GENERAL SOLUTION OF $f(x y)+f\left(x y^{-1}\right)=2 f(x) f(y \theta)$ ON GROUPS.
4.1 Introduction

In [I], Kainappan determines all the functions f on a group G into the complex plane \mathbb{C} satisfying the functional equation

$$
\begin{equation*}
f(x y)+f\left(x y^{-1}\right)=2 f(x) f(y) \tag{C}
\end{equation*}
$$

and an additional condition
(A)

$$
f(x y z)=f(x z y) \text {, for every } x, y, z \text { in } G \text {. }
$$

In this chapter, we use the method of [I] to obtain all functions f from a group G into \mathbb{C} satisfying the functional equation

$$
\begin{equation*}
f(x y)+f\left(x y^{-1}\right)=2 f(x) f(y \theta), \tag{S}
\end{equation*}
$$

where θ is any fixed element of G, and the additional condition (A).

Observe that when θ is the identity of G, the equation (S) becomes (C). Hence the study of (C) is a special case of the study of (S).

Note that when G is commutative, the condition (A) is automatically satisfied. When G is the additive group of complex (or real) numbers, the equation (C) becomes
(C^{\prime})

$$
f(x+y)+f(x-y)=2 f(x) f(y),
$$

which is an identity for cosine. Because of this, the equation
(C) is known as the cosine equation.

In this case, if we take θ to be $\frac{\pi}{2}$, then the equation (S) becomes

$$
f(x+y)+f(x-y)=2 f(x) f\left(y+\frac{\pi}{2}\right)
$$

which is an identity for sine. So that the equation (S) includes as its special cases, the cosine and the sine functional equations.

$$
4.2 \text { Some Lemmas }
$$

4.2.1 Lemma Let G be an arbitrary group and let f be a complexvalued function satisfying (S) and (A) on G, not identically zero. Then we have

$f(\theta)=1$
(4.2.1.2)

$$
f\left(y^{2} \theta\right)=2 f(y \theta)^{2}-1
$$

(4.2.1.3) $f\left(x^{2} \theta^{-1}\right)+f\left(y^{2} \theta\right)=2 f(x y) f\left(x y^{-1}\right)$
(4.2.1.4)

$$
f\left(x^{2} \theta^{-7}\right)=2 f(x)^{2}-1
$$

(4.2.1.5) $[f(x y)-f(x) f(\theta y)]^{2}=\left[f(x)^{2}-1\right]\left[f(\theta y)^{2}-1\right]$

Proof Let x be an element of G.
Replacing y by e, the identity of G, in (S), we have

$$
f(x e)+f\left(x e^{-1}\right)=2 f(x) f(e \theta)
$$

Thus

$$
2 f(x) \quad=\quad 2 f(x) f(\theta)
$$

Since f is not identically zero, hence we have

$$
\begin{equation*}
f(\theta)=I \tag{4.2.1.1}
\end{equation*}
$$

Replacing x by $y \theta$ in (S), we have

$$
\begin{aligned}
f(y \theta y)+f\left(y \theta y^{-1}\right) & =2 f(y \theta) f(y \theta), \\
f(y y \theta)+f\left(y y^{-1} \theta\right) & =2 f(y \theta)^{2}, \\
f\left(y^{2} \theta\right)+f(\theta) & =2 f(y \theta)^{2} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
f\left(y^{2} \theta\right)=2 f(y \theta)^{2}-1 \tag{4.2.1.2}
\end{equation*}
$$

Replacing x and y by $x y$ and $x y^{-1} \theta^{-1}$, respectively, in (S), we get

$$
\begin{aligned}
f\left(x y x y^{-1} \theta^{-1}\right)+f\left(x y \theta y x x^{-1}\right) & =2 f(x y) f\left(x y^{-1}\right), \\
& =2 f(x y) f\left(x y^{-1}\right), \\
& \left.=2 y^{-1} \theta^{-1} x\right)+f\left(x x^{-1} y \theta y\right)= \\
& =2 f\left(x \theta^{-1} x\right)+f(y \theta y) f\left(x y^{-1}\right), \\
f\left(x^{2} \theta^{-1}\right)+f\left(y^{2} \theta\right) \quad & =2 f(x y) f\left(x y^{-1}\right) \quad(4.2 .1 .3)
\end{aligned}
$$

