CHAPTER III
PATH INTEGRAL METHOD

3.1 Introduction

As discussed in Chapter II, the theory of Halperin and Laxs’g
is successful for computing the density of states for the one -
dimensional white noise model, but for the application purposes it has
two limitationsil.rt first of all requires numerical solution. Secondly“
it can not be extended to higher energy E. For these reasons, Sa-yskanit
developed a new approachlo based on the Feynman formulation of quantum
mechanics.12 His method gives an analytic expression of p(E) which is
valid at all energies E for disordered systems having a screened coulomb
potential. For the one - dimensional white noise potential, the density
of states can be easily calculated, and is found to be in good agreement
with the exact result. Before going to the discussion on our work in the
next chapter, we devote this chapter to review Sa-yakanit's work which we

call " the leading term approximation in first cumulant,"

3.2 Density of States

It is convenient to consider the density of states in the form

which is defined by (2,2.4)

p(E) = <1 6(E- E1)>, 2.2.4

i=] ‘

where Ei is the energy of the i th eigenstate of a Hamiltonian, 0 is

a container of N scatterers in d dimension, and where the angular
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bracket < > indicates an average over an ensemble of the scatterer

positions.

To apply the path integral method to (2.2.4), one converts the

right-hand side of (2.2.4) into an integral form to getlo

4 > &
1Et/n Tr 6(X, X, 5t), 3.2.1

.0
D(E) = 2‘“‘%—" [ at e

-0

where the operation Tr denctes the trace of G, the function G is &
retarded propagstor describing the propagation of an electron from point
ii to ié, and where il and %2 are vector positions of the electron in d

dimensions.

Beceuse the propagstor G is an average propagator of an average

: >
system, the propagator G is inveriant under transletion of X. This means

that

{1

I > > :
G(XQ’ Xl;t) G(X2~ Xl, 03 ¢). 3:2.2

- =S
For finding the density of states, the end point X2

must be the same. It therefore follows that

and the

initial point ’fl

olB) ' = 5%‘3- [t 1Bt/ ¢(0,0;t). 3.2.3

3.3 Gaussian Random Model

To evealuate the propagator G mentioned in the preceding section,

we first consider a simple model which can be conveniently expressed in
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12,1k,15 The model is that of

terms of Feynman - like peth integrals.
an electron in a system of very dense, random, week scatterers., If N
is the demsity of the scatterers, and v(¥) 1s the scattering potential,

then the model is obtained by taking the limit913

lim = 1lim . 3.,3.1
GRM (N + o, v O,ﬁv2 > finite)

To begin the calculation in the limit of (3.3.1), we first
consider a propagator 8(§2, fl; th (ﬁi])for an electron in the presence
of N scatterers at the fixed positions {ﬁi el ..ol 8 B
obvious that this propagator must depend explicitly on the positions
of the scatterers. Since the scatterers are randomly distributed, such
properties of the system as the density of states are obtained from the
average propagator G(§2, ;1;t)’ the average of ¢ over £he random
scatterer positions.

For the model of N scatterers, the Hamiltonian for the electron

is

2 N .
HR)) = =30 e 5 v(e) - ), 3.3.2
i=1

where m is the electron mass, and v is the scattering potentiasl at the
e

-3
position X. The position Ri of the scatterers are taken to be random.
The probability for the scattering centers to be at ﬁi is, therefore

P([ﬁil) R 3.3.3

nN

where Q is the volume of the system .



The propagator of such a gystem satisfies

a .
(irg= - H( [ﬁil)l?ﬁ(ia, il;t,ﬁi]) i ms(ia- il)c(t). 3.3.4

\

In the path integral representation, the propagator is expressed as

t
B(Ste, il;t,lﬁil) * Lo [-f('r)) exp{% ojdt[g )'(2(1,)
g .
- 1 v(() -ﬁi)]}, 3.3.5
i=1

* - . »
whcre.ZDIX(t)] denotes ''the path integral' to be carried out with the

boundary conditions ﬁ(O) = il and *(t) = *2. The average propagator

is thus
6y ity = By, X e, R

—¥
= e [ [ om e AR, R ). 30306
i=1

Since (3.3.6) implies that the average propagator G is the usual

Green's funcﬁion, G can be thought to describe the propagation of a
particle, even though it does not correspond to a physical electron in
a specific configuration. The function G can also be considered es a
propagator describing the motion of a fictitious " average electron "

in the average system.

As pointed out first by Edwards and Gulyaevls, the average of
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(3.3.6) can be explicitly obtained because the set of the positions {Ei}

is random. Therefore the scattering potential V(%(T) - ﬁi) are

independent random Variables,17’18
t

oy ) = (2w ew{f 3 Ja )

+ ﬁ,[dﬁ[exp(—% [t arv(®(r) - ﬁ))- 1]}:

3.3.7

where the density N = N/Q . In the limit of (3.3.1), we can expand

the exponential of v, and then keep only the linear and quadratic terms.

The average potential
B, = § [dv() - ), | 3.3.8

becomes infinite in the limit (3.3.1). However, we are free to choose
our energy origin as the average of energy for removing the infinite.

