CHAPTER II
WAVE MECHANICS METHOD

2,1 Introduction

Helperin and Lax5 presented a theory which is based on Schrﬁdinger
formulation of quantum mechanics. Their theory can be used numerically to
calculate the density of states in the low - energy tail of an electron
band for e semiconductor containing of e high density of impurities.

In one dimension, their theory'reduces to the white noise model.

2.2 One - Dimensional Model

To understand the theory of Halperin and Lax, we first consider

a model in which an electron is described by a Hamiltonian of the form

H = T + V(¥ . 2.2.1

The operator T is the " kinetie energy " of the particle with mass m,
and is invariant under spatial translation. For one ~ band Hamiltonian,

T has the simple form
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The constant Eo is the average potential of N atoms. The potential
V(ﬁ) is the random potertial of the atoms about the mean value, and

it may be written in the form

N
VX)) = I v(X- 'z’i) o 2.2.3
i=1 »



 ;

The quantity v(; - ;i) is the potentiasl at point X which due to a single

atom et point z,

The density of states for the model is defined by

p(E) = % <} §(E ~ Ei)> . 2.2.h

where E, is the enérgy of the i th eigenstate of the Hamiltonian H, Q

i
is the length of the array atoms in one dimension, and the angular

bracket <> indicates an average over the atom positions.

2.3 First Order Approximation

The central assumption of Halperin and Lax is that all the
eigenstates, at a given energy E in the low - energy tail, have the
same shape. In other words, they assume that for all eigenstates

¥y such that E, = E , ‘tbey have

. $. =+
by (x) flx - x.) , 2.3.1

where f is & fixed function which depends on the parameter E. The point

.
i’

the " center " of the i th wave function, will be different for
each state. The wave function wi will be assumed to vary slowly from
one lettice site to the next, end will be localized in the crystal

in the viecinity of e potenfial well of the correct size to bind a wave
function of the prescribed energy E. In the case of a high concentration

of atoms, there will be many atoms within the range of the wave

function wi. Thus many atoms contribute to the potential well.



The function f(X) must be assumed to be real, normalized, and
unique. If the form of the function f(i) is known for the given value
of the energy E, the function f(; - ;) can be used to define a
variational energy Ef(§), which is the matrix element of the Hamiltonian

H in the states of £{x ~ y) :
E(Y) = [ae - m 2% - 7). 2.3.2

The variational energy is ~itself the sum of two terms

Ef(‘§) = vs('§), 2.3.3
where e = fa’:? (% - Y)Te(X - ), 2.3.h4
v = fa e - DA 2.3.5

The kinetic - energy term © is independent of the choice of ;, whereas
the potential term VS(§) is an average of the random potential V(X)
in a certain region centered about ;, and will depend on the choice of
;. The function VS(;) may be thought of as a smoothed version of the

original potential and will exibit a large negative fluctuation in each

region which binds a low - energy tail.

If (2.3.1) is assumed to hold, then the points ;i which are

the centers of wave functions wi with Ei = B must satiefy

Ef('{i) e . 2.3.6



where the position?c1 is a point such that Ef(§) is a2 local miniwum

at ;i' In other words, they define a local minimum as any point where

$Ef(§) equals zero, and the second derivatives are positive.
Furthermore, +the variational energy Ef(§) is a ground-state energy of
the local potential well, because potential wells strong enough to bind
a wave function in the low - energy tail will be few and far between ;
the probability of finding two overlapping wells, or of finding one
isolated well so deep that we must consider the first excited state of
the well, is negligibly small. One also finds that there will be only
one local minimum in Ef for each deep potential well and thus there will
be a bound state ¥; at each local minimum satisfying (2.3.6).

If there is a one - to - one correspondence between local
minimum in Ef(§) and the energies in the vicinity of E, then the
number of eigenstates with energy E is approximately equal to the number
of local minima in E,(¥) with value E. Thus (2.2.4) becomes

1

pf(E) = 93 {Number of local minima in Ef(§) such that at

>
the minimum E < Ef(y) < E + dE.} 2.3.7

The subscript f on the density of states remind that the validity of
N

the estimate will depend on the correct choice of f.

