```
SOLUTION OF f(x+y) =f(x)f(y)
```

In solving trigonometric functional equations treated in this work, it turns out that solutions of the trigonometric functional equations are expressible in terms of homomorphisms from a group G into certain subgroups of the multiplicative group of complex numbers. In this chapter, we shall characterize these homomorphisms for the case $G=R^{n}$. Our main results are theorem 3.2 .6 and its corollary and theorem 3.3.5.

3.1 Vector Space

A non-empty set F with two binary operations + , \cdot, known as addition and multiplication respectively, is said to form a field if
(i) F forms a commutative group under addition.
(ii) $F^{*}=F-\{0\}$, where O is the additive identity, forms a group under multiplication.
(iii) For any $a, b, c \in F$, we have

$$
a(b+c)=a b+a c
$$

and

$$
(b+c) a=b a+c a \text {. }
$$

($\mathrm{F},+$) and ($\mathrm{r}^{*},{ }^{*}$) will be refered to as the additive group and the multiplicative group of F, respectively.

Let $\left(F,{ }^{+}, \cdot\right)$ be a field and $(V,+)$ be a commutative group with a rule of multiplication which assigns to any a $\in \mathcal{F}, \mathrm{u} \in \mathrm{V}$ a product au $\in V$. Then V is called a vector space over F if the following axioms hold :
(1) For any a $\notin F$ and any $u, v \in V, a(u+v)=a u+a v$.
(2) For any $a, b \in F$ and any $u \in v,(a+b) u=a u+b u$.
(3) For any $a, b \in F$ and any $u \in V,(a b) u=a(b u)$.
(4) For any $u \in V$, we have $1 \cdot u=u$,
where 1 is the multiplicative identity of \mathbb{F}.
The elements of F and V will be refored to as scalars and vectors, respectively.

Let V be a vector space over a field \mathbb{F} and let $u_{1}, \ldots, u_{m} \in V$. If $v=\alpha_{1} u_{1}+\ldots+\alpha_{m} u_{m}$, where $\alpha_{i} \in \mathbb{F}, i=1, \ldots, m$, then we say that v is a linear combination of u_{1}, \ldots, u_{m}. The vectors $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{m}} \in \mathrm{V}$ are said to bo linearly independent if for any scalars $a_{1}, \ldots, a_{m} \in a_{1} v_{1}+\ldots .+a_{m} v_{m}=0$ implies that $a_{1}=0, \ldots, a_{m}=0$. An arbitrary set A of vectors is said to be a linearly independent set if every finite subset of A is linearly independent. If B is a linearly independent subset of V such that for every $\mathrm{v} \in \mathrm{V}, \mathrm{v}$ can be written as a linear combination of vectors in B, we say that B is a basis of V. It can be shown that every vector in V has a unique representation as a linear combination of elements of B .

Observe that the set \mathbb{R} of real numbers can be considered as a vector space over the field Q of rational numbers. It can be shown that \mathbb{R} has a basis over Q. Such a basis io known as a Hamel basis. A proof of the existence of such a basis will be given in the Appendix.

$$
\text { 3.2 Solution of } f(x+y)=f(x) f(y)
$$

3.2.1 Theorem Let V be a vector space over a field F with $\theta=\left\{V_{\text {棟 }}: \alpha \in I\right\}$ as a basis. Let f be a function on V into a commutative group G^{*}. Then f satisfies
(3.2.1.1) $f(x+y)=f(x) f(y)$,
iff there exists a family $\{f: \epsilon I\}$ of homomorphisms from the additive group of F into G^{\prime} such that for any $x=\sum_{i=1}^{n} a_{i} V_{\alpha_{i}}$ in V, we have

$$
f(x)= \pm\left(\sum_{i=1}^{n} a_{i} V_{i}\right)=\prod_{i=1}^{n} f_{\alpha_{i}}\left(a_{i}\right)
$$

Proof Assume that $f: V / G$ satisfies (3.2.1.1)
For each $V_{\&} \in \mathcal{B}$, define $f_{\alpha}(a)=f\left(a V_{\phi}\right)$.
Observe that for each $\alpha \in I, I_{\alpha}: F \longrightarrow G$.
And

$$
f_{\alpha}(a+b)=f\left((a+b) V_{\alpha}\right) \text {, }
$$

$$
=1\left(a v_{\alpha}+b v_{\alpha}\right)
$$

$$
C H U L A L O_{f}\left(a V_{\alpha}\right) f\left(b V_{\alpha}\right)
$$

$$
=f_{\alpha}(a) f_{\alpha}(b)
$$

For any $x \in V$, we have $x=\sum_{i=1}^{n} a_{i} V_{\alpha_{i}}$, where $a_{i} \in F, V_{\alpha_{i}} \in \mathcal{B}$.
Hence $\quad f(x)=f\left(\sum_{i=1}^{n} a_{i} V_{\alpha_{i}}\right)$.
By (3.2.1.1), we have

$$
f(x) \quad=\prod_{i=1}^{n} f\left(a_{i} V_{\alpha_{i}}\right)
$$

Hence $\quad f(x)=\prod_{i=1}^{n} f_{\alpha_{i}}\left(a_{i}\right)$.
To prove the converse, assume that $\left\{f_{\alpha}:\right.$ ak $\left.I\right\}$ is a family of homomorphisms on the additive group of F into G^{\prime} and f is given by $f\left(\sum_{i=1}^{n} a_{i} v_{y_{i}}\right)=\prod_{i=1}^{n} f_{i}\left(a_{i}\right)$.