Now we consider the quadratic term

't
B fdt [ aaov(Ee) - Bv(ie)- B)
2h 0 o
t ¢
= -E-g J fdrdowti(r) - %o, 3.3.9
2h o O
where the correlation function
WX - ol = [ vGn - B v G - B, 3.3.10

In the. limit of (3.3.1), Eq. (3.3,7) becomes
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t

G(xa,il, = f;ﬁ)[f(r)]exp i, g g’driﬁy) f% Et

=4

t t
?L ” ardowti(r)-f(o)l}. 3.3.11
2h
o0
We note that the correlation function (3.3.10) depends

explicitly on the scattering potential employed, and (3.3.11) can be

formelly written in terms of an action S as

o,k i0) = [ BN expil 8}, 3.3.12
> t
where 8 = g ‘I ake(c) - Et + éﬁ-ﬁ gt! araow(X(t) - X(o)1.
o
3.3.13

In order to find (3.3.12), we consider the Gaussian potential

7 ( 12 > 21
; - T)-
v(R(t) LR)munine?)=3/2 exp‘i- 15(=)-51% 3.3.14
. J
where d denotes the dimension of the system, the constant un is the
energy unit, and n is the strength of the scattering potential. We
find that for the potential (3.3.14),Eq,(3.3.10) becomes

{
wilk(e) - Mol = un?(m?)~9/2 expi M’ 1
J

3.3.15
where L denotes the corrclation length of the random system related to
‘& by

T a2 3.3.16
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In order to calculate W in the next section, we write

d>
wX) = J &% v(R)exp(ik.X), 3.3.17
(2m)

where V(K) is the fourier transform of W(X). For a Geaussian potential,

v(k) is given by
v®) =  uinexp(-R1°/m). 3.3.18

If one inserts (3.3.18) into (3.3.17), one has

2'2 ddi

wiX(t) - X(o)1 =  un a e@{*
(2w)

2
12 +1§.[§(1)-§(o)]} ;

k
¥

3-3.19 L

3.4 Sa-yakanit's Theory

To compute the density of states (3.2.3), the propagut;r (3.3.12)
must be known. However, the propagator {(3.3.12) containing the correla-
tion function (3.3.19) is very complicated, and is presently impossible
to work out directly. Therefore we must now attack the problem by
modeling the correlation function (3.3.19) by some trial actions. Several
ettempts have been mede, and failedls-ze. Nevertheless, one can obtain
an excellent result with a simple one parameter quadratic action.
Sa-yekanit is the first to work out a successful theory by modeling the
correlation fuaction (3.3.19) with a non-local harmonic oscillator trial

action written as follows :

t &8
8, (w) = f arg'{'iz(r)-‘%{ jdcli(r)-i(o)lz}, 3’.u.1

o (o)
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"where w is a variational parameter to be determined.

We note that the potential part in (3.3.1) is assumed to be
non-local. This means that the translational invariance property is
built into his formalism, and is also the nature of the disordered
system. This property is very important for carrying the calculation.

We now rewrite (3.3.12) in the form

o(%

231;17) = Go(ia.il;tk exb{% (s - So(w))}> . 502 :

where the non-local harmonic oscillator propagator G = is given by
4 i
Go(fz,il,t) = Io@ [f('c)]exp{ﬁ 8 (w)} , 3.1.3

and the average part is regularly defined by

£ LZ) (X(t)lexpli s _(w)/n}Q
(2 Genemts s (0)/m)

<Q> " 3.4.4

The propagator G 2 is evaluated exactly in Appendix A, and the

average part can be celculated approximately by using the cumulant

expansion, as was first pointed out by Kubo”, that is”

2

<e> = exp {<X> + [<X >e<X>2] 41 s 35

< g

3.4.5

Moreover, the approximation of the average part approaches to the best

estimation by adjusting the variational parameter w.
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Since we are only interested in the difference (s - So)’ the
kinetic terms in S and So drop out and we only have to consider the

reduced actions

t %
2
s » -3.% I£ amﬂi(«pi(«ﬂ"‘, 3.4.6
t
5 = 3 0 f [ araowik(x) - F(o1. 3.4.7
¢ o :

The energy E_ is omitted from (3.4.7) because it can be usually absorbed

by the energy E in (3.2.3). However, for the case of the one-dimensional

white noise potential, we set Eo = 0.

To obtain the density of states, one sets i2 = il =0 in (3.k.2)

and in (A.8) in Appendix Aj; we obtain

G(o,03t) = Go(o,o;t)fexp{i(s - So)/h}>|§é ke il =0 ° 3.4.8

m a/e wt 4
n . - 3 .
JO(O,O,t) (21riht) (2811'!@1;_ ) 3.}4.9
2

Substituting (3.4.9) and (3.4.8) into (3.2.3), one finds

©0

1 [ iEt /7 & a/e . d
p(E) = E;Ef'_ dte (EFfit) . (Zsingg_) <exp{i(8 - bo)ﬁh}> i
" 2

3.4.10

where the average part is kept in mind that it must be also evaluated by

setting X, = ‘}El = 0.
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3.5 First Cumulant Approximation

If the density of states pl(E) depends only on the first

cunulant, (3.4.10) reduces to

wt
0y () = J dt(Zuiht) i
i 2

. i
) - exp{z Bt + z<5 - S >}, 3.5.1

where <S> must be worked out directly. For <So> we note that

i e
§<5,> = LgyanG (@], , 3.5.2

vhere Go(wll) is the usual G, with w replaced by wVA.

