CHAPTER III

ENDOMORPHISM SEMIGROUP OF.IDEMPOTENT ALGEBRAS

In this chapter, we will show that the number of idempotents
in an idempotent algebra and the number of right annihilators in its
endomorphism semigroup are equal. We also show that if an entire
algebra has a zero to be its unique idempotent and also has three
congruence relations then its endomorphism semigroup has an identity,

zero and every element, which is not zero, satisfies a right cancel-

lation law.

3.1 Definition. Let < A; F > be an algebra. An element a in A is
called an idempotent element of < Aj F > if for 0 < y < 0(1),
f (ay 200, @) = a.
Y(’ » @) .
< Aj; F > is called an idempotent algebra if there is an ele-

ment a in A such that a is an idempotent element of < Aj; F >.

Groups and rings are examples of algebras with unique idempo-
tent, whereas lattices are algebras in which every element is an

idempotent.

The following theorems show, among other things, that every
idempotent of an algebra induces an endomorphism which is a right

annihilator of the endomorphism semigroup.
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3.2 Theorem. A semigroup < S; + > is isomorphic to the endomorphism
semigroup of some unique idempotent algebra if and only if the semi-

group < S; + > has an identity and zero.

Proof. Let < S; + > be a semigroup. Assume that < A; F > is
an algebra which has p as its unique idempotent and E(A; F) 2 S,
Then by Theorem 2.1, S has an identity. We will show that E(A; F)
has a zero. Define y : A— A by
Xy = P (xeA),
Since (fY(aO, “ein s any_l))xp. = p = fY(p, coesD )
fY(an, cees @ _lw)
for all fye F and 3gs ey any-leA’ we have Y& EIA; F).
To show that y is the only constant mapin E(A,F), let 0C E(A,F)
and Ao = {a} for some a in A. Suppose that a # p. Then there is
an operation fY' in (F _such that fY' (a, .v+y a) # a which implies that
< Ag; F > is not a subalgebra of < A; F >, Hence, a = p.
Next, we show that y is a zero of E(A; F). Let 8&€ E(A; F)

and xe A. Then x(yo8) = pd§, so that pé

p since A(ye8) = {p§}.

Hence, x(yo8) = pd = p

Xy implies yYo§ = Y. And
x6oyp = (x8)Y = p = xy implies oy = y.

Conversely, assume tuat < S; « > is a semigroup with identity
and zero, namely, e and 0, respectively. Construct an algebra as
follows : Let A= 5 and for each a€ S, define a unary operation

fa on A by

fa(x) =  ax (xeA).



Set
F = {fa|ae s}, -
and consider the algebra < A; F >. Since a0 = 0 for all ae A, we
have fa(O) = a0 = 0. Hence,0 is the only idempotent of A.
For each ae S, define a mapping wa : A— A by
X = xa (xe ).
This is a mapping of A into itself.
(i) wa = wb if and only/if a = b.
Indeed, ewa = a, ewb = b, Hence, wa = wb is équivalent to a = b.
(ii) wae E(A; F) for/all a€sS.
Since (fb(x))lba = (bx)d # b(xa) = fb(x¢a) for all a, b, x in A.
(iii) Let Y€ E(A; F). Set a = ey. Then xy = (xe)y =
(fx(e))w = fx(ew) = x(ey) = xa = xwa. Hence, ¢ = wa.
(iv) waowb = wab for ali é, b.in A.
Indeed, x(waowb) = (xwa)wb = (xa)b = x(ab)/= xwab,for all x€ A.
Consider the mapping 6 :la-—+ b - 9 is 1 - 1 by (i). 6 is

onto by (ii). It preserves multiplication by (iv). Therefore 6

is an isomorphism. This completes the proof of the theorem. #

We now generalize the above theorem to the case where the

idempotent algebra has an arbitrary number of idempotents.

3.3 Theorem. Let m be a nonzero cardinal number. A semigroup is
isomorphic to the endomorphism semigroup of some idempotent algebra
with m idempotentsvif and only if the semigroup has an identity and

m right annihilators.
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Proof. Let < S; > be a semigroup and T be a nonzero cardinal
number. To prove the 'only if' part, we assume that < A; F > is an
idempotent algebra which has 7 idempotent elements and E(A; F) = S.
Then by Theorem 2.1, S has an identity element.

We will show that the cardinality of the set of right annihi-
lators of E(A; F) is m. Let X be the set of idempotent of <Aj; F >,

(1) Let peX. If Ay = {p} , then ¥ € E(A; F), and we denote
v by VP,

Indeed, (fy(aO""’ anY_l))w =p = fY(p,..., p)
# fY(aO e oo 4 a _lw)

Y

0° et 3 Ly € A. Hence, ooy = y for all a EE(A3F).
¥ .