Then for any $x, y \in V$, we may write

$$
x=\sum_{i=1}^{n} a_{i} V_{\alpha_{i}}, \sum_{i=1}^{n} b_{i} V_{\alpha_{i}} \text {, }
$$

where

$$
a_{i}, b_{i} \in \mathbb{F} \text { and } V / L_{i} \in B
$$

Hence,

$$
\begin{aligned}
f(x+y) & =f\left(\sum_{i=1}^{n} a_{i} V \alpha_{i}+\sum_{i=1}^{n} b_{i} v_{\alpha_{i}}\right), \\
& =f\left(\sum_{i=1}^{n}\left(a_{i}+b_{i}\right) V_{\alpha_{i}}\right), \\
& =\prod_{i=1}^{n} f_{N_{i}}\left(a_{i}+b_{i}\right), \\
& =\prod_{i=1}^{n}\left(f_{\alpha_{i}}\left(a_{i}\right) f_{\alpha_{i}}\left(b_{i}\right)\right), \\
& =\prod_{i=1}^{n} f_{\alpha_{i}}\left(a_{i}\right) \prod_{i=1}^{n} f_{\alpha_{i}}\left(b_{i}\right), \\
& =f\left(\sum_{i=1}^{n} a_{i} V_{\alpha_{i}}\right) f\left(\sum_{i=1}^{n} b_{i} V_{\alpha_{i}}\right), \\
& =f(x) f(y) .
\end{aligned}
$$

3.2.2 Lemma Let h be a homomorphism from the additive group Q of rational numbers into a commutative group G. Then $h(n a)=(h(a))^{n}$, for all a Q and all $n \in Z$, where Z is the set of all integers.

Proof Let a\& .
Since h is a homomorphism, hence $h(0)=1$.
Therefore $h(0, a)=h(0)=1=(h(a))^{0}$.
Assume that k is a nonnegative integer such that

$$
h(k \cdot a)=(h(a))^{k}
$$

Then,

Hence

$$
h((k+1) a)=h(k a+a)
$$

For any negative integer m, $-m$ is a positive integer.
Hence,

$$
\begin{aligned}
1=h(0) & =h(m a+(-m) a), \\
& =h(m a) h((-m) a), \\
& =h(m a)(h(a))^{-m} .
\end{aligned}
$$

Therefore

$$
h(m a)=(h(a))^{m}
$$

Thus

$$
h(n a)=(h(a))^{n} \quad \text { for all } n \in Z \text {. }
$$

3.2.3 Theorem h is a homomorphism from Q into G^{\prime}, where G^{\prime} is \mathbb{R}^{+} or Δ, iff there exists $r G^{\prime}$ such that $h(a)=r^{a}$, for a $\in Q$.

Proof Assume that h is a homomorphism from Q into G. Let $a \in Q$.
Then $a=\frac{p}{q}$, where p, q are integers, $q \neq 0$.

We have

$\left(h\left(\frac{p}{q}\right)\right)^{q}$	$=h\left(q \cdot \frac{p}{q}\right)$,
	$=h(p)$,
	$=h(p \cdot 1)$,
	$=(h(1))^{p}$.
Hence	
	$h\left(\frac{p}{q}\right)$

i.e. we have $h(a)=h(1) \in G^{a}$. Conversely, assume that there exists $r \in G^{\prime}$ such that

Then,

$$
h(a) \quad=r^{a}, \text { for } r \in G^{\prime}
$$

$$
h(a+b)=r^{a+b}=r^{a} \cdot r^{b}
$$

Hence h is a homomorphism.
3.2.4 Theorem Let $H=\left\{V_{\alpha}: \alpha \in I\right\}$ be a Hame basis of \mathbb{R} over Q. A function $f: \mathbb{R} \longrightarrow G^{\prime}$, where G^{1} is \mathbb{R}^{+}or Δ, satisfies

$$
(3 \cdot 2 \cdot 4 \cdot 1) \quad f(x+y)=f(x) f(y)
$$

iff there exists a function b on H into G^{\prime} such that for each $x=\sum_{i=1}^{n} a_{i} V_{\alpha_{i}} \in \mathbb{R}$, where $V_{\alpha_{i}} £ H$, we have

$$
f\left(\sum_{i=1}^{n} a_{i} V_{\alpha_{i}}\right)=\sum_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}} .
$$

Proof Assume that $f: \mathbb{R} \longrightarrow G^{\prime}$, where G^{\prime} is \mathbb{R}^{+}or Δ, satisfies (3.2.4.1).

