CHAPILR V
CONCLUSION

5.1 Summery

In Chepter I, we briefly reviewed the one~dimensional white
noise model for which the density of states can be computed exactly.
This fact was first pointed out by Frisch and Lloyda, and has been
subsequently studied in detail by Halperin2 and Zittortz and Lnngerh.

Defining

AME) = g(-E), 5.1.1
3/2
wm - 27 1.2
2 A A 3
we can express the exact result for £ »- 0 as
= AE) - BE)
pas(E) =2 25 exp{"' 2€ }- 501-3

The expression (5.1.3) provides us with an exact expression which can be
used to cheek the validity of more general approximation schemes.

In Chapter II, we examine the method of Halperin and Laxs’g

used to compute the density of states for the random model. Their theory
is based on Schrddinger formulation of quantum mechanics. They assumed
that all eipenstates in the low-energy tail of & given energy have the
same shape. Using this assumption, they first approximate the density

5

of states”, and show that , for their first order approximation,
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Since their assumption is not exact, the demsity of states pl(E) turns
out to be too small by & factor of y5 = 2.236. However, in their
second order approximation, they calculatc the correction C(E), and

show that the corrected density of states is given by9

pE(E) = exp{uC(E)}pl(E), 5.1.5
where uC(E) - %% 4 5.1.8
Tt follows that
13/18
0 (E) = o= A Mﬁ)exp{_.@i@l " $.1.9
2 '/5- 2k 28
where the unexact factor el3/18//§ = 0.921 .

In Chopter III, we review the Sa-yaskanit theory10’7 and his
calculation of the density of states for the random model. His theory
is based on Feynmen formulation of queantum mechanics. He introduce the
ndn~local harmonic oscillator trial action to model the potential of the
randem model. He show that for the leading term of the first cumulant,

7

the approximate density of states is given by

g lE) i - -'-/-2—7-'- . %%)-exp' {-(%)1/2- %-gi)}, 5.1.8

where the unexact factors are ﬁéi = 0.418 end (%)1/2 = 1.0233.
7,10

In Chapter IV, we extend Sa~yakanit's theo to include the

leading term in the second cumulant by using the method of steepest
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descent, and show that the corrected density of states corresponding

to the correction R(Eto) can be put into the form

O AR} = exp{R(Et_)}o (E). 5.1.9

For the complete first cumulant, the corrected density of states

pc(E) is pl(E) and the correction R\Eto) is Rl(Eto), wiera

Rl(gto) = ~= + 40l 5.1.10

then pl(E) = e'l/z' thF . éégl"exp{-(g)llg §é§l); 5:3.13

For the second cumulant approximation, the corrected density of states

pc(E) is pe(E)9 and the correction R(gto) is Rl(Eto) + Rz(ito),

where

8

3 1/2 B(E) A,
R,(Et_) 3 ng'r%g)(%) . _é.g. 2 5.1.12

=

i

~1/2 W2nr  A(E) .. 3031 w32 pE)
0, () M2 M2 ME) o3BTy BEY

5.1.13

3031

= 1,01k and (3072

and the unexact factors are

ol/2 hies )52 = 1.007.

5.2 Discussion

As seen in the preceding section, all of the approximate density5’9’7

of states do not have the exact numerical factors in front of the
exponential term and in the expcnent. We have computed the percenteage

errors of  them. Denoting these errors as A1 and A2 respectively,
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The percentage errors of the numerical factors in front of
the exponential and in the exponent for the correspond
density of states : The simbols Al and A2 here denote the
percentage errors respectively. For convenience in

comparison we write superscript HL to specify the Halperin

and Lax results.