(i) If ¥ € E(A;'F) and Ay = {a} for some a in A, then a = p

for all fY (3

for some p in X.
Suppose that a # p for all p&€X. Then there is an operation fY' in
'F such that fy,(a,..., a) # a, Hence, a subalgebra < Ay ;3 F > is
not closed under fY,. It is a contradiction. :
(iii) For all a€E(A; F) if p & X, then paeX.
Indeed, x(yPon) = pa for all peX, x€A, so A(YPoa) = {pa} . Hence,
by (ii), po = q for some q in X.
(iv) 1If Y&€E(A; F) and aoyp = ¢y for all a EE(A; F), then
Ay = {p} for some p in X.
Let q€X. Then Y1 €E(A; F) and also Y%y = y. Hence,
A(pToy) = {qy} and by (iii), q¥ = p for some p in X. This implies

Ay = {pl. <
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(v) p = q if and only if yP =yl
Indeed, AW’ = {p}, Ap? = {q}. Hence, ¥¥ = y? is equivalent to p = q.

Consider the mapping 6 : p - wp for all pe X. Then 6 is 1 - 1
by (v), 6 ié'onto by (iv). Therefore, 6 is a 1 - 1 correspondence be-
tween X and {wplpex} which is the set of all right annihilators of
E(A; F). Hence, S has m right annihilators.

To-prove the converse, let S be a semigroup with an identity,
say e, and it has ™ right annihilators. Construct an algebra as
follows : Let A = S and for a€ S, define a unary operation
£, :A— Aby

fa(x) = ax (xe A).
Set

F 7= {falae S}y
and consider the algebra < A; F >. Then by (i) - (iv) of the 'if'
part of the Theorem 3.2, § is isomorphic to E(A; F) by the isomor-
phism 6 : a — wa for all a€ S.

It remains to show that < A; F > has m idempotents. Let T
be the set of all right annihilators of S.

(i) 1If peT, then p is an idempotent of < Aj F >,

Since ap = p for all a€S, pe€T, we have fa(p) = ap = p.

(ii) Let a be an idempotent element of < A; F >, Then for
every X €S, fx(a) = xa = a implies that a is a right annihilator of S.

By (i) and (ii), T is the set of all idempoten; elements of

< A; F >, completing the proof of the theorem. #
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Theorem 3.3 is a proper generalization of Theorem 3.2, since
a semigroup S has a unique right annihilator if and only if it has

a Zero.

3.4 Remark. In general, Theorem 3.3 does not hold for m = 0. But
it does hold for special algebras inAthis case, as will be shown in

Corollary 3.9 and the fact that idempotent induces right annihilator.

Next, we will consider the endomorphism semigroup of an idem-

potent algebra with congruence relations.

3.5 Definition. Let < Ay F > be an algebra and 6 be a binary rela-

tion defined on A. 6 is calléd a congruence.relation if it is an

equivalenée relation satiéfyiﬂg the substitution property (SP) :

(SP) If y < 0(1), a; =b; (e),_ai,°bié A, 0<i<n

o, 'Y’
then
fY(aO, ooy @ 1) S fY(bO’ ooy b 1) (8).
Y Y
The binary relationsw and 1 on A are defined by the rules :
x =y W) +«—— x=1y (x, yeA),
and
x =y (1) «—— x, yEA,
respectively.

An algebra < A; F > is simple if and only if w and 1 are

the only congruence relations on A.

Recall that G is a simple group if it is nontrivial and has
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no normal subgroups other than {1} and G itself, and S is a simple

semigroup if S is its only ideal.

The following propositions show that if G is a simple group,
then it is a simple algebra. But it is not true for a simple semi-

group.

3.6 Proposition.” A group < G; * > is a simple algebra if and only

if < G;. +.> is a simple group.

Proof. Let < Gy * >’be a group with identity e. We first
observe that 6 is a congruence relation on G if and only if e is a

normal subgroup of G «.... (*), 'Now, let 6 be any congruence rela-

tion on G§ i.e. N

13 -1 #& 51
X =X e=X X

ed is a subgroup of G since for all x € N

e (6),hence for all xe N, x_le ed. To show that

N is normal, let aeG. Then’ ana'-le aNa_1 for all ne N. Since

nze (8), ana_l e (©) _and hence ana_¥e N. Conversely, let M be a

normal subgroup of G. Define a binary relation 6, on G by

M
g . =1 -1
x:y(GM) > Xy €@€M or y xeM

for all x, yeG. Then eM is a congruence relation on G. Since eeM,
we obtain M = eeM.