By Theorem 3.2.1, we see that f must be of the form

$$
f\left(\sum_{i=1}^{n} a_{i} V_{\alpha_{i}}\right)=\prod_{i=1}^{n} f_{\alpha_{i}}\left(a_{i}\right)
$$

where f_{i} is a homomorphism from Q into G. .
By Theorem 3.2 .3 , each $f_{\alpha_{i}}$ must bo of the form

$f_{\alpha_{i}}(a)$

$b_{\alpha_{i}}^{a}$, for some $b_{\alpha_{i}} \in G^{\prime}$.
Let $b: H \longrightarrow G_{1}^{\prime}$ be defined $b y b\left(V_{\alpha_{i}}\right)=b_{\alpha_{i}}$.
Then we have,

$$
\begin{aligned}
: f\left(\sum_{i=1}^{n} a_{i} V_{\alpha_{i}}\right) & =\prod_{i=1}^{n} f_{\alpha_{i}}\left(a_{i}\right), \\
& =\prod_{i=1}^{n}{ }^{b_{i}} \alpha_{i}, \\
\text { ChuLalongKo } & \prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}},
\end{aligned}
$$

On the other hand, if b is any function on H into G^{\prime}, and f is defined by

$$
f\left(\sum_{i=1}^{n} a_{i} V_{\alpha_{i}}\right)=\prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}},
$$

then, for any $x=\sum_{i=1}^{n} a_{i} V_{\alpha_{i}}, y=\sum_{i=1}^{n} a_{i}^{\prime} V_{\alpha_{i}}$ in \mathbb{R},
we have

$$
\begin{aligned}
f(x+y) & =f\left(\sum_{i=1}^{n} a_{i} v_{\alpha_{i}}+\sum_{i=1}^{n} a_{i}^{\prime} v_{\alpha_{i}}\right), \\
& =f\left(\sum_{i=1}^{n}\left(a_{i}+a_{i}^{\prime}\right) v_{\alpha_{i}}\right), \\
& =\prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}+a_{i}^{t}}, \\
& =\prod_{i=1}^{n} b\left(v_{\alpha}\right)_{i}^{\alpha_{i} \prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}},} \\
& =f\left(\sum_{i=1}^{n} a_{i} v_{\alpha_{i}}\right) f\left(\sum_{i=1}^{n} a_{i} v_{\alpha_{i}}\right), \\
& =f(x) f(y) .
\end{aligned}
$$

3.2.5 Corollary Let $\mathbb{I}=\left\{V_{\hbar}: \alpha \in I\right\}$ be a. Hamel basis of \mathbb{R} over Q. A function $f: \mathbb{R} \longrightarrow \mathbb{C}^{*}$ satisfies

$$
\text { (3.2.5.1) } \quad f(x+y)=f(x) f(y)
$$

iff there exists a function C on H into \mathbb{C}^{*} such that for each
$x=\sum_{i=1}^{n} a_{i} v_{\alpha_{i}} \in \mathbb{R}$, we have

$$
f\left(\sum_{i=1}^{n} a_{i} v_{\alpha_{i}}\right)=\prod_{i=1}^{n} c\left(v_{\alpha_{i}}\right)^{a_{i}}
$$

Proof Assume that $\mathrm{f}: \mathbb{\mathbb { R }} \longrightarrow \mathbb{\mathbb { C }}^{*}$ satisfies (3.2.5.1).
Let $f(x)=\phi(x) \cdot \frac{f}{\phi}(x)$,
where $\phi(x)=|f(x)|$ and $\frac{f}{\phi}(x)=\frac{f(x)}{\phi(x)}$.

Observe that $\varnothing: \mathbb{R} \longrightarrow \mathbb{R}^{+}$,
and $\quad \frac{f}{\varnothing}: R \longrightarrow \Delta$.
Hence,

Also,

$$
\begin{aligned}
\phi(x+y) & =|f(x+y)| \\
& =|f(x) f(y)| \\
& =|f(x)||f(y)| \\
& =\phi(x) \phi(y)
\end{aligned}
$$

$$
\frac{f}{\phi}(x+y)=\frac{f(x+y)}{\phi(x+y)}
$$

$$
=\frac{f(x) f(y)}{\phi(x) \phi(y)}
$$

$$
=\frac{f(x)}{\phi(x)} \cdot \frac{f(y)}{\phi(y)}
$$

$$
=\frac{f}{\phi}(x) \frac{f}{\phi}(y) .
$$

Therefore, by using Theorem 3.2 .4 , there exists a function b_{1} on H into \mathbb{R}^{+}and a function b_{2} on H into Δ such that for each $x=\sum_{i=1}^{n} a_{i} V_{\alpha_{i}} \in \mathbb{R}$,
we have $\quad \phi(x)=\prod_{i=1}^{n} b_{1}\left(v_{\alpha_{i}}\right)^{a_{i}}$,
and

$$
\frac{f}{\phi}(x)=\prod_{i=1}^{n} b_{2}\left(v_{\alpha_{i}}\right)^{a_{i}}
$$

Let $c: H \longrightarrow \mathbb{C}^{*}$ be defined by

$$
c\left(v_{\alpha_{i}}\right)=b_{1}\left(v_{\alpha_{i}}\right) b_{2}\left(v_{\alpha_{i}}\right)
$$

