucklingz ecuations of the stiffened cylinders
subjected to the uniform axial compression, torsion, nnd hydrostatic
pressure and that the pressure lond ¢ remoins normal to the deflected
midsurfnce during the bhuckling process., The eigenvalues for the

problem are

H;x =-%5-—'§

(o]

) = 10
gy, = 4R (10)
©° = I -

ITedgepeth and Iinll have derived © single higher orcer
Donnell~Botdrof type of nn ecuntion by eliminating ul and vl in
equntions (9) in terms of the nondimensional groups of porometers
defined in LAppendix L. Thus, the single buckling equation is

N 1 -1 12Z 1]
(14, )V v Ve {3 M) Vg v () By Ve v | -

19 Yy

(11)

L 2,1 = L B = 1
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...] -
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7 Instobilities under wniform oxisl compression,

Generg) instobility. For uniferm axial compression the buckling

equation (11) becomes
0 g |
(1+‘OW)VD W+

The clnassical simply supported boundary conditions are

— -1 2
2 i Rt
12(14‘}\:5:)\!13?0 wt (—-%‘-—) Kxxw}xx = 0. e(12)

W (0,y5) = wr(L,y) = O.
Vl(O,Y) = Vl(L!Y) = 0. (13)
Hxx(osff) = HH(LsY) = Qe

1 1
W, (0,y) = W (Lyy) = 0.

The displocement function which sotisfies all boundary

1 m‘f‘

= H S:l.n----S:Ln

conditions is
R
By substituting the assumed displacement function into the

000363
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Imekling equation one can obitain the expression for the huckling
londs The resulting erpression for the buckling coeificient
contnins two in'l:eger parameters, m and n, representing the mode

shape, Let p T—, then the huckling coefficient is

Kxx= —;é-[(lﬂoﬂc)m +2m +(1+{0W)P ) + ma‘“’ %if—”yz) i‘é‘z X 8

il <
2’)\ (1~ ‘V+% )m (3 i—é'iixx(l+iw) +_2..(.1_+_""_lg oA
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25’"5;11‘::1 + 2ie 5\ (1+’)\ A (1 1A h)% !‘16 2 oys ,1 2.

..V I y W
+§ (1+§\H)(1+imr)-? 2} mﬂ"]/{( )m + —5(1+9\ )(1+9\ )
-ﬂ} m2(52 " (1-5\”){9 4] (14)

For any given stiffened shell geometry the critical load
coefficient, Exx , is obtained through minimizotion of eguation (14)
with respect to 2ll integer vnlues of m and n, except m = O,

A, L, ' *
= E‘,. -l. oy, - 3,2".. L,
Let ﬂ m, nd for an internally stiffened shell o, and

'Ey are negotive numbers; therefore, equation (14) oon be arranged

o X, = Pn°+ 32 + 8 (15)
where ) 5
122 -2 2 =23
P = 1+(0, + 2(.‘) +(l+ﬁyy)/3 m)[ }_')\xx-i- Tye ?\ (1..
+)\W)f6 "+ %Ex Q\xx(hk Mkmiwzx _y ;aw(lﬁ-ﬁ\m% ;4

2 ~2 A 76 =2 A 7
+1_ﬂ)ayk (1—9+AH)P +0y7\yy:fgej/13

SRR, SR Y



17

Q -;T-E(-r;)*""{(l*-o\ )(1+'>\ ) v ]/

-~ s gl ry - 2
.a’)\ O ey T X (A 2‘3 +
f4(1'p)v ST SRy WD I W NN R L ¥
Ve ey 9\ B 41 /B
Tor the purpose of the first singe of computer prograon
amalysis of the buckling modey m2 ig first treated as o continuous
variable., llinimization of egquation (15) with respect to m2 yields
o =3
AP

L . _= {18)
Ilence Kﬁx = 2an + 5

Ponel instability. The panel instability is the specinl case

of the general instability when all stringers and skin bebween two
adjocent rings participate., Thus, by setting all rings paranciters
to zero, the expression for panel instability cen be obtainod from
equation (14). Thot is substituting a,® D5 D\yyz O.,f9yy= 0oy

and I = l into equntion (14). The resnlting cxpression for panel

instebility with the sign of o chwnged for inside stiffeners is

T{'n= (1+(Q Y’ +2P C 11'_——”(1 %) —20\ e +P2)2

i

o }v-'ﬂ.((b 'yn ) + 1= +/>\ i/[(1+3- .‘,)m +—---'(1-’V ’)\ )p P‘Lj

(17)

For any given stiffened geometry shell the critical load
coefficient for pamel buckling is obtained by minimization of

equation (17) with respect to all integer values of m nnd n.