To show the 'if' part of the theorem, let < G; * > be a simple
algebra. Then ew = {e} and e1 = G are the only normal subgroupsof G.

To prove the converse of the theorem, let < G; * > be a simple

group. Suppose that < G; * > is not a simple algebra. Then there

is a congruence relation 6 on G such that 6 # w and 6 # 1.
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Therefore, by (*), e is a normal subgroup of G, and hence we can
conclude that e® # {e} and e® # G. This contradicts to the assump-

tion, completing the proof. #

3.7 Examples :

An example of a simple algebra which is not a simple semigroup.
 Let <S; .> be a semigroup such that S = .{0, 1} where 0 is a

zero and 1 is the identity of <S3;-> . Obviously, <S;-+> is a simple
algebra. Since {0}is an ideal of S énd S # {0F , S is not a simple
semigroup.

An example of a simple semigroup which is not a simple algebra.

Let S be a semigroup such that ISI > 3 and every element
of S is right annihilator. Let . be a binary relation on S such that

8/ = ~wf(a, b), (b, a)}

for some a, b in S such that a # b. Then 6 is a congruence relation
on S and 6 # w. Since lslz_s, there exists an eleﬁent c in S such

that a # ¢ (6) implies 6 # 1. Hence, S is not a simple algebra.
The following result is Gratzer's theprem on simple algebras.

3.8 Theorem ([2]). A semigroup < S; ° > is isomorphic to the en-
domorphism semigroup of some simple algebra < A; F > if and only if

< S; * > has an identity and every element in S is either a right



annihilator or a right cancellative element.

Proof. Let < S} * > be a semigroup. Assume that < A; F > is
a simple algebra such that E(A; F) is isomorphic to a semigroup S.
Then by theorem 2.1, S has an identity element.

Let Y€ E(A; F). Then y induces a congruence relation €, on A

v
defined by
xEy(Ew) T XY = yy
for all x, y€A. Therefore, ew = ot r-:‘p = W,
case 1 ew = w,- By the, definition of €¢’ xy = yy is equiva-

lent to x = y, hence y isa’l = 1 mapping. Thus, Boy = aoy implies
B = a for all o, B in E(A; F). Hence, Yy satisfies the right cancel-
lation law.

case 2 €¢ = 1. Then Ay consists of a single element. This
implies that aoy = yifor all a€ E(A; F). Hence, ¥ is a right anni-
hilator of E(A; F). This proves the 'only if' part of the theorem.

To prove the converse, let S = RUN, where R consists of the
right cancellative elements and N of the right annihilators of S.
Let e denote the identity of S; then ee R. If S = {e}, the state-

ment is trivial. We may assume that S # {e}. Set A =8SU{0, 1},

0€5s, 1¢S, 0#1, We define the following operations on A:-

P : Px) - X
P(0) = 1,
P(1) = 03
£ foraes : £ (%) = ax (x€598),

= X (x¢S);



* : x*x = x (x€Ah),
x*y = 0 (x, yes, x# y),
I8x. = ¥l ‘%= % (x€A),
0O*x = x*0 = 0 (xeA).
Set
F = {faIaGS} U {*, p},

and consider the algebra < Aj; F >.

To show that < A; F > is simple, we first observe that if 6 i

a congruence relation and 0 = 1 (9) then for any x, yEA, x = x*1

1l

x*0 = 0 (8) and similarly v = 0 (8), thus x =y (8), i.e. 8 = 1,

Now, let 6 be any congruence relation such that 6 # w, i.e. x =y (

24

S

6)

for some x # y in A. ~I1f {x, y} = {0, 1}, then 6 = 1 was proved above.

So let us assume that x/'€ {0, 1} . If y<¢ {0, 1} , then x = x*x =
x*y = 0 (0) and so x = P(x) = P(0) =1 (6), thus 0= 1 (6). Thus we
may assume that ye{0, 1} , say y = 0. Then x=0 (8) implies x =
P(x) = PL0) = 15(6)% ﬁhus 0 =1 (8), completing the proof.

Now, we define-mappings on A as follows :-

o

lPa, for ae R 3 X wa & \/R& (x€8),
== K (x&8)
wa’ for aeN i X wa =i %3 (*eA).

@) wae E(A; F) for all a€S.