: & 4
b 0 0
oz” -55 0
on” 1.9 0
Py -58 2.3
Py 3.4 2.3
0, 1.h 0.97
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the errors are listed in Table 5.1

We first consider the Halperin and Lax results : Both leL and
pQHL have the same zero-values of Az‘s, but have non-zero values for

A.'s. The effect of the second order correction changes pIHL to panL,

and changes the values of Al's from ~55 to -7.9 #. Next we consider
the results of Sa-yakanit's theory : All of the approximale density of
states have non-zero values for both Al's and Aa's. Both oy and G2 have
the same velues of 2.3 % for Aa’s, but have different values for Al's.
The effect of the complete first cumulant changes Py to Pq> and changes
the velues of A,'s from ~58  to + 1.4 %. TFor Py the value of 4, is

1
still 1.4 %, but the value of A, 4is changed from 2.3 to 0.97 %

e
sccording to the effect of the second cumulant correction. Finally we
consider the results from the theories of both Halperin and Lax and
Sa~yckanit : We see that our Az's ere not as good as of Helperin and
Lax. In principle it is certainly possible to further correct our
results until they agree exactly with the exact expression. However,
the leading terms in the higher cumulants affect the value of A2 to a
much lesser extent than the leading term in the second cumulant. The
values of both Al and A2 of P, are very close to the exact velues. Our
result therefore sppears to be satisfactory and so we have chosen to

stop our calculation at this step. However, if one neglects few

's of both Py and p1 , one finds that Py and p?L

percents of A?

o~ well as 5 end ng have nea§ly the same values of Al's. We see

that Py and p, are nearly equal to pEL and ng respectively. Our
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10,7

methoq has, however, several ad#antages over the method of

Halperin and Laxs’g.

Firstly, the mathematical details of calculating the
Helperin and Lax relation (2.6.4)9 is very complicated. However, our
equivalent relation (4.3.9) is easily obtained by the method of

steepest descent.

Secondly, the minimization of the exponent of (2.4.3) in the

5

Halperin and Lox methed” leads to a nonlinear differentiallequation

4 t(x) —mef(x)? = Ee(x), 2.5.5
whereas in our worii, the minimization leads to a simple algebraic
equetion

T = - BE . 3.5.18

We clearly sce that (3.5.18) is more simpler thaen (2.5.5).

Thirdly, the variational equation (3.5.18) which is the
minimization of the cxuponent can be reduced from the maximization of

the pressure

P(E) ¥ ,( ag' | aE" o(&"), F.l

s formulated by Llowd and Best?h This means that we are able to
‘determine the varietional poraneter w by the Lloyd-Best varistional

principlezh, No such determination appears in the Halperin and Lax
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theorys’9. Mathematically our meothod is more rigorous than their method

Finelly, Halperin and Lax's methods’9 can not be extended to
find the density of states fdr a free electron model, whereas our
method can. In the limit of small time, it is obvious that (3.5.5) of

our calculation reduces to

S e AT 7 R e W
8) W R _i at(it) exp [%gt N = t }.
5.2.1

By using the formula (3:5,Y7) 4nd the asymptotic expansion =5 of

Dp(z)

- 2 v
" Ld L
V2n P 2 /b 2P l,

D (Z) ~ e 5-2-2
Z > - ®© P(QP)
where T{v) denotes the complete gemma function, we get
. i o /gm

which is-usually the density of states for the free electron model.

5.3 Conclusion

As discussed in the preceding section, we see that our method
has several advantages over Halperin and Lax's method. However, both
of these theories were formulated from the same idea by assuming that

the random potential of the system is the same shape. The results of
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these two different approaches should not be different. To summerize
our results, the curves of Equations (5.1.4),(5.1.7), (5.1.8), (5.1.11),
(5.1.13), and (5.1.3) are plotted together in Figure 5.1. For clarity
of the curves, Table 5.2 is presented. From tﬁis figure and table, we
can make the following conclusions:

Firstly, we see that p2 is not as good as p?L in comparison
with Ry This can be seen easily by considering the percentage errors
of pL and p%}. For example at E = -2, the percentage error of pz is

-67.5 %, while that of p;"

