## CHAPTER 3

DESIGN


### 3.1 General

The design is concerned mainly with the circuits that control and interface the basic integrated circuit elements. A control system is. chosen, which is a pulse-width modulated control system. A mathematical model is set up for the control system. The approach lies in developing a circuit that behaves according to a Nyquist diagram specified. A prototype is constructed and tested.

Since the control signal is in the form of pulses, it is advantageous to use digital integrated circuits in various parts of the system. 3.2 The pulse-width modulated Sampler

The sampler converts an angular quantity into pulses of a definite width Let,
then
$\theta \quad=$ angular quantity input in radian
ti $=$ pulse width output in see.
$K_{s} \quad=$ Transfer function of the sampler
Ks $=\frac{\mathrm{tp}}{\theta} \quad \mathrm{sec} / \mathrm{rad}$.

It is evident that $K_{s}$ is a constant.

A monostable multivibrator is used as the sampler. It is formed by connecting two NAND gates, IC 1-1 and IC 1-2, shown in Figure 3.2 and followed by another NAND gate, acts as a driver. The pulse width of the circuit is controlled by $C_{1}, R_{1}$ and $R_{2}$. $R_{l}$ is mechanically connected to a dial which set a desired position where $R_{l}$ is a trimer-potentiometer that adjusts the pulse width to the required range.

For convenience by using a $1 \mu f$ capacitor, a 1 K -ohm potentiometor and a 2.2 K -Ohm trimmer by setting the trimmer at about $1 \mathrm{~K}-\mathrm{Ohm}$, the time constant of the circuit is

$$
\begin{equation*}
T_{1}=\left(R_{1}+R_{2}\right) C \tag{3.2}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{T}_{1} & =\text { Time constant of the circuit } \\
\mathrm{R}_{1}+\mathrm{R}_{2} & =2 \mathrm{~K} \text {-0hm, for maximum pulse width } \\
\mathrm{C} & =1 \mu \mathrm{f} \\
\mathrm{~T}_{1} & =2 \times 10^{3} \times 10^{-6} \\
& =2 \times 10^{-3}
\end{aligned}
$$

Since the capacitor is to be charged to a peak value of 3 volt and at $l_{.} 2$ volts the NAND gates begin to conduct, the pulse width can be found by the equation as follows?

$$
\begin{equation*}
v_{0}=v_{f}+\left(v_{i}-v_{f}\right) e^{-\frac{t 1}{T I}} \tag{3.3}
\end{equation*}
$$

where

| $V_{i}$ | $=3 \mathrm{~V}$ | initial voltage |
| :--- | :--- | :--- |
| $\mathrm{V}_{0}$ | $=1.2 \mathrm{~V}$ | output voltage |
| $\mathrm{V}_{f}$ | $=0$ | Final voltage |
| $T_{1}$ | $=2 \times 10^{-3}$ | (second) |
| $t_{1}$ | $=$ pulse width | (second) |

then

$$
\begin{aligned}
& 1.2=30^{-\frac{t 1}{2 \times 10^{-3}}} \\
& t_{1}=2 \times 10^{-3} \times 0.92 \\
& t_{1}=1.84 \times 10^{-3} \text { sec }
\end{aligned}
$$

for minimum pulse width

$$
\begin{aligned}
R_{1}+R_{2} & =1 K-0 \mathrm{hm} \\
T_{2} & =1 K \times 1 \mu f=1 \times 10^{-3} \mathrm{sec}
\end{aligned}
$$

then from equation 3.4 we have

$$
t_{2}=1 \times 10^{-3} \times 0.92=0.92 \times 10^{-3} \text { sec }
$$

Hence the pulse width can be adjusted from 0.92 ms to 1.84 ms as the potentiometer rotates from $0^{\circ}$ to $355^{\circ}$ and its resistance being changed from 0 to $1 \mathrm{~K}-0 \mathrm{hm}$. Then from equation (3.1), we have

$$
K s \quad \frac{1.84-0.92}{2 \pi}=0.146 \mathrm{~ms} / \mathrm{rad}
$$

An oscillotor is required to feed the monostable multivibrator and it is also formed by the use of NAND gates as shown in Figure 3.2 $C_{2}$ controls the width of the pulse generated where $R_{3}$ is set for the rate of oscillation. By trial and error, and choose

$$
\begin{aligned}
\mathrm{C} 2 & =10 \mu f \\
\mathrm{R} 3 & =2.2 \mathrm{~K} \text {-Ohm trimer }
\end{aligned}
$$

and we can vary the pulse rate from 2 ms to 80 ms .


