CHAPTRR IV
SECOND CUMULANT CORRECTION

4,1 Introduction

A few years after Sa~ydkanit10 established his theory, Gr0558
worked out the effect of the second cumulant on the density of states
celeulated with respect to the first cumulant. He used the path integral
representation of a single~particle partition function to evaluate the
density of stotes. His work was not systematicelly presented, and is

10

not the same as Sa~yakanit's work™ . We will now present our calculation

of the density of states which includes the effect of the correction up

to the second cumulent along the lines of Sa-yakanit's idea.lo’T

4.2 Leading Term Approximation in First Cumulant

We begin by ccnsidering the density of states for the one-

dimensional white noise potential
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The integral in (3.5.11) can not be casily integrated by the usual
methods of elementary calculus. To carry out the integration in (3.5.11),
we consider an integral of the following form

Ii(sg) = j asg(s) exp{aoF(s)}, h.2.2
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where o_ is & large parameter, end the functions F(s) and g(s) are

analytic functions. We are especially interested in function F(s) of

the form
. 2
7(s) = as + Bs h,2.2

where the functions U and 8 will be defined in the next step. By

25,26

megns of the method of steepest descent , the integral (L4.2.1) can

be worked oubt asymptotically as

g(s_)
Hs) e S . oxp {a F(s )}, h.2.3
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where s is formally determined by

EF =0, b.2.h
o
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F'{s) = —, Fle)| __, . k.2.5
ds o

For its application to (3.5.11), we take
g(s) - L 4.2.6

and F(s) to be the exponent of the exponential in (3.5.11). If one

sets

“ 3 \ 4.2,
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a.nd B o o 1 ( pid'V) )1/2’ h.2.9
a®
then one obtains the following minimum value to
Ct = s = -"—a' ° ho2clo
e o 2B
The asymptotic integration of (3.5.11) is thus given by
1/2 £ 1/2 is 1/2
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4.2.11
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where F(eo) 3 ~%a h.2.12
and F'(s ) = 28 . 4.2.13

Q

We now determine the variational parameter w using the
" Lloyd - Best variational principlezh (see Appendix F). The complete

variational equation is
0 = g 21/2 {r (g L B z1/2 P(g s 2)} = wP(E > z)-%ﬁ- » F.15

where TI'(o,y) denotes the incompleﬁe gamma function, and z 18 the
exponent of the exponential in (4.2.11), or refer to (F.18). As shown
in Appendix F, the two terms in the parentheaig'{} cancel cach other.

U on:e (F.15) rcducss to the familisr condition

4z 4 (& Z
™ = - (KEE) e F.19
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It follows then

. 4
hw 3 E F.20

As we see, the variational equation (F.20) is identical to the

variational equation (3.5.18)

Since the approximate density of states (4.2.11) depends
explicitly on o and B , and both of them are dependent on the energy E
through (F.20); the epproximate density of states must also depend

explicitly on <he energy E. Thus (F.20) leads us to

25 4B , Y2 hwpon (232,
4.2.,1h

which is exactly equal to (3.5.19)

Before ending this section, we should note that throughout our
work, the limit £ -0 is used and the minimum velue to is unique,
even if more terms in the cumulant expansion are kept. This means that
the minimum value t_ come only from the following equations : (k.2.10),
(%.2.8), (L.2.9), and {Fig0). Thus we have

1/2. =E.1/2 2
g L ]

o

t = o2 (13'-) . 4.2.15

N

%.3 Correction to the Density of States

Now we couns:ier an integral of the following form

J(s) = ;’ dsG(s) exp{aoF(s) + R(s)}, he3.1

115512538
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where @ is a large parameter, end the function G(s) is given by

glal. u gl ¥.3.2

The function F(s) is taken to be the function F(s) in the preceding
section, while R(s) is taken to be the rest of the terms in the
cumulant expansion. This integral is easily carried out by the method

25,26

of steepest descent since

qu(s) >> R(s). ; 4.3.3

Condition (4.3.3) implies that the function R(s) is the correction to
the function de(s). Also, the condition (4.3.3) implies that (4.3.1)

can be rewritten as

Js) =} asg(s)expla F(s)}, 4.3,k
where g(s) = G(s)exp {R(s)}. , 4,3.5

We see that F(s) in (4.3.4) is the same as F(s) in the preceding section.
It means thaet we will find the minimum velue t, in the form (4.2.10) with

(k.2.8) ana (4.2.9) still valid. Since we find that (4.3.4) is the same

as (4.2.1), Eq. (4.2.3) can be applied. We thus have

4 gls )
" Je) = 13 /EE-' o exp {a F(s )}, L4.3.6
.v’ “0 [F"(So)]l/z (o) (o)

whare s, and F"(so) are determined by (4.2.4) and (4.2.5) respectively,

and the function g(so) is



g(so) = G(so)exp{R(so)} ; k.3.7

Comparing (4.3.6) with (4.2.3), the quantities L F(so),
and F “(sd) in (4.3.6) are the same as the quantities Sg» F(so),
and F"(sQ) in (4.2.3) respectively. Moreover, the funetion g(s) in
(4.2.6) is the function G(s) in (4.3.2). This means that if we redefine
g(s) in (4.2.6) by G{s), we can replece g(so) in the integrel (4.2.3)
by G(so).olﬁﬂiding (k.3.€6) by (4.2.3), one finds the relstion between