So we have,

$$
\begin{aligned}
f(x) & =\emptyset(x) \cdot \frac{f}{\varnothing}(x), \\
& =\prod_{i=1}^{n} b_{1}\left(v_{\alpha_{i}}\right)^{a} \cdot \prod_{i=1}^{n} b_{2}\left(v_{\alpha_{i}}\right)^{a}, \\
& =\prod_{i=1}^{n}\left(b_{1}\left(v_{\alpha_{i}}\right) b_{2}\left(v_{\alpha_{i}}\right)\right)^{a_{i}}, \\
& =\prod_{i=1}^{n} c\left(v_{\alpha_{i}}\right)^{a_{i}} .
\end{aligned}
$$

Conversely, if c is a function on Into \mathbb{C}^{*}, and f is defined by

$$
f\left(\sum_{i=1}^{n} a_{i} v_{i}\right)=\prod_{i=1}^{n} c\left(v_{\alpha_{i}}\right)^{a_{i}},
$$

then it can be verified in the same way as in theorem 3.2.4, that $f(x+y)=f(x) f(y)$.
3.2.6 Theorem Let $f: \mathbb{R}^{n} \longrightarrow G^{\prime}$, where G^{\prime} is \mathbb{C}^{*} or $\Delta . f$ satisfies

$$
\text { (3.2.6.1) } \quad f(x+y)=f(x) f(y)
$$

Eff for each $i=1, \ldots, n$, there exists a function f_{i} on \mathbb{R} to G^{\prime} satisfying

$$
f_{i}(x+y)=f_{i}(x) f_{i}(y)
$$

such that for each $x=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$, we have

$$
f(x) \quad=\prod_{i=1}^{n}\left(f_{i} \circ p_{i}\right)(x)
$$

where the p_{i}^{\prime} s are given by $p_{i}\left(x_{1}, \ldots, x_{n}\right)=x_{i}, i=1, \ldots, n$.

Proof Assume that f satisfies (3.2.6.1).
For each $i=1, \ldots, n$, let $\pi_{i}: \mathbb{R} \longrightarrow \mathbb{R}^{n}$ be defined by

$$
\pi_{i}(x)=x_{i},
$$

where $e_{i}=\left(\delta_{i 1}, \ldots, \delta_{i n}\right), \delta_{i j}=1$ if $i=j$, and $\delta_{i j}=0$ if $i \neq j$.
Set $f_{i}=f \circ \pi_{i}$,
hence

$$
f_{i}: \mathbb{R} \longrightarrow G^{\prime} \text { and }
$$

$$
f_{i}(x+y)=\left(f \circ \pi_{i}\right)(x+y),
$$

$$
=\frac{5\left(\pi_{i}(x+y)\right)}{}
$$

$$
=\quad f\left((x+y) e_{i}\right),
$$

$$
=f\left(x e_{i}+y e_{i}\right),
$$

$$
=f\left(x g_{i}\right) f\left(y e_{i}\right),
$$

$$
=\int\left(\pi_{i}(x)\right) f\left(\pi_{i}(y)\right),
$$

$$
=f_{i}(x) f_{i}(y) \text {. }
$$

Also, from $f_{i}=f \circ \pi_{i}$, we have

$$
f_{i} \circ p_{i}=\left(f \circ \pi_{i}\right) \circ p_{i}
$$

where p_{i} is defined by $p_{i}\left(x_{1}, \ldots, x_{n}\right)=x_{i}$.
Hence, for any $x=\left(x_{1}, \ldots, x_{n}\right)$, we have

$$
\begin{aligned}
f_{i} \circ p_{i}(x) & =f\left(\pi_{i}\left(p_{i}\left(x_{1}, \ldots, x_{n}\right)\right)\right), \\
& =f\left(\pi_{i}\left(x_{i}\right)\right), \\
& =f\left(x_{i} e_{i}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\prod_{i=1}^{n} f_{i} \circ p_{i}(x) & =\prod_{i=1}^{n} f\left(x_{i} e_{i}\right), \\
& =f\left(x_{1} e_{1}\right) \ldots f\left(x_{n} e_{n}\right), \\
& =f\left(x_{1} e_{1}+\ldots+x_{n} e_{n}\right), \\
& =f\left(x_{1}, \ldots, x_{n}\right),
\end{aligned}
$$

Conversely, assume that $i=1, \ldots, n_{2}$ satisfies $f(x+y)=f_{i}(x) f_{i}(y)$ for all $x, y \in \mathbb{R}$.