If acR, then for any x, y in A, x # y, (x*x)wa Xy = xXa = xa*xa =
xd)a*xwa ; since x # y, we have xa # ya, so that (x*y)lba= Owa s (0 =

xa*ya = xwa*ywa; for x€S, (P(x))d)a = xtpa = xa = P(xa) = P(xwa) and
(fb(x))d)a= (bx)a = b(xa) = fb(xwa) for all b€S; for ye{0,1},(x*0)y

= ge *0 = % * = %1 = :
0 xlba 0 xwa Olba and (x*1) wa xwa il xwa*lwa for all x€ A;

a



for xe"; S,suppose x=0, (P(0))¥_ = 1p_ = 1"= P(0) = P(OY_)" and

fb(O‘JJa) - fb(O) =0 = Owa = fb(OlPa) for all'b in S, thus it is simi-
larly for x = 1. If aeN, then wa is a constant map, hence ¢a is an
endomorphism.,

(ii) If Ye€E(A; F) and ¥ is'1 - 1, then OV = 0 and 1V = 1.
Indeed, 1Y = a # 1 would imply that for any x¢ S,
xp = (x*1)Y = xV*1Y = xy*a, thus x¥ = a or x¢ = 0. It is a contra-
diction since xy # 0, so that xy'= a = 1y implies 1 = xc S. Hence
0y = (P(I))Y = P(1Y) = P(1) = 0.

(iiii) If Y€E(A; F) and ¥'is 1 - 1, then ¥ = wa for some a
in R.

Let x&5; then xy&S; otherwise x¥ = OV or x¢ = 1y. Thus ¥ maps S
into S, so eY& S and if a(eV¥) = b(é¥) for any a, b in S, then

ay = (ae)y = fé(éw) . (fa(e))w = a(ey) = b(ey) = fb(ew) - (fs(e))w a
= bV implies a = b, hence e€R. So, xV = (xe)V¥ = (fx(e))¢ = x(eV¥)
= xwew. Hence, V¥ = wew and eVYER.

(iv) If Y€ E(A; F) and ¥ is not 1 - 1, then AV consists of
one element. This follows from the fact that < A; F > is simple;
otherwise Y induces a congruence relation'ew which is not w and 1.

(v) If Ay = {a} for some a in N,” then ag N.

Obviously, < A ; F > is a subalgebra. Since {a} is closed under P
only if a # 0, a # 1, we have a€S. 'If"4€R, then for beS, b # a,
we have ba # a and thus {a} is not closed under fb' Hence, a& N.
Thus:

(vi) 1If Ay = {a}, then ¢ = wa for ae N. By (i) - (vi),
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E(A; F) = {walae s} .
It follows now as in Theorem 2.1 that a - wa is an isomorphism
between < S; * > and < E(A; F)4 o >. This completes the proof of the

theorem. #

The following corollary of the Theorem 3.8 shows that the
bheorem 3.3 is true for any cardinal number 7 on a simple algebra,

even if it is not an idempotent algebra.

3.9 Corollary. Let < A; F > be a simple algebra such that |E(A;F)] >1
and which has no idempotent element, then E(A; F) has no right

annihilator.

Proof. Suppose that E(A; F) has a right annihilator. Let V
be a right annihilator of E(A; F). Then ew =1, tet XEA, fyé F.
Then xy = b for some b in"A, so that x = fY(x,..., X) (e¢) implies
b=xy = fY(x,..., )Y = fY(xw vy X)) =,fY(b"°" b). Hence, b

is an idempotent element of A, completing the proof. #

An example of an algebra with no idempotent, but its endomor-
phism semigroup has right annihilators.
Let A= {a, b, ¢} and f : A > A be such that

f(x)

a 1f . x =D,
= b LE ¥x' = g or xJ= icE
Then < A; F > is an algebra with no idempotent, where F = {f} .

Let wl, wz : A - A be such that

wl(x) b b xe o= b,

= a B %

]
')
(o]
(2]
b

I
0

v
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and
wz(x) = b if x = b,
= c if x = a or x = c.
Then wl’ wze E(A; F) and they are right annihilators of E(A; F)
since E(A; F) = {IA, Y1 ¥y o} where 0 : A— A by o(a) = c,

o(b) = b, 0(c) = a and IA is the identity mapping on A.

3.10 Definition. Let < Aj F > be an algebra. An element Z in A is

called a zero of.A if for 0 < y < 0(1), ao, vesgy 8 € A,

-1
fy(ao, ees 85 0 Z; ay,y /s a_ _l)'= A
& Y
< A; F > is called an entire algebra if A contains a zero

element and fY(aO, ceep/ag -l) = 7 implies a, = Z for some i,

0 <ic< n. s for all er F, ay, "';,an _1€A.