~is~55,4 %. The reason may be thought of as
follows: In our method the shape of potential wells is always fixed in
the form of harmonic well, while in Halperin and Lax's method the wave
function f is allowed to vary in shape in order to fit the random
potential. Fortunately, in one dimension the function f can be solved
exactly for the nonlinear differential equation (2.5.5). This fact
enable the first order approximation of Halperin and Lax's method to get
better results than the leading term of the first cumulant. However,

s ; HL
in the complete first cumulant the values of p; is much better than p;

as compared to pas. For example at E = -2, the percentage error of p;

equals -21.2 %, while that of p?L equals -67,5 %, This implies that

the complete first cumulant give better results than the first order
approximation of Halperin and Lax's method. Furthermore, our method can
be performed beyond the first cumulant to obtain the leading term of the
second cumulant(pjy). By comparing p, and ng with pas' we find that
the results of both p, and ng are closed to pas. At high energies,
for example at E = -0.5, the percentage error of p, is extremely small,

z HL -, i
while that of p2L is equal to -8.04 %. At low energies, for example
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at E = -2, the percentage error of ng is -8.40 %. From this example,

we see that our result p, is better than ng at high energies, and is
nearly the same as ng at low energies. This indicates that our pj

is approximately equal to ng, and that the second cumulant approximation
in our method is approximately equal to the second order approximation

of Halperin and Lax's method.

Secondly, as discussed in the preceding section, our method has
several advantages over Halperin and Lax's method. Firstly, the cumulant
correction to the density of states can be calculated directly in our
method, but Halperin and Lax must solve the modified Green's function
é. Secondly, our method give the variational equation which is easier
to solve than that of Halperin and Lax's method. Thirdly, we derive
the variational equation from the Lloyd-Best variational principle.
Finally, we point out that our method can be extended to high energies
to obtain the free-electron density of states. This extension does not
appear in Halperin and Lax's method. From all of the above discussion,
we conclude that our method is more practical than Halperin and Lax's
method. We believe that the idea developed in this thesis based on
Sa-yakanit's theory should be applicable to the other problems in three

dimensions.
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Figure 5.1 Density of states p(E) for the one-dimensional white noise

model, compared with its asymptotic form for low energies, pas(E).
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All of the curves are plotted in units of h = l, m=1, and 2t = 1.

The numbers frcm one to six indicate the following cCensity of states :

oy () = BT M) oy ()12 HEY |

HL,oy . 1 A(E) _ 5(E)
Py (E) % -éz-exp{ ¥s

() = &2 MDD oo (32, BED, |

5§

P (E) = e“l/e--h-/%i '-A-%lexp{ (-33%5 (Zyaie -(-l

oz« 0 Mm) B, |
2 /g 2

and 5 (2) = AE e KE)y
where the functions A(E) and B(E) are defined by
8 (-8)

A(E) " b= -

3/2
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N
HL : HL
o Oz(E) p1 (E) | p1(E) p2 (E) p2 (E) o _(E)
2.0 3.87-05 5.31-05 | 9.38-05 1.09-04 1.09-04 |{1.19-04
1.5 1.33-08 1.67-03 | 3.23-03 3.55~03 3.45-03 |3.74-03
149 2.24-02 2.62-02 | 5.44-02 5,73-02 5.40-02 |5.86-02
0.5 1.36-01 1:50-01"1{.3/30-01 3.36-01 3.09-01 |3.36~01
173 1.69-01 1.84-01 | 4.09-01 4.13-01 3.78-01 |4.11-01
1/6 1.36-01 1.47501 | 3.31-01 3.32-01 3.02-01 |3.28-01
Table 5.2 Numerical results of the corresponding density of states

which we use to plot Figure 5.1,
in the page 56.

computational notation, for example, 3.87-05 = 3,87 x 1 el

All

The forms of all are shown

of the results is written in the

5
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APPENDIX A
EVALUATION OF G, (X X, ,fl,

: By
To evaluate the non-local harmonic oscillator propagator GO, we

rewrite the trial action So in the form

mm2 t 2 o '
§ (w) = 804 ‘2?‘! at X(v))°, A.l
where SRO is familiarly the simple harmonic oscillator action12 3
(?
= o, L 2% :
1o = 0) dTé{A (1) = 0" X(1)} - A.2