Using (3.4.9), we see that

3<S >

d wt wt
A0 §( }

1 - cot~=

. | 3.5.3

]

For <S> we refer to (2.5.3) and to (C.17) in Appendix C, We get

d/2

[
iH

=<S> Y ™ (8 ! axj(x,wit)” 3.5.4
A =y (,m)d/z
where j(x,w;t) and x sppear in Appendix C by (C.16) and (C.12)

respectively. Inserting (3.5.3) and (3.5.4) into (3.5.1), we get

o

a/2
o N : a duat _aut
"ni® % .L 2 (ine ) (251@_) “explg Bt - 5 + 54500t
2
t
S fdxa(x wit) Y% 3.5.5

2h2 (4m d/2
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According to the uncertainty principle, the limit of ground-
state energy implies the limit of large time. If we wish to find the

density of states in the ground-state energy, we make the following

approximation :
~iwt/2
sin _(ﬂ.—b_ -—) -?-. 9 3-506
2 2i
COt ‘@;b- ___;_‘ i 9 305-7
2
sinwx sin g (t-x)
2 2 .—) .J‘ ° 305.8
/ 2i
sinwt

2

We now note that in order to obtain (3.5.8) we kept only the
leading term of <S> which corresponds to the leading term of <So>

da/2

In this approximation, we have droped out the factor of e in

(3.5.5), and denote the approximate density of states as pg(E). Thus

(3.5.5) becomes

-

2 a/2 ase
p,(E) = -2%-5— -jdt(?,—%’-—h L oY A exp{-%(g . E - E)t
I . .t2(1§2+_21._ "dlg}, 3.5.9
where Ew = he ., 3.5.10

If L + 0, then the Gaussian function becomes the Dirac delta
function. Consequently, our problem becomes the one~dimensional

white noise system when L + O first and @ = 1,
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21/ 172 E
o) = g B - Jeutn el s -
1/2
1 & 0 2
- 42;-;2~ ("—""21‘1’1) .t } Y 3'5 'll

The integral in (3.5.11) can be integrated by using a formu;a23

&

o 2
[ att18)? expl-622 ~iqt} = 27B/2 g gl exp(- A )np(-g—- i

el

where Dp(z) denotes the parabolic cylinder function. If we are
interested in the limit of large z, we can use the asymptotic expansion

of Dp(z)23

2 :
27\, P
Dp(z) = exp(-p )z* . 3.5.13

Z >+ @

As pointed out by Halperin and Laxs, we can reach the low-energy

tail by taking the limit E » —- «» or equivalently the limit £ + 0. For
our case we let £ + 0, since we are interested in the asymptotic

behaviour of the density of states. By defining

E
q = (—‘f.’- - E)/h ; 3.5.1k
1/2 2
il g2 . g ) /. 3.5.15

and applying (3.5.12) and (3.5.13) to (3.5.11), we find

1/2

2 p ol
o+ o B P BN s
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As discussed in Chapter II, by taking the limit £ + 0, we have
chosen to maximize the exponential factor in the density of states
instead of the density of states. This impiies that we must to minimize
the exponent 'of the exponential. Thus when £ + 0, the exponential
factor must bg a dominant factor in determining the density of states.
This last idea is not based mathematically on the variational principle,
and so is usefgl only in the case of the dominant exponential factor.
However, it is easily to minimize the exponent of the exponential in

(3.5.16). We begin this procedure by first noting

- adlll®
9—(-5L¥ ), 4 0 3.5.17
dw ) g2 '
It follows that
)
B - ~3E. 3.5.18

The variational equation (3.5.18) is identieal to the variational
equation which is asymptotically estimated by the Lloyd-Best

variational principleah'In Appendix F, the equivalent of these two
methods will be shown mathematically detail. The proof is rigorous

enough to cover the white noise problems in higher dimensions. Inserting

(3.5.18) into (3.5.16), we get
B4 (B P WE b (B3P
Dz(E) I, oLl F ~exp{~(§) . -{5 i }e

3.5.19

Comparing (3.5.19) with (1.5.1)
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ERE =

3/2
" ng) il = &gé e ng) y o B8

paB(E) =

N

we find the agreement between pz(E) and pas(E) to be remarkably good.

The powers of E in the exponent and in front of the exponential are
correct. The numericel factor in the exponent differs. from the exact
value by a factor of (%)1/2 = 1.0233. The numerical factor in front

of the exponential is too small by a factor of —/-é_-; = 2.393. However,
both numerical factors can be improved by going bigond the first cumulant
epproximation to the second cumulant approximation. In the next chapter,
we will find that the numerical factors can be corrected to a great extent

by using the complete first cumulant and the leading term approximation

in the second cumulant.
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