< Z; * >, where Z is the set of integers and -« is the natural

multiplication, is an example of an entire algebra.

In the next theorems, let us consider the endomorphism semi-

group of an entire algebra.

3.11 Lemma. Let < A; F > be an entire algebra such that |A¢ >2.

Then < A; F > has at least three congruence.relations.

2£gg£. Let O denote the zero element of such an algebra <A;F>.
Define a binary relation 6 on A by
X 2y (8) > x, ye A~{0} or X=y
for all x, y€ A. Then 8 is an equivalence relation on A. To show

that ® is a congruence relation, let er F, ags res @ 9
Y
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Bt i €A be such that a, = b,(6) for 0 <i <n . If there is
0 nY—l a i o Y

a: J. e 4055% .5 nY—l} such that aj = 0, then bj = 0 and so fY(aO,..

a, _1) =0-=f (bo,..., bn

S

then b0 siate ol bn _p are all nonzero, thus £ (aO,..., anY_l)

Y
bnY—l) # 0, hence £ (aO,..., a_ LS fy(bO""’ b

1h7 a; # 0 for all i€ {0,..., nY—l},

# 0 and

fY(b ) (6).

9c ey -—
0 —. Y x

In either cases, 0 is a congruence relation on A. Therefore w

n 1
Y

0 are congruence relations on < A; F >, #

3.12 Theorem. A semigroup < S; -/ > is isomorphic to the endomorphism
semigroup of some unique idempotent entire algebra which exactly three
congruence relations if and only if < S; + > has an identity e, zero

# e and for each nonzero element a in S, a satisfies a right cancella-

tion law, and < S; °* > has no zero divisor.

Proof. Let < A; F > be an entire algebra which has zero, de-
noted by 0, as its unique idempotent and has exactly three congruence
relations such that S = E(A; F). Then by Theorem 2.1, S has an identi-
ty element and by Theorem 3.2, S has zero. Since < A; F > is an en-
tire algebra,lg is a congruence relation on A.

Let y € E(A; F) such that y is not right annihilator. Then ¢
induces a congruence relation ¢, on A by

v

xzy (e,) «— xp= yy

1]

for all x, y in A. Then €¢ = w or ew = 1 or elp = 0.
case 1. €¢'= w . Then xy = yy if and only if x = y, hence V
is a 1 - 1 mapping. Thus, Boy = aoy implies B = o for all a, B in

E(A; F). Hence, y satisfies a right cancellation law.

case 2. e¢ = B, Then Op = a and (AN{0})y = {b} for some a,b
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in A, a # b; i.e. Ay = {a, b}. Since fY(a, ceey, @) = fY(ow, ey 0U)

(fY(O’ cees 0)¥ = 0y = a and fY(b’ cesy.b) = fY(aow, ceod anY_1¢)

ey @y &
nY i §

a'€ A~{0}, we obtain that a, b are idempotents of A. Therefore,

B . .
fY(aO’ sees @ _1)¢ = a'Yy = b for all er F, ag»

a =b =0 which contradicts to a # b. Hence, we have no such ¥ to
be endomorphism on A which induces 8.

case 3 sw = 1. Then AV consists of a single element, say. a.
If a # 0, then there is an operdtion’in in F such that f
fY,(a, ..., a) # a, and so AV is not closed under fY' which contra~
dicts <Ay ; F> being a subalgebra."Hence, Ay = {0}. Let us denote
VY by wo. Then by Theorem 3.3, wo is the only right annihilator of
E(A; F) which is a contradiction.

(i) If ocE(A; F), 'then 0o = 0.
Since fY(Oa, veoy 00) = (ﬁéO; vers 0)o-= 0o for all fY in F, Oa is
an idempotent of < Ayj3 F >, hence Oa = 0.

(ii) wo is a left zero of E(A; F).
Indeed, x(¥0a) = Oa = 0 = xy for all xeA, a €E(A; F).

(iii) For any a, BEE(A; F), if ocoB = wo then a = wo or
B = wo. Suppose that o and B are not right annihilators of E(A; F).
Therefore, o and B satisfy the right cancellation law, so is coB
since yo(aoB) = y'o(ooB) implies y = y' for any vy, Y'EE(A; F).
This contradicts that wO_is a right annihilator. Hence, o = wo or
B = wo, completing the proof.