Local stringer and skin buckling., When stiffeners ore

are closcly spaced the local stringer ond skin buckling are governcd

by the equation of a flat plate, The critical stress of a flat
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plate with various edge conditions is given by BleichT as

8 e tn ()

where

I

a = gkin thickness, thickness of stiffener web, or thickness of

stiffener flange.

o'
]

stringer spocing, height of stiffener web, or width of
gtiffener flange,

K = 4, for four sides simply supported.

=
n

(%—)2+ 0.425, for threc sides simply supported and one
un{oading side free,

In the design annlysis of the local buckling, it is assumed
that nll edges of stiffeoners nnd skin connecting to any part of the
cylinder are simply supported , With both rings and stringers

inside, the possible buckling failure modes are o8 follows

Skin wrinkling. The skin wrinkling is considered as the

buckling of a flat plate of size 1x by ly. The critical stress

is £ = f %5 By? (19)
xxsk 3(1_1J2) lx

Local stringer buckling. There are two possible cases of

the local stringer buckling.
l. When the rings are deepest,the portion of a stringer
between any adjocent rings is treated as a flat plote of length 1y;

The stringer web is considered as four sides simply supported and

the flange portion, a flat plate, is considered as three sides

7Bleioh, Fe, Buckling Strength of lMetal Structures(lcGraw-
17ill Dook Company, 1952), Ppe 329-331.
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simply supported and the unloaded sido f'ree,

2. When the stringers ~re deepest, the material of the
stringer web below the ring material is assumed to buckle as a flat
plate of length ly with four sides simply supported anc  the
outstanding portion of the stringer web is considered as a flat
plate of length L with four sides simply supported. The stiringer
flange is also treated as a flat plate of length L with three sides
gimply supnorted and the unloaded side free,

It hos been discovered that during the design process when
the stringers are deepest and in the region t:here(;(_x? 0‘(- 5! either

he resulting design configuration will always havé the ring and
stringer thickness which are too thin to be fabricated or the
stringer will buckle, Thus, one can avoid this subcase of the local
stringer foilure by concentratingonly in the region where ;(;) Z o~
in the favor of practical limitation on fabricatione Since both
rings and stringers are inside and the rings are in tension, hence
there is no possible buckling failure of the rings,

The critical stresses of the stringers for several types of
stiffening members for the configuration when the rings are deepest,

are tabulated in Teoble 1.

lMnthematical Formulation.

1. Phasge 1.
By assuming that the eccentricities of the stiffening members
are small in comparison to the radius of the stiffened cylindrical

shell, then the common stiffeoner material at the intersection of
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of the stringers and rings is considered negligible. ‘thus, the

weight of the stiffened shell ig given by
Lx21ﬂl 1TR

211)}11“1(031( (Q_lr j[ ..a.-aaf,ax.,_ /O‘-,—[j idy CR 0 A, - (20)

o @

The weight of the stiffened cylind ri.ca.l shell in terms of

the nondimensionol parameters defined in Appendixz L is

Sl - ¢ 21
W= 211’31.11@31{1“ = oG o A+ zﬂ;ﬁi’)\w)] ik SUKEL)

fhe classical general instability buckling paraneter of the

thin stiffencd cylindrical ghell mbject to o uniforn n::ial
compression with simply supported boundary conditions is given by
equation (15). The re¢uirement for minimum weight against general
instability leads to the objective function ( composite weight

function ). (22)

* | —
H o= W+ MW -Hl
Y
cr

where
W = woight of the stiffened shell,
N = applied compressive load,
-ﬁﬂ = general instability load obtained from minimization of

cr
equation (15) with respect to e a.ndﬁ 2, and

?\= logrange multiplier,

Fauvation (22) can be put into nondimensional form as

i N ¥ _% .
w=1'i+)\1c-irjk\ (23)
z xx =
* w* cr ¥ Km
where ?,'f = -K. = oL
3 2y T T 3 2
2L psk(l-’ﬂ ) cr 2 (24)
AT N rEL) :
= 5 4;_ ’ = -
et (1-y %)* 24/oskn3
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Thus, W is a function of the following pz:ro.meters,