Replacing y by $x \theta^{-1}$ in (S), we have
thus

$$
\begin{aligned}
f\left(x x \theta^{-1}\right)+f\left(x \theta x^{-1}\right) & =2 f(x) f\left(x \theta^{-1} \theta\right) \\
f\left(x^{2} \theta^{-1}\right)+f(\theta) & =2 f(x)^{2}
\end{aligned}
$$

$$
\begin{equation*}
f\left(x^{2} \theta^{-1}\right) \text { งกร }=2 f(x)^{2}-1 \tag{4.2.1.4}
\end{equation*}
$$

Now using $(S),(4.2 .1 .2),(4.2 .1 .3)$ and $(4.2 .1 .4)$, we find that

$$
\begin{aligned}
{\left[f(x y)-f\left(x y^{-1}\right)\right]^{2} } & =\left[f(x y)+f\left(x y^{-1}\right)\right]^{2}-4 f(x y) f\left(x y^{-1}\right) \\
& =\left[f(x y)+f\left(x y^{-1}\right)\right]^{2}-2\left[f\left(x^{2} \theta^{-1}\right)+f\left(y^{2} \theta\right)\right] \\
& =\left[f(x y)+f\left(x y^{-1}\right)\right]^{2}-2\left[2 f(x)^{2}-1+2 f(y \theta)^{2}-1\right] \\
& =\left[f(x y)+f\left(x y^{-1}\right)\right]^{2}-4\left[f(x)^{2}+f(y \theta)^{2}-1\right] \\
& =4\left[f(x)^{2} f(y \theta)^{2}-f(x)^{2}-f(y \theta)^{2}+1\right] \\
& =4\left[f\left(x^{2}\right)-1\right]\left[f(y \theta)^{2}-1\right]
\end{aligned}
$$

Consequently, we obtain $f(x y)-f\left(x y^{-1}\right)=2\left(\left[f(x)^{2}-1\right]\left[f(y 0)^{2}-1\right]\right)^{\frac{1}{2}}$. Adding this equation to (S), we get

$$
f(x y)=f(x) f(y \theta)+\left(\left[f(x)^{2}-I\right]\left[f(y \theta)^{2}-I\right]\right)^{\frac{1}{2}} .
$$

So we have

$$
\begin{aligned}
& {[f(x y)-f(x) f(y \theta)]^{2}=\left[f(x)^{2}-1\right]\left[f(y \theta)^{2}-1\right]} \\
& {[f(x y)-f(x) f(e y \theta)]^{2}=\left[f(x)^{2}-1\right]\left[f(e y \theta)^{2}-1\right]} \\
& {[f(x y)-f(x) f(e \theta y)]^{2}=\left[f(x)^{2}-1\right]\left[f(e \theta y)^{2}-1\right]} \\
& {[f(x y)-f(x) f(\theta y)]^{2}=\left[f(x)^{2}-1\right]\left[f(\theta y)^{2}-1\right] .}
\end{aligned}
$$

4.2.2 Lemma Let G be any group. If f is a complex-valued function not identically zero on G with the properties that
(I) f satisfies (S) on f G,
(2) $f(G) \subseteq\{1,-1\}$
(3) f satisfies (A) on G.

Then f has the form
(B)
$f(x)=\frac{h\left(\theta^{-1} x\right)+h\left(x^{-1} \theta\right)}{2}$, for all x in G,
where h is a homomorphism of G into the multiplicative group of nonzero complex numbers, \mathbb{Q}^{*}

Proof Let $h(x)=f(\theta x)$.
Replacing x by θx in (4.2.1.5), we have

$$
[f(\theta \mathrm{xy})-f(\theta x) f(\theta y)]^{2}=\left[f(\theta x)^{2}-1\right]\left[f(\theta y)^{2}-1\right](4.2 .2 .1)
$$

Since $f(x)^{2} \equiv 1$ for all x in G,

$$
\text { (4.2.2.1) shows that } f(\theta x y)=f(\theta x) f(\theta y)
$$

$$
\text { Hence } \quad h(x y)=f(\theta x y)=f(\circledast x) f(\theta y)=h(x) h(y)
$$

Therefore h is a homomorphism 。
Since $h(x)^{2}=f(\theta x)^{2}=1$ for all x in G.

