CHAPTER II

ENDOMORPHISMS OF SEMIGROUPS

George Gratzer [1] has shown that for every semigroup S with
identity, there exists an algebra such that the endomorphism semi-
group of the algebra is isomorphic to the semigroup S.

In this chapter, we will show that we can choose the algebra

to be a semigroup.

2.1 Theorem. A semigroup </S3 ¢ > is isomorphic to the endomorphism
semigroup of some algebra </A; F > if and only if < S; ¢ > has an

identity element.
Proof. See [[1], Theorem 3], page 68.

The next theorem shows that if we consider a monoid M to be a

category then M can be fully-embedded into the functor category EnsM.

2.2 Lemma. A monoid M can be seen as a small category whose only

object is M and whose morphisms are elements of M.

Proof. Define the composition on M by
aob = ab

for all a, be M. Obviously, CAT 1, 2, 3 are satisfied. #

2.3 Theorem. A monoid M can be fully embedded into the functor

M
category Ens , where Ens is the category of sets.
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Proof. Consider a monoid M as a small category such that for
any a, be M, aob = ab. Construct a functor F of M into Ens as fol-
lows :

F(M) = [M, M] = M,
anc} for ae M, F(a) € [F(M), F(M)], denoted by Fa, is defined by

F () = ax : (xeM).
Then, by the example (2) on page 6. F is a functor
of M into Ens, (i.e. for any a, b, xX€M, Fe(a) = ea=a = 1&% and
F . (x) = (ab)x = a(bx) = Fa(bx) = (FaOFb) (x), and so Fa

ab b

and by Definition 1.10, Fa is an inner left translation induced by a.

= FaoFb);

Next, we want to construct a natural transformation of F into
a a
F as follows : For each/aeM, let n : F - F such that Ny : M > M

be defined by
na = xa | (xe M)
XNy .
Then by Definition 1:.10, n; is an inner right translation induced by
a. Since M is globally idempotent, Fa and n; are permutable for all
a, b in M (i.e. (Fa(x))n; = Fa(xn;) for all a, b, x¢M). Hence, na
is a natural transformation of ¥ into F.

Define 6 : M— EnsM by

8 (M)

it
e ]

and

a(x} = Tix (xeM) .

(i) 6 is a functor of M into EnsM.
e
Indeed, xn; = xe = x for all x&eM. Hence, Ny is the identity map-

i = = = @
ping on M. Since (1F)M lF(M) 1M Ny we have
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e

_ ab _
e(lM) =0(e) =n = 1F = le(M)' Let a, b, xe M. Then xny, = x(ab)
a, b a b _,ab _ a b
= (xa)b = (ngPnM = x(nMonM). Hence, 6(aeb) = 6(ab) = n = n on

6(a)o6(b).
(ii) 6 is full.

Since for any natural transformation n of F into F and x€ M, XNy

a
= (Xe)nM = (Fx(e))nM = Fx(enM) = x(enM) = xny, vhere a = eny,, we

a
have n = n .

(iii) 6 is faithful.

: b a
Indeed, for any a, bE M such that na =n , we can get a = ea = eny
b a b,
= eny = eb = b. Hence, n ¥ /n 1is equivalent to a = b.

(iv) Clearly, 6 is one = one on object) completing the proof

of the theorem. #

2.4 Theorem [5], Let A be a small category. Then EnsA admits a

full embedding into ‘the catégory of semigroups.

Now, we will show that for a given monoid M, there exists a
semigroup < S; * > such that M = E(S; +). Before we prove this

theorem, we have the following theorem.

2.5 Theorem. Every monoid can be fully embedded into the category

of semigroups.

Proof. let M be 2z monoid. Then by Theorem 2.3, let y be a
full embedding functor of M into the functor category EnsM. And, as
M is a small category, then by Theorem 2.4, let § be a full embed-

ding functor of EnsM into the category of semigroups S. So, we Have



the following diagram

Y

M— EnsM——(s—> S e

Define 6 : M — S by

8 (M) Soy(™) ,
and

8(x)

Soy(x)
for all xe M. Since the composition of functors is a functor and
the composition of onto functions is an onto function, we have 6

is a full, faithful funetor. . #

2.6 Theorem. A semigroup < S; ¢ > is isomorphic to the endomorphism
semigroup of some semigroup < 8'3 * > if and only if < S; + > has an

identity element. .

Egégg. The 'only if' part follows from [1]. To prove the '
'if! part} assume that < S; * > has an identity element. Therefore
S is a monoid which can be considered as a small category.

Let 6 be a full embedding functor of S into the category of
semigroups . Then the function 6 : S— [0(S), 6(S)] is 1 - 1,
onto and for any a, b€ S, 6(ab) = 6(a)e6(b). Hence, S is isomor-

phic to [6(S), 6(S)] which is E(S'; %), where 6(S) = S'. #

The following remarks state some results which explain why
the above theorem was not phrased more strongly. (i.e. why
"semigroup < S'; % >" cannot be replaced by 'monoid', 'finite semi-

group', 'group', 'lattice' and 'commutative semigroup'.)
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2.7 Remarks.
(1) A nontrivial group is not isomorphic with E(M) for any

monoid M.

Proof. Let M be a monoid with an identity e, and let < G; <>
be a nontrivial group. Suppose that E(M) £ G. Let the mapping
f : M— M be defined by
f(x) = e (xeM).
Then f is a constant map which is an endomorphism of M. Hence, E(M) is

not a group which contradiets to E(M) = G. #

(2) A nontrivial group is not isomorphic to the endomorphism

semigroup.of. any.group, or finite semigroup,.or.lattice.

Proof. Indeed, a group is a monoid, every finite semigroup
has an idempotent and every element of lattice is idempotent. Then

similarly to the proof of (1), we get the results. #

(3) The cyclic group of order 2 is not isomorphic with the

endomorphism semigroup of any commutative semigroup.

Proof. Assume that S is a commutative semigroup such that
E(S; ) = C2, where C2 denotes a cyclic group of order 2. Then S
2
must have at least two elements. The mapping f : a — a~ is an endo-

2
morphism of S, and therefore either f = lS or f = 1S and f # 1S’

"

where 1s is the identity automorphism of S. In the first case,
every element of S is idempotent, hence all constant mappings are

endomorphisms. This contradicts the assumption that E(S; +) is a



group. In the second case,“a4“='f(f(a)) = a, for all a€S. But
a3-a3 = ae a2 = 53, hence a3 is"idempotent. Théerefore the con-
stant mapping with value a3 is an endomorphism which is not an

automorphism. #
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