‘* —
W = F(Z, ?\:r_{’ yy{oxx pﬂ’ ex,e,n /@ ) sy

From equations (14) and (23) it can be seen that there is no

(25)

minimun W with respect to reasonably finite values of the parameters
Zy e;:, ey, Fxx’ nnd/O . I% is convenient to introduce four new

—_—

parameters Ix, "dy' C_, ond Gy. The new parameters , < , denote

<?
the ratio of the radius of gyration of the stiffeners to that of
the skin of unit width, Their expressions are given in Appendix L.
The new porameters, Cx and Cy, called shape parameters, are just
numbers characterizing the shapes of the stiffeners, TFor example,
¢ is egual to one for rectangular stiffeners, greater thon one for
tee and inverted nangle stiffeners, and less than one for channel,
zee, I, and angle stiffeners, Using these new poraneters one can

eliminate the parometers o, ‘e, 0 y and 0O in ecuation(25)
RIS, xx vy

throuzh the relation of eguations in Appendix A. Ilence

¥
- (A A 2 =2 26
W=FLI>\H,')\W,W.,F s (Zy ,«I,G,G,g'} (e
The change of parameters from .Ex’ ey sad® and (0 <?
,_-Z s C 1 and Cy are convenient because the ranges of these new
d
rarameters are known. For example, for rect;nvularrlna'soz —?.

But for the assumption of thia ring theory d—- > 20., therefore
s wy
L, > o5
Therefore, it is proposed to generate the design charts and tables
in the o(_, o= oz- 5 space Tor oach ityne of the stiffoning members.
The precise statement of the mathematical formulation in Phase 1
is as follows.

In the o = a(y space, for each type of the siiffeners and

for cach Z and n given load parameter, Il , minimize the weight
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parameter of the stiffened circular cylindrical shell, W, with
respect to 5\__‘{}[ and ;\ - subject to the equality constraint of
the general instability. That is

Minimize W subject to ‘IE:; = "."'* (27)

L] fA " cr

X :\yy *
Cc:ru.:r:'a.m;8 has shown that if A is provided sufficiently large,

the solution of the unconstrainted of equation (23) will approach
+he solution of the constrainted minimization of equation (27).
The exact solution will be obtained when Qr(approaches infinitye.

2 Phase 2

Considering only the absolute values of these stresses

during the design process, the stresses of the local buckling of
the skin and stringers given in Teble 1 must be greater than the
applied stresses given by ecuations (8). Furthermore, the applied
stresses must be less than & certain suitable stress level, for
exanmple, the yield stress of the naterial, Of all the rings spacing
ly, obtained from the constraint of stringer buckling, one must

select the one (there are many ) which does not yield panel buckling.

lMathematical Search Techniaue.

1 Selection criteria,

Ve Un.g;'bhakorn9 has selected the irrogular simple or flexible

Bcourant, Re, Colculas of Variations and Supplementory INotes
and Exercises (Revised ond amended by J. Moses, New York University
Institute of lathematical Sciences, Ilew York, 1956-195T7), Pp 270-276,

9Ungbhakorn, Vey Ope_cit.
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10 in his research for the two

polyhedron method of ifelder and Mead
dimensional minimization problem. Because the simplex has been
desisned to adapt itself to the topography of the objective function,

hence, high relinbility.

2 Search technicue of Nelder and Head.

There are four basic operations in the search technigue of
Helder »nd Mead., The reflociion, expansion, contraction, and
reduction of the simplex, This method minimized a function of =n
independent variables using (n+l) vertices of a simplex in the
n-dimensional euclidenn spaces In V. Ungbhokorn's research it is
two-dimensional problem then a simplex is a triangle. The vertex
which yields the highest value of the objective function is projected
through the center of gravity or centroid of the remaining vertices.
Improved values of the objective function are found by successively
replacing the point with the hizhest velue of the objective function

by better points until the minimum is found.

10ﬂelder, Je Ao and lMend, Res A Simplex Method of Function
Minimization ( Computer J., 7, 1964 ), ppe 300-313.
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