We have

$$
\begin{aligned}
f(x+y) & =\prod_{i=1}^{n}\left(f_{i}\left(p_{i}(x+y)\right)\right), \\
& =\sum_{i=1}^{n}\left(x_{i}+y_{i}\right), \\
& =\prod_{i=1}^{n} f_{i}\left(x_{i}\right) \prod_{i=1}^{n} f_{i}\left(y_{i}\right), \\
& \left.=f_{i=1}^{n}\left(x_{i}\right) f_{i}(x)\right) \prod_{i=1}^{n} f_{i}\left(p_{i}(y)\right), \\
& =f(x) f(y) .
\end{aligned}
$$

3.2.7 Corollary By using corollary 3.2.5, we see that $f: \mathbb{R}^{n} \longrightarrow \mathbb{C}^{*}$ satisfies $f(x+y)=f(x) f(y)$ if and only if for $j=1, \ldots, n$, there exist functions c_{j} on H, where H is a Hamel basis of \mathbb{R} over Q, into \mathbb{C}^{*} such that for each $x=\left(\sum_{i=1}^{m} a_{1 i} v_{\alpha_{i}}, \ldots . \sum_{i=1}^{m} a_{n i}{ }^{v} \alpha_{i}\right)$ we have

$$
f(x)=\prod_{j=1}^{n} \prod_{i=1}^{m} c_{j}\left(v_{\alpha_{i}}\right)^{a_{j i}}
$$

3.3 Continuous Solution of $f(x+y)=f(x) f(y)$.

In this section, we shall determine all the continuous solutions of $f(x+y)=f(x) f(y)$, where f is a function from \mathbb{R}^{n} into \mathbb{C}^{*} 3.3.1 Lemma Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function satisfying

$$
(3.3 .1 .1) \quad g(x+y)=g(x)+g(y),
$$

then $g(x)=b x$ for some b in \mathbb{R}.

Proof We first claim that $g(n a)=n g(a)$ for all integer n and all $a \in \mathbb{R}$.

Since g is a homomorphism, hence $g(0)=0$.
Therefore

$$
g(0 . a)=g(0)=0=0 . g(a) \text {. }
$$

Assume that k is a nonnegative integer such that

Then,

$$
\begin{aligned}
g(k a) & =k g(a) . \\
g((k+1) a) & =g(k a+a), \\
& =g(k a)+g(a), \\
& =k g(a)+g(a), \\
& =(k+1) g(a) .
\end{aligned}
$$

Hence $g(n a)=n g(a)$ for all non-negative integer n. For any negative integer m, $-m$ is a positive integer. Hence,

Thus
Therefore
For $r=\frac{p}{q}$, where p, q are integers and $q \neq 0$,
we have

Thus

$$
g(r) v=\frac{p}{q} g(1) \text { มษา } r g(1) \text { ลัย }
$$

Let $x \in \mathbb{R}$. Since the set of rational numbers is dense in \mathbb{R}, we can find a sequence $\left\{r_{n}\right\}$ of rational numbers converging to x. Since g is continuous, hence $\lim _{n \rightarrow \infty} g\left(r_{n}\right)=g(x)$.
But $\lim _{n \rightarrow \infty} g\left(r_{n}\right)=\lim _{n \rightarrow \infty} r_{n} g(1)=x g(1)$.
Therefore $g(x)=x g(1), x \in \mathbb{R}$.
Thus $g(x)=b x$, where $b=g(1) \in \mathbb{R}$.
3.3.2 Theorem Let g be a continuous function on the set of real numbers into the set of positive real numbers.g satisfies

$$
\begin{aligned}
& \text { (3.3.2.1) } \quad g(x+y)=g(x) g(y) \\
& \text { jiff } g(x)=e^{a x} \text { for some a in } \mathbb{R} \text {. }
\end{aligned}
$$

Proof Assume that g satisfies (3.3.2.1). Let

Put

$$
h(x)=\ln x, \quad x>0
$$

$$
f=h \circ g .
$$

Since both h and g are continuous, hence f is also continuous.
We also have

$$
\begin{aligned}
f(x+y) & =\mathrm{h}(g(x+y)), \\
= & \ln (g(x+y)), \\
= & \ln (g(x) g(y)), \\
= & \ln g(x)+\ln g(y), \\
= & h(g(x))+h(g(y)), \\
= & f(x)+f(y) .
\end{aligned}
$$

Therefore, by lemma 3.3.1, there exists, $a \in \mathbb{R}$ such that for all $x \in \mathbb{R}$

$$
f(x)=2 x .
$$

Then,

Therefore
Conversely, let $g(x)=e^{\text {ax }}$ for some a in \mathbb{R}.
Thus

$$
\begin{aligned}
g(x+y) & =e^{a(x+y)} \\
& =e^{a x+a y} \\
& =e^{a x} e^{a y} \\
& =g(x) g(y)
\end{aligned}
$$

3.3.3 Theorem Let $I:(\mathbb{R},+) \longrightarrow \Delta$ be a continuous function. I satisfies

$$
\text { (3.3.3.1) } \quad I(x+y)=I(x) I(y)
$$

iff there exists a real number k such that $I(x)=e^{i k x}$

Proof Assume that I satisfies (3.3.3.1).
Since $I: \mathbb{R} \longrightarrow \Delta$, hence $|I(x)|=1$ for all x.
Thus $|I(1)|=1$.
Therefore $\exists k \in \mathbb{R}$ such that $I(1)=e^{i k}$.
By using the same argument as in the proof of lemma 3.2.2, it can be shown that $I(n a)=(I(a))^{n}$ for all integer n and $a \in \mathbb{R}$. Thus, for any rational number $f=\frac{n}{m}$, where n, m are integers and $m \neq 0$, we get

$$
\begin{aligned}
(I(r))^{m} & =\left(I\left(\frac{n}{m}\right)\right)^{m}, \\
& =I\left(m \cdot \frac{n}{m}\right),
\end{aligned}
$$