I(s) and J(s), 1.e.,

J(s) = TI(8) exp {R(Bo)} . 4.3.8

According to the preceding secticn, the integral I(s) is related

te the epproximate density of states pz(E) by @ constent If we multiply

beth side of (4.3.8) by the constant, we obtain

0,(E) = exp{R(so)} 0, (E) , 4.3.9
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where the function pc(E) is the corrected density of states (corresponding

to the correction R(so))

However, the corrected density of states (4.3.9) is still
incomplete, since the variational parameter w has not determined. To
determine w, we will use the Lloyd-Best variational principle . To

begin this procedure, we expand the correction in power series of to

exp(R(s )} = I Aan(w)tz ; 4.3.10
n=1
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where the function Ath(w) is the coefficient of the n th power of t,.

We now insert (4.3.10) into (4.3.9), and use transformations

E
x = P .E-w.. E ’ h.snll
a 1/2
and P = 25(-2‘1-‘_5- 4.3.12
to get p (x,0) = 2 o lxw) 4,3.13
c iag B
(x,0) = Cn) DI By sk
o, (%0 - Fole) x'x exp{-2 } » 3.

where the function pc(x, ®w) ig the corrected density of states pc(E),

the function pn(x,w) is the n th term of the corrected density of

states in seriec expansion, and the function CnFn(w) is the coefficient
of the n th power of x. In Appendix F the maximization of the pressure of
(4.3.1%) is determined, and is seen to yield the same variational equation
(F.20) in the limit £ - O. It means that the minimum value t, is
conditionally unique, and has the useful form as shown by (4.2.15). The
reletion (4.3.9) is completely proved for the minimum value (4.2.15) and

variational equation (F.20).

L4 Complete First Cumulant

As discussed in the preceding section, it gives us an idea to
correct the dengity of states. Let us consider the effect of the
correction when we keep all terms in the first cumulant. It means that
we try to evaluate completely the integral in <S> , and keep the
1/2

constant factor e in <g> , for d = 1.
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For estimating the integral in <S> , Eq. (3.5.4) must be considered

by setting L = 0 and d = 1, and using a transformation

X = gL . h.h.l

It then can be written as

1
T LU O TR [a;a(;,w,t) /2 S
R 2n® (hw)lj?
; singgtsinwt (1-g)
where Jgwst) = B, . . 4.b.3
o sinwt

2
To evaluate the integral in (4.4.2), see Appendix D,
we ‘have

1/2
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For finding the correcticn R(so), we write
Rl(a) = ' the2nd terms of 3 <8 - S My b.b4.5
cr equivalently, for s £ Et,

i
Rl(gt) = the2nd terms of ﬁ<S - So>' h.4.6

The second term of % <SO> is + é (see (3.5.3)), and the second term of

% <8> is also found in (4.4.4); thus



1/2

e
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As shown in Section 4.3,Eq.(4.4.7) must be evaluated at t = t . Using t s

given by (4.2.15), and the variational equation (F.20), we easily find

o 1
Rl(&;to) = o * enk | 4.4.8

Moreover, if pl(E) dehotes the corrected density of states

corresponding to (4.4.8), then (4.3.9) can be applied. We now have

p.(B) = explz + tnhlp (), b.b.9

where p (E) is given by (4.2.14%). It follows that
;!

0 = o) (LGB 02 Wy ()32
o, (&) = b= cexp(-(3) - % FE ) b

Comparing (4.4.10) with (1.5.1)

3/2
PoslE) = s -Lg—) exp{ - '—§: ./2 ~(:§l 1.8.2
¢ n

we see that the effect of the correction of the second term in the first

cumulant changes the numerical facter in front of the exponential from

Ven %o ¢ 3/2 Ezgi . The factor e /% .2ﬁ§£:= 1.01k4 is very

close to the required value, but the nunicrical factor in the exponent
is still to be (%)l/a = 1.0233 . However, it can be corrected by
aiding the correction of the leeding term in the second cumulant. We

examine this in the next section.

Lo
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4.5 Second Cumulant Correction

To correct the numerical factor in the exponent, we must
consider the second cumulant, and look only at the leading term.
According to (3.4.5), the second cumulant of the average part in

(3.4.2) is8

the 2nd cumulant = =( )2 {<(8 -So)2>-<S - So>2}, 4.5.1

1
h

oL

which is very difficult to evaluaste directly. However, it can be

expanded and rearranged into the form

2

the 2nd cumulent = =( )2{[<SO >»<So>2]-2[< SSO>—<S><SO>]

e
= AR o]

+[<8%>-<5>21}, §.5.2

which are more easily evaluated than (4.5.1). The three terms on the
right - hand side of (4.5.2) can be estimated for the three leading
terms of them. The first two terms can be easily calculated using the

formula

e

-[<ZS >=<Z><5 >]
o] o)

y
i

2 <z(w/h)>1] 4.5.3

A=1’

wvhere Z is a function of @ To obtain the first two terms, we set

and 7 = 8 respectively. Hence we get

2 2 2
) [<so >—<so> 1 =

’ i a i
(s 55 <S,(wM)>1] ., »

e

L.5.k
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and (ﬁ) [<SSO>~<S><SO>]

L2

i 2—1<S(w¢§)>]|x=l .