FIGURE 3.1 TIMING DIAGRAM FOR THE COMPARATOR AND THE ZERO-ORDER HOLD


FIGURE 3.2 SYSTEM CIRCUIT DIAGRAM

### 3.3 The Comparator

The comparator shown in Figure 3.2 uses thee e NAND gates, IC3-1, IC3-2 and IC3-3. The timing diagrams for the pulse comparator are show in Figure 3.1, which derived from the logic equations ${ }^{3}$ as follows :

$$
\begin{equation*}
\mathrm{E}=\overline{\overline{\mathrm{A}}_{*} \mathrm{~B}} \tag{3.4}
\end{equation*}
$$

$\mathrm{F}=\overline{\mathrm{A} \cdot \bar{B}}$

Where
$\mathrm{E} \quad=\quad$ error signal for clockwise direction
F $=$ error signal for counter-clockwise direction
A = input pulse
$B=$ feedback pulse
3.4 Data - Reconstruction

For simplicity, a zero-order hold device ${ }^{2,6}$ is used as the data-reconstruction. Figure 3.3 shows the impulse response of a zeroorder hold device

The transfer function of the hold device is derived to be ${ }^{2,6}$

$$
\begin{equation*}
\text { Gao }(s)=\frac{1-e^{-s T}}{s} \tag{3.5}
\end{equation*}
$$



จุฬาลงกรณ์มหาวิทยาลัย

The zero-order hold circuit utilizes two bistables, one is formed by IC 4-1, and IC5-1, the other is formed by IC 4-2 and IC5-2. The timing diagrams for the zero-order hold circuit in conjunction with the comparator is shown in Figure 3.1.

The bistables are reset by the trailing edge of pulse $A_{i}$ and $B$, i.e. $S_{A}$ and $S_{B} \quad C 4, R 4$ and $C 5, R 5$ served as wave shaping . network for resetting the bistables, whereby controlling the dead-zone of the on-off switcher.

### 3.5 Dead -zone Consideration

The pedestal voltages of pulse $S_{A}$ and $S_{B}$ are equal to their gate voltages, By measuring, we have
then

$$
\begin{array}{ll}
V_{i}=1.6-3.0=-1.4 & \text { initial voltage } \\
V_{0}=0.8 \mathrm{~V} & \text { output voltage } \\
V i=1.6 \mathrm{~V} & \text { gate voltage } \\
T_{4}=R_{4} \cdot C_{4} & \text { time constant } \\
t_{4}=\text { pulse width } & (\text { dead-zone }) \\
0.8=1.6+(-1.4-1.6) e^{-\frac{t_{4}}{R_{4} C_{4}}} \\
t_{4}=1.32 R_{4} C_{4} & \tag{3.6}
\end{array}
$$

Let dead-zone $=1 \%$ of maximum error $=t_{4}$
. ShUL $t_{4}=\frac{1}{100} \times 0.92 \mathrm{~ms}$

$$
=0.92 \times 1.0^{-5}
$$

Choose $\quad \mathrm{R}_{4}=12 \mathrm{~K}-\mathrm{Ohms}$
then

$$
c_{4}=\frac{0.92 \times 1.0^{-5}}{1.32 \times 12 \times 10^{3}}=6.97 \times 1.0^{-9}
$$

use

$$
c_{4} \cong 6 . \operatorname{snf}
$$

### 3.6 The Motor and the Load

The transfer function, Gill( S ), of a dec motor can be found in many literature ${ }^{1,6}$. That is

$$
\begin{equation*}
\left.\operatorname{Gm}(S)=\frac{\mathrm{Km}}{s(\operatorname{Tm} s}+1\right) \tag{3.7}
\end{equation*}
$$

$$
\text { where } \quad \begin{aligned}
\mathrm{Km} & =\text { Motor gain constant }(\mathrm{rad} / \mathrm{sec} / \mathrm{volt}) \\
& \mathrm{Im} \\
& =\text { Motor time constant }(\mathrm{sec})
\end{aligned}
$$

The Km and In terms are effective constant including the gear train and load which can be found by experimental means, we may write ${ }^{6}$

$$
\begin{equation*}
w(t)=\operatorname{Kin} V\left(1-e^{\left.-\frac{t}{\operatorname{Im}}\right)}\right. \tag{3.8}
\end{equation*}
$$

where

$$
\begin{aligned}
W(t) & =\text { speed at time } t \\
& =\text { applied voltage to the motor }
\end{aligned}
$$

at steady state, we have

$$
\begin{equation*}
\mathrm{Km} U L A L=\frac{w(\infty)}{V} \tag{3.9}
\end{equation*}
$$

In can be found by measuring the transient speed at a specific time $t$ 。

The experiment presented in appendix A gives

$$
\begin{aligned}
\mathrm{Km} & =35.5 \mathrm{rad} / \mathrm{sec} / \mathrm{volt} \\
\mathrm{Tm} & =14.2 \mathrm{~ms}
\end{aligned}
$$

### 3.7 The Amplifier

The amplifier is actually acting as a logic switch. Because of the nonlinearity introduced any error signal that is greater than the dead-zone will switch-on the amplifier, i.e. the error signal acting as the aximum error signal. In a proportional control sense, the amplifier will have an equivalent gain expressed by :

$$
\begin{equation*}
\mathrm{KA}=\frac{V}{T_{\mathrm{em}}} \tag{3.10}
\end{equation*}
$$

where
$K A=$ Amplifier gain
$V=$ Voltage output
Tem $=$ Maximum error signal
From section 3.2, the pulses can be vary from 0.92 ms to 1.84 ms , and the voltage appliied to the motor is 20 volts, then we have

Tem $=1.84-0.92=0.92 \mathrm{~ms}$
$\mathrm{KA}=\frac{20}{0.92 \mathrm{~ms}}=21,739.0 \mathrm{Volt} / \mathrm{sec}$

A full-bridge switching circuit is used as shown in Figure 3.2 other types of circuit may be employed ${ }^{9}$.

