CHAPTER V

CONTINUOUS SOLUTION OF $f(x y)+f\left(x y^{-1}\right)=2 f(x) f(y \theta)$ ON A TOPOLOGICAL GROUP
5.1 Introduction

In [3], T.M. Filet found all continuous complex-valued functionson $\mathbb{R}^{\text {p }}$ satisfying

$$
f\left(z_{1}+z_{2}\right)+f\left(z_{1}-z_{2}\right)=2 f\left(z_{1}\right) f\left(z_{2}\right),
$$

to be $f \equiv 0$ or of the form

$$
f(z)=f(x+i y)=\cosh (\alpha x+\beta y)=\frac{e^{(\alpha x+\beta y)}+e^{-(\alpha x+\beta y)}}{2},
$$

where α, β are some complex numbers.
In this chapter, we characterize the continuous solution of

$$
\begin{equation*}
f(x y)+f\left(x y^{-1}\right)=2 f(x) f(y \theta), \tag{S}
\end{equation*}
$$

where f is a function from a topological group G into $\mathbb{1}$. This result is applied to the case $G=\mathbb{R}^{n}$ to obtain all continuous functions $f: \mathbb{R}^{n} \longrightarrow \mathbb{C}$ such that

$$
f(x+y)+f(x-y)=2 f(x) f(y+\theta)
$$

This includes the equation studied in $[3]$ as a special case.

$$
5.2 \text { Continuous Solutions of } f(x y)+f\left(x y^{-1}\right)=2 f(x) f(y \theta)
$$

on a Topological Group.
5.2.1 Theorem Let G be a topological group. Any continua us
function not identically zero on G satisfies

$$
\begin{equation*}
f(x y)+f\left(x y^{-1}\right)=2 f(x) f(y \theta) \tag{S}
\end{equation*}
$$

and
(A) $f(\mathrm{xyz})=f(x \mathrm{zy})$
for every x, y, z in G, if and only if there exists a continuous homomorphism h from G into \mathbb{C}^{*} such that

$$
f(x)=\frac{h\left(\theta^{-1} x\right)+h\left(x^{-1} \theta\right)}{2}
$$

Proof Assume that $f: G \longrightarrow \mathbb{C}$ is continuous and satisfies
(S) and (A).

By theorem 4.3.1, we have

$$
f(x) \quad=\frac{h\left(\theta^{-2} x\right)+h\left(x^{-1} \theta\right)}{2},
$$

for all x in G, where h is a homomorphism from G to \mathbb{I}^{*}. It remains to be proved that h is continuous.
Since $f(x)=\frac{h\left(\theta^{-1} x\right)+h\left(x^{-1} \theta\right)}{2}$, for every x in G.
Then $f\left(\theta_{x}\right)=\frac{h(x)+h\left(x^{-1}\right)}{2}$
, for every x in G .
Thus $f\left(\theta_{x} y\right)=\frac{h(x y)+h\left(y^{-1} x^{-1}\right)}{2}$,

$$
\begin{equation*}
=\frac{h(x) h(y)+h\left(y^{-1}\right) h\left(x^{-1}\right)}{2} \tag{5.2.1.1}
\end{equation*}
$$

and $f(\theta x) f(\theta y)=\frac{h(x)+h\left(x^{-1}\right)}{2} \cdot \frac{h(y)+h\left(y^{-1}\right)}{2}$,

$$
\begin{equation*}
=\frac{1}{4}\left[h(x) h(y)+h\left(x^{-1}\right) h(y)+h(x) h\left(y^{-1}\right)+h\left(x^{-1}\right) h\left(y^{-1}\right)\right] \tag{5.2.1.2}
\end{equation*}
$$

Substracting (5.2.1.2) from (5.2.1.1), we get

$$
\begin{aligned}
f(\theta x y)-f(\theta x) f(\theta y) & =\frac{1}{4}\left[h(x) h(y)+h\left(x^{-1}\right) h\left(y^{-1}\right)-h\left(x^{-1}\right) h(y)-h(x) h\left(y^{-1}\right)\right], \\
& =\frac{h(x)-h\left(x^{-1}\right)}{2} \cdot \frac{h(y)-h\left(y^{-1}\right)}{2} .
\end{aligned}
$$