AEYY 4.5.5

It should be rcmembered that we have only kept the leading terms in

(4.5.%) and (4.5.5).
(4,5,8),

we find
(?:\2 2 2
B

[«8 “>-«8 >} =
(o] o

and (1) [<°S >~<S><b >] =

Neglecting the exponential term of e

the leading terms of (4.5.6) and (L.5.7),

We get

i,2 g o
(ﬁ) [<sO >=<8 >

e
(ﬁ) [<sub> <s><so>]

where Ew is refered to (3.5.10).

obtained by taking L =

in the limit of large time,

(3 )“«s =
Bﬂh

If we apply (3.5.2) to (k.5.4),

= 0 and d

and (L.h4.4) to

"

da f-1 wt cot;.(_n_‘!,_“

-

5 > s NSA

1 wt\2es wt
5(53) &)

i (2 )1/? gnkt.

o A

8h2 2mh hhzml 2
L.5.7

"1 in the limit of large time,

for & = 1, can be found.

B
i
i Y, 4.5.8
1/2
m 2
2 ) -t %.5.9

The third term in (4.5.2) can be

= 1 in (C.18) in Appendix C, We have,

? t ¢ A2 -1/2
1 12

] J } drldoldtzdoz{(l-Al)(l—Az)- i }

© Q09
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where A, and A.,. are defined in (C.20) and (C.21) respectively. To

i 12
find <s>2, we double (C.11), and let L =0 and d = 1. In the limit
of large time, we have

5t

t
(%)2<S>2 &= —— e: mm J f )(dtldold'c do {(l-A )(l-A i}
Gwh 00 0

1/2
.50

Subtract (4.5.,11) from (4.5.10), we get

tttt
(%)2[<SE>~<3>2] = —»—- f J ,f j dt,do,dt,do, {(1-4,)(1-4, ) R
8rh O 00O

i ¥ ~1/2
AL p) -1l 435,12
2
A
where v = - > 4.5.13
(lmAl)(l-Az)

For finding the leading term in (4.5.12), we expand the second factor

in the integrand by the binomial series, and neglect both of Al and

ﬁz in all of the divisors. We get

e, a2 16 1
()T [<8%>¢5>"] = dr,do,dr {- e )
f R 199878051315

+ (A 2) i%(lg) + } ; k.5.1k
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Using transforms as beclow ¢

T = tit . k.5.15
and 1. = 8,6 ' 4.5.16

the approximation in Aprendix E allows us to evaluate thé leading

term in (4.5.1k) as

7] 2
p i § 2 i 2 11712
=(=) <5 >=<8>"] = ‘£ mnt j dt_ds_ dt,.ds {( )
2'h T6em’ il f R
= AN 2
i) A
10 ¥ 12
+ 8(7T-> 7 ‘T?'i + }, 4.5.17
where £, 18 now trantPued by (b.5.15) and (4.5.16)
- =171 1 A A2
1,42, .2 2 1 2 ¢ 1 1
=(=)71«8%>=<8>"] = £ mwt | g. dt. ds.dt,.ds {~' <—;f)

2\2 2
AL A
) s h(‘llr-)a : } S

N S A ) S
~16m55mt{2+@:+={g§+ } . h.5.19

R

-

As mentioned in Section 4.3, we now substitute (4.5.8), (4.5.9),
and (4.5.19) into (4.5.2), replace t by t, . from (4.2.15), and use the

verintionel equation (F.20). Thus we find the second correction RQ(Eto)
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corresponding to the leading term in the second cumulant to be

Rz(sto) = %{3};+={—2§ + '--}-(’-35) e i T . 4.5.20

The relation (4.3.9) can be applied when pa(E) is the corrected density

of states corresponding to (4.5.20). In other words,

p2(E) = exp{Re(Eto)}pl(E), h.S.21

where pl(E) refer to (4.4.10). The expression (4.5.21), written out

explicitly, is

. -l/2 Wy kb (-E) .. 3031 /2 4/2 . ¢ o 3/2 .
Da(E) = e . -—-6;”- s Lg--exp{ (3072)(") . -g-#'/ﬁ . Lil }
k.5.22

We see that the numerical factor in the exponent in (L.5.22) is

)1/2 to (égil)(g)l/Z by the effect of the leading

' T
changed from (§ 3072

term in the second cumulant. This factor (gg?;)( )1/2 = 1.0097 is

near the exact value.
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