To prove the converse, let S = RU{O, e}, where R consists of

the right cancellative elements, 0 and e denote the zero and
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an identity, respectively. Construct an algebra as follows : Set

A = sUf{o, 1}, O¢S, l¢S, 0 # 1. We define the following operations

on A :-
P : P(x) = x (x€8),

P(O) =, 1,

P(1) = 03
£, for aes\0}: £ (x) = ax (x€8),
gye (x¢ S);
* : xky = 0 (x, ye s~{0}, x#y),
=\ 0 (x, YEA, x or y=0),
X¥X =0 (xeA),
1¥x), LEefigd) |\ = Nx (xen),
Okx '“="x%x0 = 0 (xeA~{0}).

Set
FUAE {falae SY U {#,°p}.

Obviously, 0 is the zero and the only ideinpotent of the algebra
< Ay F > which is entire. So by Lemma 3.11, w, 6 and 1 are congruence
relations on < A; F >, Let 6 be a congruence relation on A.
(1) If 0 =1 (8), then x = y (8) for all x, ye A~{0}.
Indeed, for any x, yeA~{0}, x = x*1 = x*0 = 0 (6) and similarly
y =20 (6), thus x =y (8).
(ii) If there is an x in A~{0} such that x = 0 (6), then
6 = 1.
Since 0 = O%x = 0%0 = 0 (8) and so 1 ="P(0) = P(6)"= 0 (6), we have

0 =1 (8) and by (i),ﬁ = x = a (8) for all a€A. Hence, 6 = 1.
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To show that < A; F > has exactly three congruence relations,
let © be any congruence relation such that 6 # w and 6 # 1 . Then
there exists x, yEAS {0}, x # y such that x =y (8). Therefore,
X = x%x= x*y = 0 (0) and so x = P(x) = P(0) = 1(6), thus 0 = 1 (6).

Hence, 6 = 6, completing the proof.

Now, we define mappings on A as follows :-

wa’ for ae R $ xtba = xa (xes),
LI (x ¢5);
b, for a =0 - B~ 0 (x€A).

(1) wae E(A; F) for all a€S.

If ae R, then for any x, y€S, x # y, we have xa # ya, thus

(x*x) wa = xlba = x\ba*xwa and (x*y)lba O\Da= 0 = xa*ya = xwa*ywa; for

ye{0,1} , xeA,(x*O)‘J)a =0 = xwa*O xtpa*Owa and (x*l)wa = xwa*l =
xwa*lwa ; and it is similarly for xe¢ {0, 1},yeA;for X €S, (P(x)‘l’a
= 0l = ixaje P(xa) = P(xwa) and (fb(x))wa = (bx)a = b(xa) = fb(xwa)
for all bES; for x ¢ s,supposex=0,-(p(0)wa 00 A 1= B0): =
P(Owa) and (fb(O));pa = Oxpa =0 = fb(O) = fb(Olba) for all b&S, and
it is similarly for x-= 1. 1If a = _0—, then wa is a'c?nstant map, hence
wa is an endomorphism.

(ii) If YEE(A; F) and Yy is 1 = 1, then Oy = 0 and 1y = 1.
Indeed, 1y = a # 1 would imply that for any x€S ™~ {0} ,
XV = (x*1)y = xY*1y = xP*a, thus x¢ = a or x¢ = 0. Since ¢ is 1 - 1
and (S {0}y # {0}, we have x = 1. It is a contradiction. Hence,
0y = (P(1))y = P(1y) = P(1) = O.

(iii) If Y€E(A; F) and ¢ is 1 - 1, then ¢ = wa for some a

in R.
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Indeed, for any x, y€S, x(ey) = y(ey) implies x = y. Hence, ey&R.

Let x€S. Then xyY&€ S; otherwise xy ‘= ‘ 0y or xy = 1y. Thus,

xy = (xe)y = (£ (e))v = £ (ey) = x(ey) = Xy
(iv) If YEE(A; F) and” ¢ is not 1= 1, then Ay = {0}.

Since < A; F > has three congruence relations and ¢ is not 1°- 1, ¥

induces a congruence relation ew such'thét‘ew =0 or'e¢ =1, If

€, = 0, then Ay = {a, b} for some a, b in A, a # b,,hence a and b

1]
are idempotents of < A; F >, thus a = 0 =b. Then 6 = 1 which is a
contradiction. Hence, €y = s i.e. Ay = {a} for some idempotent
a in A so that a = 0.

Consider the mapping 6 : a > wa. It follows now as in Lheorem

3.3 that 6 is an isomorphism between < S, « > and < E(A; F), o >.

This completes the proof of the theorem. #

The following example is an example of an entire algebra

which has two idempotents and three congruence relations.