Hence

$$
h\left(\theta^{-1} x\right)^{2}=1 .
$$

Therefore, we have $h\left(\theta^{-1} x\right)=h\left(\theta^{-1} x\right)^{-1}$.
So that,

$$
\begin{aligned}
f(x) & =f\left(\theta \theta^{-1} x\right) \\
& =h\left(\theta^{-1} x\right) \\
& =\frac{h\left(\theta^{-1} x\right)+h\left(\theta^{-1} x\right)}{2} \\
& =\frac{h\left(\theta^{-1} x\right)+h\left(\theta^{-1} x\right)^{-1}}{2}
\end{aligned}
$$

4.3 The Main Theorem
4.3.1 Theorem Let G be an arbitrary group. Any complex-valued function f not identically zero on G satisfies
(s)

$$
f(x y)+f\left(x y^{-1}\right)=2 f(x) f(y \theta)
$$

and
(A)

$$
f(x y z)
$$

$$
=f(x z y),
$$

for every x, y, z in G, if and only if there exists a homomorphism h from G into \mathbb{C}^{*} such that

$$
\begin{equation*}
f(x)=\frac{h\left(\theta^{-1} x\right)+h\left(x^{-1} \theta\right)}{2}, \tag{H}
\end{equation*}
$$

for all x in G.
Proof Let f be a solution of (S) on G.
Lemma 4.2 .2 is the present theorem if $f(G) \subset\{1,-I\}$. Suppose that there is an x_{0} in G such that

$$
\begin{equation*}
f\left(\theta x_{0}\right)^{2} \neq 1 \tag{4.3.1.1}
\end{equation*}
$$

Let $\alpha=f\left(\theta x_{0}\right)$ and β be a square root of $\left(\alpha^{2}-1\right)$.
That is,

$$
\begin{equation*}
\alpha^{2}-1=\beta^{2} \tag{4.3.1.2}
\end{equation*}
$$

We now define

$$
h(x)=f(\theta x)+\frac{1}{\beta}\left[f\left(\theta x x_{0}\right)-f(\theta x) f\left(\theta x_{0}\right)\right] \text {, for all } x
$$

in G. It follows that

$$
\begin{equation*}
\left.h(x)=\frac{1}{\beta}\left[f\left(\theta x x_{\alpha}\right)+(\beta)-\alpha\right) f(\theta x)\right] \tag{4.3.1.3}
\end{equation*}
$$

Further, utilizing $(4.2 .1 .5),(4.3 .1 .2)$ and $(4.3 .1 .3)$, we have

$$
\begin{aligned}
{[h(x)-f(\theta x)]^{2} } & =1\left[f\left(\theta x_{0}\right)-f(\theta x) f\left(\theta x_{0}\right)\right]^{2} \\
& =\frac{1}{\beta^{2}},\left[f(\theta x)^{2}-1\right]\left[f\left(\theta x_{0}\right)^{2}-1\right] \\
& =\frac{\alpha^{2}-1}{\beta^{2}}\left[f(\theta x)^{2}-1\right] \\
& =f(\theta x)^{2}-1
\end{aligned}
$$

Therefore, we obtain

$$
\begin{equation*}
h(x)^{2}-2 h(x) f(\theta x)+1=0 \tag{4.3.1.4}
\end{equation*}
$$

From (4.3.1.4) we conclude that $h(x) \neq 0$ for any x,

$$
\text { moreover } \quad \begin{aligned}
f(\theta x) & =\frac{h(x)^{2}+1}{2 h(x)}, \\
& =\frac{h(x)+h(x)^{-1}}{2}
\end{aligned}
$$

Replacing x by $0^{-1} x$, we have

$$
f(x)=\frac{h\left(\theta^{-1} x\right)+h\left(\theta^{-1} x\right)^{-1}}{2}
$$

It remains only to prove that h defined by (4.3.1.3) is a homomorphisrn, that is, $h(x y)=h(x) h(y)$, for every x, y in G。

$$
\begin{aligned}
2 f\left(\theta \mathrm{xx}_{0}\right) f\left(\theta \mathrm{yx}_{0}\right) & =2 f\left(\theta \mathrm{xx}_{0}\right) f\left(e \theta y x_{0}\right), \\
& =2 f\left(\theta \mathrm{xx}_{0}\right) f\left(e y x_{0} \theta\right), \\
& =2 f\left(\theta \mathrm{xx}_{0}\right) f\left(y \mathrm{x}_{0} \theta\right) .
\end{aligned}
$$