The second term on the right-hand side of (A.l) can be converted to

n
an integral form by an identit.y"3 p

t
expld B8 ( ar%())?)
= t
= ( > fld exp 4— ——-— o I. dTi(T)‘?)}- A.3
Qﬂhmw - L 2mw ‘0

Tnserting (A.1) and (A.3) into (3.4.3), we then find that the propagator

Go can be expressed as

/ (o]
o (1,250 = (\2":;”2)“- JD den [ at .
t

cexpl} (S,,- ;2—2 : Of ak() B). A



29

Changing the order of integration, (A.4) becomes

©o

o~ Bl (e

\ 2 Fimu - 2miy

s
GO (X2 ’X.]. ;t )

e
’Jf(izail;taf)s A.5

where
+

o,y % 56,3 = J'Dz)&<r)1exp{%<sHo+of ari(1). )}, a.6

The propagetor {A.6) is the forced harmonic oscillator propagator which
is evaluated in the literé:turelz. With a constant external force * we

have

= a/2

% . 4 mw \ crlomw wtr ¥ ,2
GplXyoXy 38,8) = pmpmees)  explz(f [eot®(%, X))

- tan% (§2+ ﬁl)e] + %-tan@-g- (§2+ fl)- b2

= [——1—3—-tan‘% - 2= Py AT
M 2m

e
Substituting (A.7) inte (A.5), and performing the f - integration.
We get

a/e d
e o st m 2 w§ :

s wt 2
rexp [ﬁ e cot-—e— &2— fl) } 4 A.8



APPENDIX B

EVALUATION OF S
0.cf

The classical action S is the extremum of the action So’

o’el
and the action So can be written as

t

s' (00 = s (k) + | ek R, B.1
(]

where the action So corresponds to the classical action So cf * and
:
is the action So(w) of (3.4.1), and where the external force $(t) is

an arbitrary function of time.

To calculate the action Sé oy ® Ve substitute (3.4.1) into (B.1l),
]

and get

t 2 X
syt e = [ag - g faor ) - 2,00

;t -
+ ) ar f(r)-fc(t). B.2
o

Ir i;(r) denotes the classical path, then S; 4 is given by
;]

%
t

t
2
So"cz(iesilim) = o)r d‘t'g'p.(g(r) - gt .Of dolfc(.‘) i fc(o)]2}
t
. f dT?(T)'§E(T). B.3

O

Teking variational on Sé, we obtain the classical equation
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t

A 2
ic(r) + wafc(T) = % . f daic(o) +‘$ (7). B.h4

o

If we integrate by parts the first term on the right hand side of {B:3),

and use (B.4), we obtain
T

5y cspdyio) = 30 @R 0l +} [ acko 2 (0.

=0 0

B-S

The integro-differentiel equation (B.l) is solveble and so the complete

solution of f&(r) with the boundary conditions %(o) = il and

-»>
X(t) = iz cen be obtained. Inserting Xc(r) into (B.5), we get

(X,.% 50) = o= cotg;bé_ |%,- illz

o cl
> %
f2x Y
» il VB 49 atf(t)(sinwt -~ 2sinwt -sinw(t-T)sinet
2sinwt| mw e - s
o -] 2 2
ad = '
+ —= J drf(x)(ainm(t-t)- QSinmt-sinw(t-r)sinmt)
= Wt W, Wt
o 2 2 2
B
- 3 . I Idtdd%(r)--f(c) (sinw(t—t)sinw
m w o 0
- 4 sine(t~1)sinwt-sinu(t-a)-sinwc [ B.6
2 g, e g §

By means of (B.1), the action S  becomes the action S when

; [
? equals zero. This means that the classical action SO ol becomes
?