But $\quad f(\theta x)=\frac{h(x)+h\left(x^{-1}\right)}{2}$,
and hence $h(x)-f(\theta x)=\frac{h(x)-h\left(x^{-1}\right)}{2}$.
Thus $f(\theta x y)-f(\theta x) f(\theta y)=[h(x)-f(\theta)][h(y)-f(\theta y)]$ (5.2.1.3)
Case I Suppose $h(x) \quad=f(\theta x)$ for all x in G.
Then clearly, h is continuous
Case II Otherwise, there is an x_{0} in G such that

$$
\delta=h\left(x_{0}\right)-f\left(0 x_{0}\right) \neq 0
$$

With x_{0} for y in (5.2.1.3), we get

$$
\begin{aligned}
& f\left(\theta x x_{0}\right)-f(\theta x) f\left(\theta x_{0}\right)=[h(x)-f(\theta x)]\left[h\left(x_{0}\right)-f\left(\theta x_{0}\right)\right] \text {, } \\
& h(x) L O N G=0 f(\theta x)+\frac{1}{\delta}\left[f\left(\theta x x_{0}\right)-f(\theta x) f\left(\theta x_{0}\right)\right] . \\
& \text { (5.2.1.4) }
\end{aligned}
$$

Hence h is continuous.
Conversely, if $h: G \longrightarrow \mathbb{C}^{*}$ is a continuous homomorphism from G to \mathbb{C}^{*}, then it is clear that

$$
f(x)=\frac{h\left(\theta^{-1} x\right)+h\left(x^{-1} \theta\right)}{2}
$$

is continuous. Furthermore, it follows from theorem 4.3.1 that f satisfies (S) and (A).
5.2.2 Corollary Let G be a commutative topological group. Then $f: G \longrightarrow \mathbb{C}$ is continuous and satisfies
(S) $\quad f(x y)+f\left(x y^{-1}\right)=2 f(x) f(y \theta)$
if and only if there exists a continuous homomorphism h from G into the multiplicative group \mathbb{C}^{*} of nonzero complex numbers such that

$$
f(x)=\frac{h\left(\theta^{-1} x\right)+h\left(x^{-1} \theta\right)}{2}
$$

Proof Since G is a commutative group, hence the condition
(A)

$$
f(x y z)
$$

$$
=
$$

$f(x(z y)$,
holds for every x, y, z in G and for all functions $f: G \longrightarrow \mathbb{C}$. Hence the class of all continuous functions that satisfies (s) coincides with the class of all continuous functions that satisfies (S) and (A).
5.3 Continuous Solution of $f(x y)+f\left(x^{-1}\right)=2 f(x) f(y \theta)$ on \mathbb{R}^{r} Chulalongkorn University

The following theorem gives all continuous solutions of
$\left(s_{1}\right)$

$$
f(x+y)+f(x-y)=\quad 2 f(x) f(y+\theta)
$$ on \mathbb{R}^{n}.

5.3.1 Theorem Let $\mathrm{f}: \mathbb{R}^{n} \longrightarrow \mathbb{C}$ be continuous and not identically zero on \mathbb{R}^{n}. Then f satisfies $\left(S_{1}\right)$ if and only if there exists $r_{1}, \ldots, r_{n} \in \mathbb{C}$ such that

$$
f\left(x_{1}, \ldots, x_{n}\right)=\frac{e^{r_{1}\left(x_{1}-\theta_{1}\right)+\ldots+r_{n}\left(x_{n}-\theta_{n}\right)}+e^{r_{1}\left(\theta_{1}-x_{1}\right)+\ldots+r_{n}\left(\theta_{n}-x_{n}\right)}}{2}
$$

Proof By corollary 5.2.2, any continuous function f satisfies $\left(S_{1}\right)$ if and only if f is of the form

$$
f(x)=\frac{h(x-\theta)+h(\theta-x)}{2}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ and h is a continuous homomorphism from \mathbb{R}^{n} to \mathbb{C}^{*}.

By theorem 3.3.5, we have

$$
h(x)=e^{r^{n}} 1+\cdots+r_{n} x_{n}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ and $r_{j} \in \mathbb{C}, j=1, \ldots, n_{0}$
Thus every continuous solution of $\left(S_{1}\right)$ on \mathbb{R}^{n} must be of the form

$$
f\left(x_{1}, \ldots, x_{n}\right)=\frac{e^{r_{1}\left(x_{1}-\theta_{1}\right)+\ldots+r_{n}\left(x_{n}-\theta_{n}\right)}+e^{r_{1}\left(\theta_{1}-x_{1}\right)+\ldots+r_{n}\left(\theta_{n}-x_{n}\right)}}{2}
$$

5.3.2 Corollary Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be continuous and not identically zero on \mathbb{R}^{n}. Then \pm satisfies (S_{1}) if and only if f is of the form

$$
\begin{align*}
(5.3 .2 .1) f\left(x_{1}, \ldots, x_{n}\right)= & \frac{1}{2}\left[e^{r_{1}\left(x_{1}-\theta_{1}\right)+\ldots+r_{n}\left(x_{n}-\theta_{n}\right)}\right. \\
& \left.+e^{r_{1}\left(\theta_{1}-x_{1}\right)+\ldots+r_{n}\left(\theta_{n}-x_{n}\right)}\right]
\end{align*}
$$

where all r_{1}, \ldots, r_{n} are real numbers or all r_{1}, \ldots, r_{n} are pure imaginary numbers.
Proof Assume that $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is continuous and satisfies (S_{1}). Since $\mathbb{R} \subseteq \mathbb{C}$. We may consider f to be a function on \mathbb{R}^{n} into \mathbb{C}.