From (S), we have

$$
\begin{aligned}
& 2 f\left(\theta_{x x_{0}}\right) f\left(\theta y x_{0}\right)=f\left(\theta x x_{0} y_{0}\right)+f\left(\theta x x_{0}\left(y_{x_{0}}\right)^{-1}\right), \\
& =f\left(0 x x_{0} y x_{0}\right)+f\left(\theta x_{0} x_{0}{ }^{-1} y^{-1}\right), \\
& =I\left(\theta \times y x_{0}^{2}\right)+ \pm\left(\theta x y^{-1}\right) \text {, } \\
& =\left[2 f\left(\theta \times y x_{0}\right) f\left(x_{0} \theta\right)-f(\theta x y)\right]+ \\
& {[2 f(\theta x) f(y \theta)-f(\theta x y)] \text {, }} \\
& \theta=\left[2 f(\theta \mathrm{xyx}) f\left(e x_{0} \theta\right)-f(\theta \mathrm{xy})\right]+ \\
& {[2 f(\theta x) f(e y \theta)-f(\theta x y)] \text {, }} \\
& =\left[2 f\left(\theta x y x_{0}\right) f\left(e \theta x_{0}\right)-f(\theta x y)\right]+ \\
& {[2 f(\theta x) f(e \theta y)-f(\theta x y)],} \\
& =\left[2 f\left(\theta x y x_{0}\right) f\left(\theta x_{0}\right)-f(\theta x y)\right]+ \\
& {[2 f(\theta x) f(\theta y)-f(\theta x y)],} \\
& =2\left[f\left(\theta x y x_{0}\right) f\left(\theta x_{0}\right)+f\left(\theta_{\mathrm{X}}\right) f(\theta y)-f(\theta x y)\right] \\
& \text { (4.3.1.5) }
\end{aligned}
$$

Again using (S), we get

$$
\begin{aligned}
2\left[f\left(\theta x_{0}\right) f(\theta y)+f\left(\theta y x_{0}\right) f(\theta x)\right]= & 2\left[f\left(\theta x x_{0}\right) f(e \theta y)+f\left(\theta y x_{0}\right) f(e \theta x)\right] \\
= & 2\left[f\left(\theta x x_{0}\right) f(e y \theta)+f\left(\theta y x_{0}\right) f(e x \theta)\right] \\
= & 2\left[f\left(\theta x x_{0}\right) f(y \theta)+f\left(\theta y x_{0}\right) f(x \theta)\right] \\
= & f\left(\theta x x_{0} y\right)+f\left(\theta x x_{0} y^{-1}\right)+ \\
& f\left(\theta y x_{0} x\right)+f\left(\theta y x_{0} x^{-1}\right), \\
= & f\left(\theta x x_{0} y\right)+f\left(\theta x_{0} y^{-1} x\right)+ \\
& f\left(\theta x y x_{0}\right)+f\left(\theta x_{0} x^{-1} y\right),
\end{aligned}
$$

$$
=2 f(\theta \times x y)+f\left(\theta x_{0} x y^{-1}\right)+f\left(\theta x_{0} y x^{-1}\right)
$$

$$
=2\left[f\left(\theta x x_{0} y\right)+f\left(\theta x_{0}\right) f\left(x y^{-1} \theta\right)\right]
$$

$$
=2\left[f\left(\theta x x_{0} y\right)+f\left(\theta x_{0}\right) f\left(e x y^{-1} \theta\right)\right]
$$

$$
=2\left[f\left(\theta x_{0} y\right)+f\left(\theta x_{0}\right) f\left(e \theta x y^{-1}\right)\right]
$$

$$
=2\left[f\left(\theta x x_{0} y\right)+f\left(\theta x_{0}\right) f\left(\theta \times y^{-1}\right)\right]
$$

$$
=2\left[f\left(\theta x_{0} y\right)+\alpha f\left(\theta x y^{-1}\right)\right]
$$

$$
=2\left[f\left(\theta x x_{0} y\right)+\alpha\{2 f(\theta x) f(y \theta)-f(\theta x y)],\right.
$$

$$
=2[f(0 \mathrm{xx} y)+\alpha\{2 f(\theta \mathrm{x}) f(\theta y)-f(\theta \mathrm{x} y)\}]
$$