the classical action S when ?'s equal zero. Hence, we find

o,c8

s (X

0,c8 2,§1;w) " E"COt""4§ 4 | B.T



APPENDIX C 3
INTEGRAL FORM OF <S™>

To find the integral form of & > , we insert (3.3.19) into

(3.4.7), end write the average of S°, for an integer n, in the form

e e 2 n
t ot i « 1°% 90
A o “§ uiim
bt Gb b 11, ar do, ...dv_do_ dk o
“h (2w)dn '8 oj ofoaI 13 1 s n®
b
cexp [ au Fw) Fwb c.1
o

where the quantity & denotes the fluctuation which is defined by (2.5.3),

" and where the force * is given by

n
Flu) = m mil im'{G(u —Tm) - &8(u - om)}. C.2

According to Feynman and Hibbslz, the averaging in (C.1) is
called the characteristic functional, and can be done exactly as follows

(X, X 500 -5, (KX e, c.3

<exp{ii-1 fdu.f(u)j(u)b = exp{h(so 43
o]

where the actions S and 8! are the extremum of the actions S and
O,ck o,cf (o}
Sé respectively, and where the function ¥ depends explicitly on time,

and satisfies (B.1).

To compute <S> , we let n = 1 in (C.1), thus, we have
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£ f : g 22,
) 1 ; =L
ﬁ <S> = - -2-h-§ ( )d o; of dtldal_j dile
. ;
*<exp{% Jdu?(u)-i(u)b > C.lb
Q
where Fu) = h'l':"l{G(u - ‘l’l) - &(u ~ al)} : £.5

Refering to (B.7) and (B.6), when 5{2 = fl = 0, we can easily show that,

for dummy variables T and o,

= ¢.b
So‘cz(o,o,w) 0,
t 1
v 1
SO’CQ(O.O;N) " MGRinet oj! d'tdcr?(‘r)‘?(c){sinw(t--r)sinmo
2
nhsin‘,g_)(t-—‘t)sin'ﬂrsinb_(t—c)sin_@'d} ’ e
2 2 2 2

By performing the integration and grouping the trigonometric function,

(C.7) becomes

sinwt(|t~0] )einw t-|e~a]| )
2 2

g b in - \ o
by So’cz(o,o,w) o - Py sinwt by ¢.8
5 :
ko Mt ot 22 .
or £ So’cg(o,o;w) = - cot o kl {1 - al]r =o})}, c.9
where A(x) = tenwt sinwx + coswx . c.10
2

Substituting (C.8) and (C.6) into (C.3); and substituting (C.3) into

(C.k), we find after performing the k- integration '_



%S Fo ginwx sinw(t-x)

lo = -t S [ fewlp.. 22

2n®  (bm) Lt sinwt

2
where x = |t - o} .

Letting T > 0 , and setting

X ™ T.= Cn
and y W T4+ 0 o

the integral in (C.11) can be reduced to

~a/2

-d/2 , %
= ¢ axalx,ost)
0

t
ff ardej(x,w;t)
o

e}

sinwx .sinw (t-x)

2
where J(x,w3t) = P % & & ‘
L sinwt
2
Finally we have
t
2 ~1/2
o %’(S) = - .}_é.__..g_.a./é 6 I de(x,w;t) 5
2n° (Lw) o
6'ne,'.ca,n show that, for n = 2, (C.1) becomes
o t4% %
2 i o s -d/2
<g™> W ey —-i—d . f [f f dtldald'tedne{Det B} ’
Wm* ()" ooo0o
i L7 8
where Det B = [{'&'* ity cotgi:,_ (1 - Al)}{ﬁ'- . - cot?(l -Az)}

A2
12

6L

=d/2

J

c.11

c.12

c.13

C.1h

Cc.15

C.16

C.17

c.18

C.19
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and -

A(hi- ail), (4 = 1,2), .20
8 + 8, - A(lol- t,0) - a(]r,- 02“'

c.21

65



APPENDIX D
EVALUATION OF THE INTEGRAL IN <S>
To evaluate the integral in <8> , we define the integral as