.
Let {y,} be the set of all points such thet Ef(ir’) is a local

minimum at ; = ;i' Then the density of states may be written aés

<§[E - Ef(ir')l £ 8y - '§i)> : 2,3.8

pf(E) r
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The best choice of f is that which maximizes the value of pf(E).

The fact that Ef(zi) is equal to or larger than the true energy Bi

together with the fact that the density of states in the tail decreases

rapidly with decreasing energy, implies that

of(E) < o(E) . £:3.9..

The equality sign in (2.3.9) would hold only if Ef(}’) = E, for all
the wave functions with Ei = B, i.e., if assumption (2.3.1) were exact
for the function f in equestion. Although (2.3.1) will not be exact,

they get the best possible approximation to the true density of states by

by choosing f maximize pf(E). Thus they make the approximation

pl(E) = max pf(E). 2.3.10

L

2.4 Gaussian Statistics

Helperin and Lex study in detail the case in which the random
potential v(x) obeys Geussian statisties. The statisticel properties
of a set of Gaussian variables with meen zero are completely determined
by the second moment of the distribution. The properties of V(¥) are
thus determined by the autocorrelation function < v(x) v(X*)> . It is

convenient to write

EVE) = WX - %), 2.4.1

where the parameter E is proportional to the concentration of atoms

and to the square of the strength of the individual atoms, and where
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the function W(; - §') can be written in the form
> >, I +, >
wx - x') = Idziw{(x - 2 v(E - 7). 2.4.2

The energy E will be in the low - energy tail if Eo- E is large
compared with the - fluctuations in the smoothed potential VS(EZ) , Thus
the terms that are important for properties of the low - energy tail in
a CGaussian potential are those which are important in~the limit £ -+ O,
when the energy E is held fixed. Except for terms which are negligible

in this limit, the approximate density of states Pe in one dimension is

bo(E) = O:i:a;sm ey L i—‘-’—g—;:?-z} . 2.3
where o2 = oo, 2.4.4

o = w"0), 2.4.5
and oy -¥) = [f Gaxt £2(% - PLPE - FWE - 3. 2.4.6

In the low - energy tail, the importent factor on the right
-hand side of (2.4.3) is the exponential factor. When trying to find
the function f which maximizes Pes it suffices to use the function f

which minimizes the expression

r(e,£) = (0 - E)2/c°2- 2.4.7
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Application of variationel caleulus to (2.4.7), leads to a

nonlinear differential equation for f of the form

(T+ v )t - Bf, 2.4.8

with Vo(§) itself is given by9
VR o= -w NG - Inea2, 2.4.9

In (2.4.9), u is a Lagrange multiplier which is determined by the

requirement that.

faef® &/ 1. 2.4.10
The value of u is related to © and %, by

" & (6 - E)°/ 002. 2.4.11

The pair of (2.4.8) and (2.4.9) which they called the Hartree
equation may be solved for £(X) and p by an analytic procedure only for
the white noi§? potential in one dimension. For other case, theée two
equations must be solved by an iterative procedure. The approximate
density of states pl(E) is obtained when this function f is used to

evaluate the quantities 0, ¢, and o,, that appear in (2.4k.3).

2.5 One - Dimensional White Noise Model

The white noise potential is characterized by Gaussian statistics,

with the autoeorrelation



3

<V(x)v(x')> = gé(x - x'). 2.5.1

When the individusl scattering potentials are written in the form5

v(x ~ zi) = uné(x - zi), 2.5.2

22

then E ¥ un® » 2.5.3

]

where the constent N is the concentration of atoms, the guantity un
is used to correct the energy unit, and the parameter n is the strength

of the potential.