$$
(4.3 .1 .6)
$$

In view of $(4.3 .1 .3),(4.3 .1 .5),(4.3 .1 .6)$ and $(4.3 .1 .2)$, we obtain

$$
\begin{aligned}
& h(x) h(y)=\frac{1}{\beta^{2}}\left[f\left(\theta_{x x_{0}}\right)+(\beta-\alpha) f(\theta x)\right]\left[f\left(\theta y x_{0}\right)+(\beta-\alpha) f(\theta y)\right] \text {, } \\
& =\frac{I}{\beta^{2}}\left[f\left(\theta \mathrm{xx}_{0}\right) f\left(\theta y x_{0}\right)+(\beta-\alpha)\left\{f(\theta \mathrm{x}) f\left(\theta y x_{0}\right)+f(\theta y) f(\theta \mathrm{xx})\right\}\right. \\
& \left.+(\beta-\alpha)^{2} f(\theta x) f(\theta y)\right], \\
& =\frac{1}{\beta^{2}}\left[f\left(\theta_{x y x_{0}}\right) f\left(\theta x_{0}\right)+f(\theta x) f(\theta y)-f(\theta x y)\right. \\
& +(\beta-\alpha)\left\{f\left(\theta x x_{0} y\right)+\alpha\{2 f(\theta x) f(\theta y)-f(\theta x y)\}\right\} \\
& \left.+(\beta-\alpha)^{2} f(\theta x) f(\theta y)\right] \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\beta^{2}}\left[\beta f\left(\theta x_{0} y\right)+\left(\beta^{2}-\left(\alpha^{2}-1\right)\right) f(\theta x) f(\theta y)-\left(1+\alpha \beta-\alpha^{2}\right) f(\theta \mathrm{xy})\right], \\
& =\frac{1}{\beta^{2}}\left[\beta f\left(\theta \mathrm{xx}_{0} y\right)-\left(\alpha \beta-\beta^{2}\right) f(\theta \mathrm{xy})\right], \\
& =\frac{1}{\bar{\beta}}\left[f\left(\theta \mathrm{xyx} \mathrm{x}_{0}\right)+(\beta-\alpha) f(\theta \mathrm{x} y)\right], \\
& =h(x y) .
\end{aligned}
$$

Hence h is a homomorphism.
Then $f(x)=\frac{h\left(\theta^{-1} x\right)+h\left(\theta^{-1} x\right)^{-1}}{2}$,

$$
=\frac{h\left(\theta^{-1} x\right)+h\left(x^{-1} \theta\right)}{2}
$$

Conversely, assume that

$$
f(x)=\frac{h\left(\theta^{-1} x\right)+h\left(x^{-1} \theta\right)}{2}
$$

for all x in G and h is a homomorphism from G to \mathbb{C}^{*}.

$$
\text { Hence, } \begin{aligned}
f(x y)+f\left(x y^{-1}\right) & =\frac{h\left(\theta^{-1} x y\right)+h\left((x y)^{-1} \theta\right)}{2}+\frac{\left.h\left(\theta^{-1} x y^{-1}\right)+h\left(x y^{-1}\right)^{-1} \theta\right)}{2}, \\
\text { ChuLALONGKORN UNIVERSITY } & =\frac{h\left(0^{-1} x y\right)+h\left(y^{-1} x^{-1} \theta\right)+h\left(\theta^{-1} x y^{-1}\right)+h\left(y^{-1} x^{-1}\right)}{2},
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{2}\left[h\left(\theta^{-1}\right) h(x) h(y)+h\left(y^{-1}\right) h\left(x^{-1}\right) h(\theta)+\right. \\
& \left.h\left(\theta^{-1}\right) h(x) h\left(y^{-1}\right)+h(y) h\left(x^{-1}\right) h(\theta)\right],
\end{aligned}
$$