Example : ILet < G, * > be a nontrivial simple group with
identity e. Set A = GU{0}, and x°0'=0+x= 0 for all x in G. Then
<Ay * > is an eﬁfire algebra which has 0 and e to be its idempotents.
By Lemma 3.11, & is a congruence relation of < A} - >.

To show that < Aj; * > has three congruence relations, let 6 be
any congruence relation on A such that 6 # w and 6 # 6. Then there

B (8) and El5 e = % ex E% 0k 0°(),

1l

exists an x€ G such that x

hence a = a*e = a*0 = 0 (8) for all a€ G, thus 6 = 1.

Now, we consider a 2-idempotent entire algebra which has three
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congruence relations such as the above example. The following theo-
rem shows that the endomorphism semigroup of such algebra contains
an identity, two right annihilators, an identity of right annihila-

tor, and the other satisfy a right cancellation law.

.
’

3.13 Theorem. A semigroup < S; °* > is isomorphic to the endomor-
phism semigroup of some 2-idempotent entire algebra which has exactly
three congruence relations if and only if S has an identity, two
right annihilatorsj an identity of right annihilators which does not
satisfy right cancellation laﬁ, say Z., and for each a in S, 4if a is
not e and right annihilators then a satisfies a right cancellation

law, and there is a right ammihilator r. such that for all a, b€ S,

1
ab = r implies a = ry ot b= T
Proof. Let < 83 + > be a semigroup. Assume that < A; F > is
an 2-idempotent entire algebra wh%ch has exactly three congruence re-
lations such that E(Aj F) E;S. Then by Theorem 2.1, S has an identi-
ty. Siﬁce < A; F> is entire,ZETis a-congruence relation on A.
Let Y &€ E(A; F). Then ¢ induces a congruence relation €. on

b
A by

XHe ¥ (ew) e =y

for all x, y A. Therefore, Ew = w or sw = 1 or ew = 9. If
€¢ =wor 1, thenAbyuThgorem 3.8, ¥ is right cancellative or y is a
right annihilator of E(A; F); and by Theorem 3.3 E(A; F) has two right
annihilators, say wo and we, where Awo = {0} and Awe = {e}; e is de-
noted to be the other idempotent of A; also if woB = wo then o = wo
or ‘B = wo :

If e =96, then Ay = {a, b} for some a, b€A., Let Oy = a and

(A~ {ohy = {b} .
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@) {a, b} = {0,e} .

Indeed, fY(b,..., b) = fY(xow,..., X )

nY—l
(fY(x Bl s an_l))w = b,

and fY(a,..., a) fY(Ow sesey OV)

(fY(O,---, )y =0 =a

for all fyﬁ Fy Xpeees X _1€A\ {0} . Hence, a and b are idempo-

&
H Y

tents of A.
(ii) Oy = 0.
Suppose not. Then Oy =€-and (AN {0}y = {0} . Let fYG F and

Xyseeos X 4 be all nonzero element of A. Then

Y

(fy(xO’,'." Xi_l, 0, xi+l’0--, xn _1)).4)

fY(xolP sreny xi;lli’, oy , xi+l¢".'.’ V)

X
nY 1

fY-(O’- by 055e50,..., 0) = 0. |
Therefore, OV = xU for all x€ A> _{.0}. Thefl by the definition of
ew, E¢ = 1 which is a contradiction.

(iid) ¢00¢ 5 IPO T ‘JJO‘IJO and \Peolb 3 lPe gl
Indeed, x(woow) =0 =0 = Xl and x(\peoxp) =ey=e=xP for all x
in A. Hence, woow = ¢0 and weow = .we' Therefore y is not righﬁ
concellative and ¥ = e .

To prove the converse, assume that S =R U{rl; T, —g' jiok whe;-e
r

1» I, are rights annihilators, e is the identity of r., and rz,_and

1
R consists of the right concellative elements of S. Let e defiote the
identity of S. Then e€R. Construct an algebra as follows : Set

A=sU{o, 1} ,0¢ 58, 1¢S5, 0# 1. We define the following operar.

tions on A :-
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P : P(x) = x (x€8),
P(O) = 1,
P(1) = 03
f,,for aesMrl:  f (x) = ax - (x€9),
= x , (x¢8);
* : xky = 0 (x, yes~{r }; xfy),
= 1 (x, yE A, x Or y=r1),
o N : (xe A,
1*x = x*1 = x (xen),
%%/ = x*0 = 0 (xeA~{r D).
Set
F = {falaeS} U {%, P}.

Obviously, r. is the zero of < Aj; F > which is an entitré algebra, and

1
r;» T, are the only idempotents of < A} F > . So by Letma -3.11, w, 1
and 6 are congruence relations on A. Let € be a congruence relation
on A.