By choosing units where B and m are equal to unity, and by
choosing the zero of energy such that Eo = 0. The kinetic energy is

then given by

=]
]
:
o=
!Qa
N

5

2.5fh

For the white noise model, the " Hartree equation," (2.4.8)

and (2.4.9), takes the simple form

—% £"(x) - % ue(x)3 = Ef(x). 2.5.5
However, (2.5.5) may be written

1.on 1 3 -

-§f (x) = uf(x) - xK rix) 2.5.6
where —%nz = E. o R g

Multiplying by f'(x) and integrating, we get



ik

trren? = Pe(x)?d ur(os constant. 2.5.8
Since £'(x) = f(x) = 0 when x = », the constant in (2.5.8) must equal

zero., The origin will be chosen so that £(0) is a maximum and hence,

£'(0) = 0. Thus (2.5.8) implies

% uf(0)2/|<2 = b 2.5.9
If cne defines
alx) =tk %) FHO), 2.5.10
then one has u(0) = 1, and
1/2
u'(x) = - [u(x)z- u(x)h] for x > 0. 2.%5.13

The sign of (2.5.11) is fixed by noting that u(x) is a maximum at

x =0, PFrom (2.5.11) it follows that, for x > O,
3 1/2

ay = tanh‘l (1 - u2) ] = sech_lu.

X =

\_1} v(l—v2)1/2

2.5.12

Similarly the procedure may be used for x < 0, and one finds that for
all x,

u(x) = sechx . 2.5,13

The normalization of f(x) requires that

fx) = /@sechm, 2.5.1h

u = hK ] 2‘5'15
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Finally the function f is used to evaluate the constant. in(2.4.3). Thus

Halperin and Lax find that

b R ME R
pl(E) = Jg ¢ E vexp { 3 /g 3 ¥ 2.5.16
Comparing (2.5.16) with (1.5.1)
) i _(__)3/2
% -E .. B A (B 1.5.1
Slala (e sl i il

we find the agreement between Py and P s to be remerkably good. The
power of E in the exponent and in front of +the exponential are correct.
The numerical factor in the exponent is exact, but infront of the
exponential term is too small by a factor of v¥5 ., However, the factor
1/¥%5 will be removed if ome includes the "average higher-ordex -energy

correction,”" described in the next section.

2.6 Second Order Approximétion

Because the assumption that all the eigenstates at a given
energy in the taillhave the same shapes is not exact, the first order
approximation leads to a small overestimate of the energy of each
eigenstates, and an underestimate of the density of states. Halperin
and Lax improve their first order approximation by including the effect
of the "average higher - order emergy correction.” This correction
chenges the approximate density of states by displacing every energy
caleulated in their first order approximation by the expectation velue

of the energy correction due to the difference between the true

011722
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Hamiltonian and the unperturbed Hamiltonian,

To find the energy correction, they expand the difference
> ; -> > >
E.-Ef(xi) in powers of the perturbation V(x)rvo(x-xi). Halperin and
i
Lax9 write

Ei = Ef+€1+€2+..., £2:6.1)

where € is of order of (V—Vo)n. The first term €; = 0 for the condition.
that E. = E. The second term €; depends on the "modified Green's function
8" which is defined by

[e-1-v_GDIGE X" = 8GR -£REGN . (2.6.2)

i f
If G is known, they can calculate the energy €p. They define the

"average higher-order energy correction C(E)" by

- EC(E) = 1lim <<82P2: (2,6.3)
>0

where the double angular brackets with subscript E indicates the
conditional expectation value of the variable €j.
Halperin and Lax show that the corrected depsity of states

po (E) is related to C(E) by the following equation

p2(E) = exp {uC(E)} p;(E),. (2.6,4)

where W = 4k. = The average higher - order energy correction

C(E) has been evaluated, and was found to be



2
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g 13y.-1 2.6,8
N

It follows that

(E) = 13 (E), 2.6.6
P2 exp{ 18} Pl
or, equivalently,
pate) = VIR M g-ad . 1, @Y.
T 3 3 3
o /n 2.6.7

The factor(l//g) exp{ 13/18 } equals to 0,921, and they were therefore

able to reproduce the exact asymptotic value to within an error of less

than 8 %.
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