จุฬาลงกรณับหาวิทยาลัย
Chulalongikorin University

$$
=I(n .1),
$$

$$
=(I(1))^{n} .
$$

$\begin{aligned} & =e^{i k n} \cdot \\ \text { Hence } I(r)=I\left(\frac{n}{m}\right) & =e^{\frac{i k n}{m}+\frac{2 \pi l_{i}}{m}},\end{aligned}$ for some $1=0,1, \ldots ., m-1$.

For any integer $t \neq 0$, we have

$$
e^{\frac{i k n}{m}+\frac{2 \Pi I i}{m}}=I\left(\frac{n}{m}\right)=I\left(\frac{n t}{m t}\right)=e^{\frac{i k n t}{m t}+\frac{2 \Pi I i}{m t}} .
$$

Therefore $e^{\frac{2^{T} I_{i}}{m}}=e^{\frac{2^{T} I_{i}}{m t}}$
Hence,

$$
1=e^{2 \pi l_{i}}=\left(e^{\frac{2 \pi I_{i}}{m}}\right)^{m}=\left(e^{\frac{2 \pi I_{i}}{m t}}\right)^{m}=e^{\frac{2 \pi 1_{i}}{t}}
$$

for all integer $t \neq 0$.
If $I>0$, then for some $t_{0} \neq 0$, we have $0<\frac{1}{t_{0}}<1$.
Hence $e^{2 \pi\left(\frac{1}{t}\right)_{0}} \neq 1$, which is a contradiction.
Therefore, we have $I=0$.
Thus $I(r)=I\left(\frac{n}{m}=i^{\frac{n}{m}}=e^{i k n}\right.$ for all rational r.
For any $x \in \mathbb{R}$, there exists a sequence $\left\{r_{n}\right\}$ such that $r_{n} \in Q$
and $\lim _{n \rightarrow \infty} r_{n}=x$.
By continuity of $I, I(x)=\lim _{n \rightarrow \infty} I\left(r_{n}\right)=\lim _{n \rightarrow \infty} e^{i k r_{n}}=e^{i k x}$.
Conversely, let $I(x)=e^{i k x}$ for some real number k.
Then we have
$I(x+y)=e^{i k(x+y)}=e^{i k x+i k y}=e^{i k x} \cdot e^{i k y}=I(x) I(y)$.
3.3.4 Theorem Let $h:(\mathbb{R},+) \longrightarrow(\mathbb{C},$.$) be a continuous function.$ h satisfies
(3.3.4.1) $h(x+y)=h(x) h(y)$
iff there exists $r \in \mathbb{C}$ such that $h(x)=e^{r x}$.

Proof Assume that h satisfies (3.3.4.1).
Let $g(x)=|h(x)|$ and $I(x)=\frac{h(x)}{g(x)}$.
Observe that $g: \mathbb{R} \longrightarrow \mathbb{R}^{+}$,
and

$$
I: \mathbb{R} \longrightarrow \Delta
$$

Since h is continuous, so are g and I.
Also, $g(x+y)=|h(x+y)|=|h(x) h(y)|$,

$$
=|h(x)||h(y)|=g(x) g(y)
$$

By using Theorem 3.3.2, we get $g(x)=e^{c x}$ for some $c \in \mathbb{R}$.
Observe that $I(x+y)=\frac{h(x+y)}{g(x+y)}=\frac{h(x) h(y)}{g(x) g(y)}$,

$$
=\frac{h(x)}{g(x)} \cdot \frac{h(y)}{g(y)}=I(x) I(y) .
$$

By using Theorem 3.3.3, we get $f(x)=e^{i k x}$ for some $k \in \mathbb{R}$.

$$
\begin{aligned}
\text { Thus } \begin{aligned}
& h(x)=I(x) g(x), \\
&=e^{i k x} \cdot e^{c x}, \\
&=e^{(c+i k) x} \\
& \text { Conversely: let } h(x)=e^{r x} \quad \text { where } r=(c+i k) \in \mathbb{C} . \\
& \text { Then where } r \in \mathbb{C} \\
& h(x+y)=e^{r(x+y)}=e^{r x+r y}, \\
&=e^{r x} \cdot e^{r y}=h(x) h(y) .
\end{aligned}
\end{aligned}
$$

3.3.5 Theorem Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{C}^{*}$ be a continuous function. f satisfies
(3.3.5.1) $f(x+y)=f(x) f(y)$
iff there exist $r_{i} \in \mathbb{C}, i=1, \ldots, n$, such that for each $x=\left(x_{1}, \ldots, x_{n}\right)$ we have $f(x)=e^{r_{1} x_{1}+\ldots+r_{n} x_{n}}$.