> -1/2
? {
(L) s . J'di {singt sinwt (1-E)/sinwt }. D.1
0 2 2 2

An equivalent form of (D.1) is given by

. M o o -1/2
I(t) = (sinwg) Idz{sin wt - sin” wt (1 - 28)}. D.2
_ 2 o 2 2
Using the transformation
sinit(1-2E)
Y
cos § = s D.3
sinwt
the integral (D.2) becomes
- Tesd fﬁlz 2 g ~2
I(t) = ;€(81n—§ . ag(1l - sin g%_;os g). D.kh

L0

If we use a relationship between hyperbolic and trigonometric function

i sin(ax)

Binh(iﬂ) ™ D.5

and replace

it = B : D.6

we obtain
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1/2

sinhwf :
It) = 3 22 K(k), D.7

wt/I \1 + s:inh %»ﬁ

w/2
where k() <. | ag(1 - kPsinlp)"V/2 | i
- g

end k = ta.nhg'g : D.9

The complete elliptic integral K(k) in (D.7) can be simplified for

computational reason by the Landen's transformation23
- 1 (k1
K(k) = i K(K 1), D,10
(2 + k)
1/2
. ovi Wi
where k g Tk = m . D.11
In the limit of large time, we have
He) » 3 . X'K(X'), D.12
wtv2i
where the limiting value of the elliptic integral K(k') is given by27
lim K(k') = zn(l6) D.13
ki 1 k
and here (x")? = 1-3%uy. vt D.1k
Finally we find
(t) = ( 28 e (i“’t 2nk) D.15



APPENDIX E
EVALUATION OF THE A~-INTEGRAL

The A-integral occurs when we consider the leading terms in

(4.5.17), and is conveniently defined for an integer @ by

)
1]

|
f f at,as,a™(|t,~5,]), E.1
o ¢

where A is related to (C.10) by the relation; x = yt. The
integral (E.1) can be simplified by en elementary conformal mepping,

which is similar to (C.13) and (C.14), into the form

fdz &g, E.2
o)
where alg) = (e, e-iwt(lug))/(l o o708 E.3
< 12 ; -iwt
In the limit of large time, we can neglect the exponential e
and the integral (E.2), for m= 1, is
¥
rl
(2]
— — ———-‘_ J
W J A AE) = o, E.h
o)
Similerly It can be proved in general that
o (2 1)
I 5 iwt )(.i E.5

Next we shall show that the leading terms in (4.5.17) are just

the Izn's. To show this, we first consider an integral



3134
e e [ [ f Aig atds, dt ds,, E.6
o0 Q0O0

vhere A12 is the same as A, in (4,5,17). If one symbolizes the

A by a line between its pointsB, for example,

8 S
2y 2%
(]t -s,|) = tI . E.T

4% %

while a product of them can be expressed, €.8.,

a"( [t,-8,| )A™( [t,-s,1) = n% : E.8

where each of n and m is an integer.

Returning to (E.6), we now comsider the orders of the integrals

”” (:,_E:)dt'ds at s, = H (:_’l.:)dt T E.

: 108,43%% 19%2 ’

n X P 2
il (.,E..)atlasldtadaa n {J f (.__..)dtldtz} e, .
[1/f (Z)dtlds;dtad% A E.

m

We emphasize here that the integrals which yield the results of the
order of t-l come only from the integral of a single line type shown
in(E.9). According to (E.8), we can write (C.21) in the symbolized

form &8
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(e e )

. . Woumiisog) )
-2 e \ # * >
% R / < . E.11
Because of the symmetry of J2n’ (E.11) has an equivalent form

P (..2.) e (:) e (_4) E.12

The expression (B.12) implies that the leading term of J, is of the

l;\-;l\)

A

2
12

Qrder of t-l. Similarly one can prove in general that the leading

term of J, is also of the order of twl. It means that in the leading

2n

term approximation we are lock at 12n instead of J? thus, we have

n’

J2n > hIZn . E.13



APPENDIX F

LLOYD-BEST VARIATIONAL PRINCIPLE

Lloyd and Besch formulate an exact variational principle for

calculating the density of states over an entire energy range. They
showed that it is not p(E) or &n p(E) which must be maximized, but the

functional

7

E E
P(E) = de'f dE"p(E"). F.1

The functional (F.1l) is a pressure of a hypothetical free-fermion system,

and has a fascinating analytie relationship to Boltzmenn's H-functional.

