CHAPTER IV

UNARY ALGEBRAS

Many theorems of Chaptér II and III involved the construction
of unary algebras. 1In this chapter, we will show some important pro-

perties of these kind of algebras.

The first theorem shows that for every algebra < A} F >, there
“exists a unary algebra such that every congruence relation of < Aj; F>

is a congruence relation of the corresponding unary algebra, and con-

versely.

4,1 Theorem. To every algebra < A; F > there corresponds a unary
algebra < A'; F' > such that"® is'a congruence relation of < A; F >

if and only if it is a congruence relation of < A'; F' >,

Proof. Let < A} F > bé“én'élgebra’of’type T. Construct a
unary algebra as follows ¢ Set Af = A. For each vy, 0 <y < 0(t),
let aps eeey @) g be any ny-l elements of A, and define unary oper-

ations on A by
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Consider the unary algebra < A'; F' >,



Assume that 6 is a congruence relation on < A; F >, To show
that it is a congruence relation’on < A'; F' >, let a; = b, (8) for

ay, by € A,Oii<ny,0iY'<0'(‘r). Let C., ...s C €A. Then
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Hence, © is a congruence relation on < A'j; F' >,
‘Conversely, assume that @ be a congruence relation on
<A'; F' >. Let a; = b, /(68) for a, b€ A', 0 <y < 0(1),
0 <i<n_,. Then
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By transitivity of 6,

fY(aO, S anY_l)zz,fY(bO, sass bi+l’ 3199 toes any—l) (6)

Hence, by induction of finite steps, we can have

fY(ao, cees @ _1_) = f‘Y(bO.._,_.‘., bn Vi e KBY,
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so that 6 is a congruence relation on < A; F >, This completes the

=T

proof of the theorem. #

The next proposition‘shows that a simple unary idempotent
algebra can have only one idémpotent. And, any 2-idempotent unary

entire algebra has at least’ 4 congruence relations.

4.2 Proposition. Let-< A; F 2 Be a unary algebra such that |A| >2.
Then the followingshold :

(1) If < A; F > is simple, then it has at most one idempo-
tent element.

(2) If < A; F > is 2-idempotent entire algebra, then it has

at least 4 congruence relations.

Proof. (1) Assume that < A; F > is a simple unary algebra.
Suppose that < Aj; F > has more than oné idempotent. Let Pl’ P2 be
idempotents of < A; F >. Then fY(Pi) = Pi for all er F, i =1, 2.
Define a binary 6 on A by

X =y (8) «—— x,ye{Pl, PZ} or x =7y

for all x, yeA. Then 6 is a congruence relation on A such that

0 # 1 and 6 # w. It is a contradiction.
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To prove (2), assume that < A; F > has two idempotents, say

P and P. is zero. Since'< A; F > is an entire algebra,

1> P2 1
6 is a congruence relation on A. Define a binary relation 6'
on A by
x=y (8" +—— x,ye{Pl, Pz} or x =y
for all x, yc A. Obviously, 6' is“a congruence relation on A.

Hence, < A; F > has at least 4 congruence relations, completing the

proof. #

Thus the algebra in any proof of the Theorem 3.13, cannot be

a unary algebra.

The next theorem gives the reason why an algebra in the

Theorem 3.7 [2] cannot be constructed to be a unary algebra.

4.3 Theorem. Let < Aj; F > be a simple unary algebra and let
< G; * > be the automo¥phism group of < A3 F >, Then < Gy « > is a
cyclic group of prime order P or < G; ¢ > is a group consisting of

the identity.alone.

Proof. If ]A| = 1, then the statement is trivial. We may
assume that |A| > 1.

Let < G; « > be the automorphism group of < A; F > such that
G # {e},where € denotes the identity of G. TFor each a€EG, o # €,

define a binary relation on A by the rule

Xy (ea) > xan=y for some ne 2,

for all x, y€A, where Z denotes the set of all integers. Then ea

P
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is an equivalence relation. Since every er F is unary, ea is also
a congruence relation on A.
Let H be a nontrivial subgroup of G. Then there is a 8 in H

such that B # €. Let Gl denote“a subgroup of H generated by B.

Since B # €, we have 6, # w. Using that < A; F > is simple, we con-

B
clude that 6B = 1.

Let us note that for any y in G, a€ A, a = ay implies y = €.
Indeed, if a = ay then a = ayn for all integers n, thus for any b€ A
b= a (By); 1EED = aymforsome1n Z3thus a=bthis implies that SY = W
Therefore, v = €.

Now, let y& G and xeA Since 98 =1, X = Xy (GB) so that

XYy = xBn for some ne Z.” Since Y€ G, we have x

B ¥ =2 D

Hence, by note, By_l = ¢, /This implies that vy Bnéicl; i.e. G ="H.
Therefore, G has no nontrivial proper subgroup. Hence, G is a group

of prime order P, completing the proof of the theorem. #

The following is an example ofa semigroup which is not isomor-

phic with the endomorphism semigroup of any simple unary algebra.

Example : Let < 83 » > = < Z/43 + >, Then < S; « > is a
group of order 4. Let < A; F > be a simple unary algebra such that
S 2 E(A; F). Then E(A; F) is a group; i.e. E(A; F) = Aut (A; F).
Therefore |E(A; F)| = P for some prime P. Thus E(A; F) is not iso-

morphic to S which is a contradiction.
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4.4 Definition. Let < A; F > and < A'; F' > be unary algebras be-
longing to the same similarity class K(t). A mapping  : A—> A'
such that for each 0 < y < 0(1),

(fY(a))w = f;(aw)

for all a€ A, is called a unary algebra-homomorphism of < A; F >

into < A'; F' >,

Let U be a category of unary algebras whose objects are unary
algebras belonging to the same similarity class K(T) and whose mor-

phisms are unary algebra-homomorphisms.

The following theorem shows that a monoid, as a small category,

can be fully embedded into the category of unary algebras.

4.5° Theorem. A monoid M can be fully embedded into a category of

unary algebras of type T.= JML*

Proof. Let Ube a category 6f unary algebras all of type

T = |M + Consider a monoid M as a small category such that
aob = ab. We construct a unary algebra < A; F > as in Theorem 2.1,
so that E(A; F) = M.
Let § be an isomorphism of M onto E(A; F). Define
6 : M — U by
8 (M) = < A3 F >
and
6(a) = ay
for all ae M. Obviously, 6 is full, faithful functor and one-one on

‘object. #
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