Proof Assume that f satisfies (3.3.5.1).
Using Theorem 3.2 .6 , there exist $f_{i}: \mathbb{R} \longrightarrow \mathbb{C}^{*}$ satisfying

$$
f_{i}(x+y)=f_{i}(x) f_{i}(y), \quad i=1, \ldots \ldots, n
$$

such that for each $x \in \mathbb{R}^{n}$, wo have

$$
f(x)=\prod_{i=1}^{n}\left(f_{i} \circ p_{i}\right)(x)
$$

where each p_{i}, $i=1, \ldots, n$, is given by $p_{i}\left(x_{1}, \ldots, x_{n}\right)=x_{i}$.
Such an f_{i} is given by $f_{i}=f \circ \pi_{i}$, where π_{i} is defined as in the proof of Theorem 3.2.6.
Since f and π_{i} are continuous, hence each f_{i} is continuous. By using Theorem 3.3.4, we have

$$
f_{i}\left(x_{i}\right)=e^{r_{i} x_{i}} \text { for } \text { each } i=1, \ldots, n \text { and } r_{i} \in \mathbb{C} .
$$

Hence,

$$
\begin{aligned}
f(x) & =\frac{1}{i=1}\left(f_{i} o^{n} p_{i}\right)(x), \\
& =f_{1}\left(x_{1}\right) \ldots \ldots f_{n}\left(x_{n}\right), \\
& =e^{r_{1} x_{1} \ldots \ldots e_{n}} r_{n}, \\
& =e^{r_{1} x_{1}+\ldots+r_{n} x_{n}} .
\end{aligned}
$$

Conversely, assume that there exist $r_{i} \in \mathbb{C}, i=1, \ldots, n$, such that $f(x)=e^{r_{1} x_{1}+\ldots+r_{n} x_{n}}$, for each $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.
Then we have

$$
\begin{aligned}
f(x+y) & =e^{r_{1}\left(x_{1}+y_{1}\right)+\ldots \ldots+r_{n}\left(x_{n}+y_{n}\right)} \\
& =e^{\left(r_{1} x_{1}+\ldots+r_{n} x_{n}\right)+\left(r_{1} y_{1}+\ldots+r_{n} y_{n}\right)} \\
& =e^{r_{1} x_{1}+\ldots+r_{n} x_{n}} \cdot e^{r_{1} y_{1}+\ldots+r_{n} y_{n}} \\
& =f(x) f(y) .
\end{aligned}
$$

3.4 Existence of Discontinuous Solution of $f(x+y)=f(x) f(y)$.

The purpose of this section is to provide some examples of a discontinuous solution of $f(x+y)=f(x) f(y)$, where f is a function from $\left(\mathbb{R}^{n},+\right)$ into ($\left.\mathbb{R}^{*},\right)^{*}$. For simplicity, we give examples of discontinuous solutions from \mathbb{R}^{3} to \mathbb{C}^{*}.

Let $H=\left\{V_{\alpha}: \alpha \in I\right\}$ be a Hamel basis of \mathbb{R} over Q. By using remark $3.2 \cdot 7$, any function $f: \mathbb{R}^{3} \longrightarrow \mathbb{C}^{*}$ satisfying $f(x+y)=f(x) f(y)$ must be of the form

$$
f\left(\sum_{i=1}^{m} a_{1 i} v_{\alpha_{i}}, \sum_{i=1}^{m} a_{2 i} \alpha_{\alpha_{i}}, \sum_{i=1}^{n} a_{3 i} V \alpha_{i}\right)=\prod_{j=1}^{3} \prod_{i=1}^{m} c_{j}\left(v_{\alpha_{i}}\right)^{a_{j i}}
$$

where c_{1}, c_{2}, c_{3} are functions on H into \mathbb{C}^{*}.
Let us denote such function f by $f_{c_{1}, c_{2}, c_{3}}$. Hence each triple $c=\left(c_{1}, c_{2}, c_{3}\right)$, where $c_{j}: H \longrightarrow \mathbb{C}^{*}, j=1,2,3$, defines a function f_{c} satisfying $f_{c}(x+y)=f_{c}(x) f_{c}(y)$. Discontinuous function f_{c} satisfying this equation can be obtained by choosing suitable functions c_{1}, c_{2} and c_{3}. We shall first constructed $c_{j}: H \longrightarrow \mathbb{C}^{*}$, $j=1,2,3$, which will make f_{c} a discontinuous solution of $f(x+y)=$ $f(x) f(y)$.

Choose three distinct elements $V_{\alpha_{1}}, V_{\alpha_{2}}, V_{\alpha_{3}}$ of H and three nonzero complex numbers z_{1}, z_{2}, z_{3} such that not all z_{i} 's are 1 . Define $c_{j}: H \longrightarrow \mathbb{C}^{*}, j=1,2,3$, by putting

$$
\begin{aligned}
& c_{1}\left(v_{\alpha_{1}}\right)=z_{1}, c_{1}\left(v_{\alpha}\right)=1 \text { for all } \alpha \neq \alpha_{1}, \\
& c_{2}\left(v_{\alpha_{2}}\right)=z_{2}, c_{2}\left(v_{\alpha}\right)=1 \text { for all } \alpha \neq \alpha_{2},
\end{aligned}
$$

and $c_{3}\left(v_{\alpha_{3}}\right)=z_{3}, c_{3}\left(v_{\alpha}\right)=1$ for all $\alpha \neq \alpha_{3}$.