By Theorem 5.3.1, f must be of the form

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{n}\right)= & \frac{1}{2}\left[e^{r_{1}\left(x_{1}-\theta_{1}\right)+\ldots+r_{n}\left(x_{n}-\theta_{n}\right)}\right. \\
& +e^{\left.r_{1}\left(\theta_{1} \ldots x_{1}\right)+\ldots+r_{n}\left(\theta_{n}-x_{n}\right)\right]}
\end{aligned}
$$

where $r_{I}, \ldots, r_{n} \in \mathbb{C}$.
Since f maps \mathbb{R}^{n} into \mathbb{R}, hence the imaginary part of $f\left(x_{1}, \ldots, x_{n}\right)$ must be zero for all x_{1}, \ldots, x_{n}, ie. we have (5.3.2.2) $\operatorname{Im}\left(\frac{e^{r_{1}\left(x_{1}-\theta_{1}\right)+\cdots+r_{n}\left(x_{n}-\theta_{n}\right)}+e^{r_{1}\left(\theta_{1}-x_{1}\right)+\ldots+x_{n}\left(\theta_{n}-x_{n}\right)}}{2}\right)=0$,
for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$
For convenience, for $j=1, \ldots, n$, let

$$
r_{j}=r_{j}^{\prime}+i r_{j}^{\prime},
$$

where $i^{2}=-2, r_{j}^{\prime}, r_{j}^{\prime \prime}$ are real numbers, and we denote $x_{j}-\theta_{j}$ by y_{j}.
With this notation, it follows from (5.3.2.2) that
 for all

$$
x_{1}, \ldots, x_{n}
$$

If $r_{j_{0}}^{\prime \prime} \neq 0$ for some j_{0}, we can choose x_{1}, \ldots, x_{n} so that $\sin \left(r_{1}^{\prime \prime} y_{1}+\cdots+r_{n}^{\prime \prime} y_{n}\right) \neq 0 \quad$.

Therefore, (5.3.2.3) implies

$$
e^{r_{1}^{\prime} y_{1}+\cdots+r_{n}^{\prime} y_{n}}=e^{-\left(r_{1}^{\prime} y_{1}+\cdots+r_{n}^{\prime} y_{n}\right)}
$$

for all $x_{1}, \ldots \ldots, x_{n}$.

Hence, we have

$$
r_{1}^{\prime} y_{1}+\ldots+r_{n}^{\prime} y_{n}=-\left(r_{1}^{\prime} y_{1}+\ldots+r_{n}^{\prime} y_{n}\right) .
$$

Thus

$$
r_{1}^{\prime} y_{1}+\ldots+r_{n}^{\prime} y_{n}=0, \text { for all } x_{1}, \ldots, x_{n} \text { 。 }
$$

We see that if $r_{j}^{\prime} \neq 0$ for any j, we can choose x_{1}, \ldots, x_{n} so that

$$
r_{1}^{\prime} y_{1}+\ldots+r_{n}^{\prime} y_{n} \neq 0
$$

Therefore, we must have $r_{j}=0$ for all $j=1, \ldots, n$. Hence, if not all $r_{j}^{\prime \prime}$ are zero, then all r_{j}^{\prime} must be zero. Therefore, all of $r_{1}, \ldots, r n$ must be real or all must be pure imaginary.

Conversely, if f is of the form (5.3.2.1), then it is clear that f is real-valued, and a straightforward verification shows that f satisfies $\left(S_{1}\right)$ if

$$
\begin{align*}
& 5.4 \text { Existence of Discontinuous Solution of } f(x y)+f\left(x y^{-1}\right) \\
&=2 f(x) f(y \theta)
\end{align*}
$$

5.4.1 Theorem There exists discontinuous function $f: \mathbb{R}^{n} \mathbb{C}$ such that f satisfies
$\left(S_{1}\right) \quad f(x+y)+f(x-y)=2 f(x) f(y+\theta)$.
Proof By corollary 5.2.2, every continuous solution of (S_{1}) must be of the form

$$
\text { (5.4.1.1) } \quad f(x)=\frac{h(x-\theta)+h(\theta-x)}{2},
$$

where h is a continuous homomorphism from \mathbb{R}^{n} to \mathbb{C}^{*}.
Therefore, by taking h to be a discontinuous homomorphism from \mathbb{R}^{n} to \mathbb{C}^{*}, we can get a discontinuous solution of $\left(S_{1}\right)$ of the form (5.4.1.1). The existence of discontinuous homomorphisms from \mathbb{R}^{n} to \mathbb{C}^{*} is already demonstrated in section 3.4.