and

$$
\begin{aligned}
2 f(x) f(y \theta)= & 2\left\{\frac{h\left(\theta^{-1} x\right)+h\left(x^{-1} \theta\right)}{2} \cdot \frac{h\left(\theta^{-1} y \theta\right)+h\left((y \theta)^{-1} \theta\right)}{2}\right\}, \\
= & \frac{1}{2}\left[h\left(\theta^{-1} x\right)+h\left(x^{-1} \theta\right)\right]\left[h\left(\theta^{-1} y \theta\right)+h\left(\theta^{-1} y+1 \theta\right)\right] \\
= & \frac{1}{2}\left[h\left(\theta^{-1} x\right) h\left(\theta^{-1} y \theta\right)+h\left(x^{-1} \theta\right) h\left(\theta^{-1} y \theta\right)+h\left(\theta^{-1} x\right) h\left(\theta^{-1} y^{-1} \theta\right)\right. \\
& \left.\quad+h\left(x^{-1} \theta\right) h\left(\theta^{-1} y{ }^{-1} \theta\right)\right],
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{2}\left[h\left(\theta^{-1}\right) h(x) h\left(\theta^{-1}\right) h(y) h(\theta)+h\left(x^{-1}\right) h(\theta) h\left(\theta^{-1}\right) h(y) h(\theta)\right. \\
& \left.+h\left(\theta^{-1}\right) h(x) h\left(\theta^{-1}\right) h\left(y^{-1}\right) h(\theta)+h\left(x^{-1}\right) h(\theta) h\left(\theta^{-1}\right) h\left(y^{-1}\right) h(\theta)\right], \\
= & \frac{1}{2}\left[h(x) h(y) h\left(\theta^{-1}\right) h\left(\theta \theta^{-1}\right)+h\left(x^{-1}\right) h(y) h(\theta) h\left(\theta \theta^{-1}\right)\right. \\
& \left.+h(x) h\left(y^{-1}\right) h\left(\theta^{-1}\right) h\left(\theta \theta^{-1}\right)+h\left(x^{-1}\right) h\left(y^{-1}\right) h(\theta) h\left(\theta \theta^{-1}\right)\right] \\
= & \frac{1}{2}\left[h(x) h(y)_{h\left(\theta^{-1}\right)+h\left(x^{-1}\right) h(y) h(\theta)+h(x) h\left(y^{-1}\right) h\left(\theta^{-1}\right)}\right. \\
& \left.+h\left(x^{-1}\right) h\left(y^{-1}\right) h(\theta)\right]
\end{aligned}
$$

Therefore, $f(x y)+f\left(x y^{-1}\right)=2 f(x) f(y \theta)$.
Also, for any x, y, z in G
$f(x y z)=\frac{h\left(\theta^{-1} x y z\right)+h\left((x y z)^{-1} \theta\right)}{2}$,

$$
=\frac{h\left(\theta^{-1} x y z\right)+h\left(z^{-1} y^{-1} x^{-1} \theta\right)}{2}
$$

and

$$
=\frac{h\left(\theta^{-1}\right) h(x) h(y) h(z)+h\left(z^{-1}\right) h\left(y^{-1}\right) h\left(x^{-1}\right) h(\theta)}{2}
$$

$$
\begin{aligned}
f(x z y) & =\frac{h\left(\theta^{-1} x z y\right)+h\left((x z y)^{-1} \theta\right) n \text { ยาลัย }}{2}, \\
& =\frac{h\left(\theta^{-1} x z y\right)+h\left(y^{-1} z^{-1} x^{-1} \theta\right)}{2}, \\
& =\frac{h\left(\theta^{-1}\right) h(x) h(z) h(y)+h\left(y^{-1}\right) h\left(z^{-1}\right) h\left(x^{-1}\right) h(\theta)}{2}
\end{aligned}
$$

Therefore, $f(x y z)=f(x z y)$.
4.3.2 Corollary Let G be a commutative group. Then $f: G \longrightarrow \mathbb{C}$ not identically zero on G satisfies
(S) $\quad f(x y)+f\left(x y^{-1}\right)=2 f(x) f(y \theta)$
if and only if f is of the form
(H)

$$
f(x) \quad=\frac{h\left(\theta^{-1} x\right)+h\left(x^{-1} \theta\right)}{2}
$$

for all x in G, where h is a homomorphism from G to \mathbb{C}^{*}.
Proof Since G is a commutative group, hence the condition

$$
\text { (A) } \quad f\left(x_{y z}\right)=f\left(x_{z y}\right) \text {, }
$$

for every x, y, z in G, holds for all functions $f: G \longrightarrow \mathbb{C}$.
Hence the class of all functions that satisfies (S) coincides with the class of all functions that satisfies (S) and (A).
4.3.3 Corollary Let G be any group. Then every solution of

$$
f(x y)+f\left(x y^{-1}\right)=2 f(x) f(y)
$$

satisfying the condition

for all x, y, z in G, has the form

$$
f(x) \text { CHULALONG }=\frac{h(x)+h\left(\left.x\right|^{-1}\right)}{2}
$$

for all x in G, where h is a homomorphism of G into \mathbb{C}^{*}.
Proof This corollary is a special case of theorem 4.3.1 when $\theta=e$, the identity of G.