(i) 1If0 =1 (8), then 6 = 8 or 1.

Indeed, for any x, y€ A\~{r1}, x = x%¥1 = x%0 = 0 (6) and similarly,

y =0 (8), thus x =y (6). Hence,6 = § or q.

(ii) If there is an x in A‘\{rl} such that x = r, (6), then
® = 1. Since 0 = O%x = O*r1 =1 (8) and so -
I'=P(0) = P(r) = r; (8), we have 0 =1 (8) and by (), 0 = or 1 but
r, = x (6) where x # T - Hence, 6 = 1.

To show that < A; F > has exactly three congruence relations,

let O be any congruence relation such that 6 # w and 6.# 1. Then
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there exists x, yéA\{_rl}, X‘.% y such that x =y (8). Therefore,
x = x%x = x*y = 0 (9) and; so x = P(x) ZP(0) =1 (9),. thus 0 = 1 (0).
Hence, 6 = 8.

Now, we define mappings on A s follows :-

v ,for a€R, XY = xa : "(xéS),

a
¥, for ae{rl, rz} : ox, = a (xel),
'J)a,for a=e . xwa ZoTy . (x = ri),
= I, (x # rl) s

(i) waé E(A; F) for/all ae'S.
Obviously, by Theorem 3,8, if aeRU{rl, r2}, then y_€ E(A; F).
To show that if a = e then wae E(A; F), let x, yEA, xty. "If x or
i c= * = = = kv U = 1’ *vy
y is r;, say x'= r,, then (r1 y)wa rllba r, .rl yﬂ{i rlwa ywa
yV, = 1y = ro¥r, =y dy s PV = (P(r'l))d)al

and (y*y) 'ba

rllPa = I'l — P(ri) = P(rlwa); (fb(X))wa = (fb(rl))"’a ___.rl - I'llba
Hence, ¥ _€ E(A; F). If x # r) and y # L KTy (X*W;’ ov, = x,

= r?_*r2 = xwa*ytpa; (P(x))llf'a - Ty = P(rz) = P(lea); (fb(x))‘l)a

2

fb(rz) = fb(xlba) for all b€ S. Hence, waé E(A; F).
(ii) If Y€ E(A; F), and ¥ is 1 — 1, then Oy = 0 and 1y = 1.
Obviously, by the same proof as Theorem 3.12.
(iii) 1If Y€ E(A; F) and ¥ is 1 - 1, then ¢y = tba for some
ac R.

Obviously, by the same proof as Theorem 3.12.



37

(iv) If YVE€E(A; F) and ¥ is not 1 - 1, then V¥ = wr or
1
¢g° Since < A} F > has three congruence relations

<
I
<
-
<
]

and ¥ is not 1 - 1, ¥ induces a congruence relation €¢ such~that

€¢ =6 or €w = 1, If Ew = 6, then AV = {a, b} for some a, b in A,
a# b and so a, b are idempotents of < A; F >, thus

= i = %* = * :
{a, b} {rl, rz}. Since rlw (x rl)w xy rlw for xe;A\\{rl}

implies rlw =r.  or rlw = 0, we have rlw =r Hence, ¢ = wé' If

1 1

€, = 1» then AV = {a} for some a'in A, hence a is an idempotent of

A and a = r1 or a = r2; Hencey V¥ = wrl or YV =Y

(v) waowb = ¥, for all a, beSs.

r2'

Obviously, if {a, b} R or/{a, b} = {rl, r2} or {a, b}E'RL){rl, rZ}
or {a, b}€ frl, Ty, e}, then they are done. Let {a, b}S R U{e},
say a€R and b = e.

case 1 r.a=r

1 1 Then rlwa =yt a=r. . Since a€R,

1 1
r,a =1, so that rzwa = r,a = r,. Since rl(ae) = (rla)e = rle =1

and r2(aE) = (rza)E = rZE = r,, we have ae = e. Therefore

X('JlaO'Pb) = (Xll’a)‘bb = (xa)l!)b r, = XIPE = x|y - = x“pab for all xeA\{rl}.

ae

Hence, waowb = wab'

Similarly, we can get r,a =r and ae = e.

case 2 r.a T, 1

1 2
Hence, waowb = wab'

(vi) Obviously, wa = wb if and only if a = b.

Consider the mapping 6. : a - wa. 6 is 1 - 1 by (vi). 6 is
onto by (iii) and (iv). It preserves multiplication by (v). Thetre-

fore, 6 is an isomorphism. This completes the proof of the theorem. #
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