Recently Sapyakanitll showed in his work that the pressure (F.l)

can be simplified by teking an integration by parts

E' . |BE'=E E ‘
P(E) = E' [ aE"p(E")| = | a&'E'o(®'), F.2

El=ax

and using the boundary condition that

p(-=) = 0. .3

It then follows that
B 3
P(E,w) = f dE'(E -~ E')p(E',u). F.h

. ==CO

The result (F.lL) is obtained by replacing P(E) and p(E) by P(E,w) and
p(E,0) respectively for special emphasis cn the variational parameter

W .



According to Section 4.2, if we formally set

2 2
Q X
A T ¥
R
where x = Sl E, F.6
and P e ’ ml/2 b % 4
then we get
p(x',w) ~ wl/a(x')l/zex'p{-(x')z/p} g F.8
By means of (F.6), we now write (F.L) as
P(x',w) = fdx'(x'- x)p(x',w). F.9

X

To perform the variational principle, we use the transformation

(x')2 pz' , F.10

and then the maximization of the pressure leads us to

0 = g:‘_"wQIB zf dz'e-z"{(z')l/u- (z')-l/h. 21/2}. F.11

Each integral in (F.11) ie en incomplete gamma 1‘unc'l'.:f.on‘?7 which is

 defined by

o
fageter-1, F.12
y

L]

r(a, y)

12
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By using (F.12), (F.11) becomes

0= %; wg/e{l‘(g, z) -zuzr(g, z)}. F.13

If one performs the differentiation in (F.13), and us:zec t e '_!.dentitye7

g_{l‘(a ,y)} o YT : F.lh
dy

4

then

0 = tg zl/Q{r(g S aBs zl/er(g, z)}- wr(g, z)-%f;]. F.15

" Using the asymptotic expansion of the incomplete gamma fun:tion23

r(a,y) o ya-l e, ' F.16

y > 4+ @
one can show that in the case z -

1/2

T (g, z) - 2 r(%, g) ‘"%, F.17

Returning to (F.5) and (F.10), we fiad that z is the exponent of the

exponential in the density of states
z2 = e, F.18
With (F.18) in the limit £ -+ 0, and using (F.17); (F.15) reduces to

the familiar minimization of the exponent

2
dz s a a g :
= = EE(KEEO = 0. F.19



Th

We thus get the usual variational equation

E = "h E . F.20
w 3 :
Next we consider the discussion on the end of Section 4.3.

When the corrections are included in the density of states, we find
the Lloyd-Best variational princ:lple2h by expanding the exponential of
the corrections in series and going beyond the previous steps. This

procedure leads us to
o (x'0) v F @) 1) expl-(x)2/p), P21

where pn(x';m) is the n th term of the density of states in power
of x', and Fn(w) is the function of  corresponding to pn(x',w).

Using pressure Pn(x',ub defined for (F.21), and we find E;(x',ao as

LR0) o & B WG - M2 rR )

B (0) Gy 2 o & F.22

where En(w) is the function of w corresponding to Fn(w). According to

(F.16), we see that the two terms in the first parenthesis {} in (F.22)
cancel each other in the 1'mit z + », or equivalently £ + o. Moreover,

we find the maximization of the pressure P(x',w) is in the form

0 = g P(x',w) = § cng_Pn(x',m), F.23
dw n=1 aw



5

where Cn is the constant of (F.21), and is explicitly independent of w.

In the limit of small £ , (F.22) implies that (F.23) has & common factor

gﬁ-. It meens thet (F.19) is held, and (F.20) is also true.

Finally we should emphasize that (F.21) and (F.22) are also
true even if the n in (x')® and I'(a,y) is a fraction. This occurs
when we include the effect of changing dimension of the white noise
model in n . It implies that our proof is valid for all dimensionalities

of the white noise model.
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