By Remark $3.2 .7, f_{c}$ satisfies $f_{o}(x+y)=f_{c}(x) f_{c}(y)$. Next, we show that f_{c} is not continuous.

Suppose that f_{c} is continuous. By Theorem 3.3.5, f_{c} must be of the form $f_{c}\left(x_{1}, x_{2}, x_{3}\right)=e^{r_{1} x_{1}+r_{2} x_{2}+r_{3} x_{3}}$, where $r_{i} \in \mathbb{C}$, $i=1,2,3$.

$$
\text { Observe that } f_{c}\left(v_{\alpha_{1}}, 0,0\right)=c_{1}\left(v_{\alpha_{1}}\right)^{1}=z_{1}
$$

and

$$
f_{c}\left(V_{\alpha_{1}}+V_{\alpha_{2}}, 0,0\right)=c_{1}\left(V_{\alpha_{1}}\right)^{1} \cdot c_{1}\left(V_{\alpha_{2}}\right)^{1}=z_{1} \cdot 1=z_{1}
$$

Therefore

$$
f_{c}\left(V_{\alpha_{1}}, 0,0\right) \equiv f_{c}\left(V_{\alpha_{1}}+V_{\alpha_{2}}, 0,0\right)
$$

Since $f\left(x_{1}, x_{2}, x_{3}\right)$
Hence

$$
e^{r_{1} V_{\alpha_{1}}}
$$

$$
\begin{array}{r}
=f_{c}\left(V_{\alpha_{1}}, 0,0\right) \\
=f_{0}\left(V_{\alpha}+V_{\alpha}, 0,0\right)
\end{array}
$$

$$
=\frac{f_{c}\left(v_{\alpha_{1}}+v_{\alpha_{2}}, 0,0\right), ~}{x}
$$

$$
=e^{r_{1}\left(V_{\alpha}+V_{\alpha}\right)} .
$$

Therefore, $\quad e^{r_{1} V_{\alpha}}$ $=1$.

Thus

$$
r_{1} V_{\alpha_{2}} \text { ULALON =INO.N UNIVERSITY }
$$

Since $\quad V_{\alpha_{2}} \in H$, we have $V_{\alpha_{2}} \neq 0$.
Therefore $r_{1}=0$.
Similarly, we have

$$
e^{r_{2} V_{\alpha_{2}}}=f_{c}\left(0, V_{\alpha_{2}}, 0\right)=z_{2}=f_{c}\left(0, V_{\alpha_{1}}+V_{\alpha_{2}}, 0\right)=e^{r_{2}\left(V_{\alpha_{1}}+V_{\alpha_{2}}\right)}
$$

and

$$
e^{r_{3} V_{\alpha_{3}}}=f_{c}\left(0,0, v_{\alpha_{3}}\right)=z_{3}=f_{c}\left(0,0, V_{\alpha_{1}}+V_{\alpha_{3}}\right)=e^{r_{3}\left(V_{\alpha_{1}}+V_{\alpha_{3}}\right)}
$$

It follows that $r_{2}=r_{3}=0$.
Hence we have $f_{c}(x) \equiv 1$ for all $x=\left(x_{1}, x_{2},{ }^{\circ} x_{3}\right)$. Since not all z_{i} 's are 1 . We may assume that $z_{1} \neq 1$.

Hence $f_{c}\left(V_{\alpha_{1}}, 0,0\right)=z_{1} \neq 1$, which is a contradiction. Therefore $f_{c}(x)$ cannot be of the form $e^{r_{1} x_{1}+r_{2} x_{2}+r_{3} x_{3}}$. i.e. f_{c} is not continuous. Hence there exists a discontinuous solution of $f(x+y)=f(x) f(y)$.

It can be seen that if we choose n distinct elements $V_{\alpha}, \ldots ., V_{\alpha_{n}}$ in H and any n non-zero complex numbers z_{1}, \ldots, z_{n} such that not all z_{i} 's are 1 and define $c_{j}: H \longrightarrow \mathbb{C}^{*}$ by

$$
c_{j}\left(v_{\alpha_{i}}\right)=\left\{\begin{array}{cc}
i^{2} & \text { if } i=j, \\
1 & \text { if } i \neq j,
\end{array}\right.
$$

then

$$
f_{c}: \mathbb{R}^{n} \longrightarrow \mathbb{C}^{*}, \text { defined by }
$$

$$
f_{c}\left(\sum_{i} a_{1 i} v_{\alpha_{i}}, \ldots \ldots, \sum_{i} a_{n i} v_{\alpha_{i}}\right)=\frac{1}{j} \prod_{i} c_{j}\left(v_{\alpha_{i}}\right)^{a}{ }^{j i}
$$

is a discontinuous solution of $f(x+y)=f(x) f(y)$.

