CHAPTER VI
APPLICATION TO POTENTIAL THEORY

The Theory of distributions has been studied in the previous
chapters. It will be applied, in this chapter, to Potential theory.
The materials of this chapter are drawn from references {1}

and [4?-

6.1/ Basic Concepts

6.1.1 The spherical coordinate system.
We shall be concerned primarily with some notations on the
real n-dimensional Euclidean space Rn. If x = (xq,..., xn)

and y = (y1,..., yn) are in R, the inner product (x,y) is defined

n
by (x,y) =3 XYy The length of a wector x & R” is defined

j=1

to be the positive square root of (x,x) and is denoted by x|l .
The distance between two vectors x and y is defined to be [Ix~yll ,
The angle between two ncnzero vectors x and y is defined to be

the angle © such that O £ 6 = T and

Nt gyl
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Many of the functions that we shall deal with are functions
only of the distance from the origin O ¢ R”. Tor sach functions
it is more convenient to use a spherical coordinate system rather

than a rectangular coordinate system., The spherical coordinates

of x = (x1,..., xn) # O are defined as follows : if r = yxt , then
X x
[ 1 n
@ Z\-IT-,...’I‘—)

is a point of 73B(0,1), the unit sphere with centre at O, The pair
(0,r) uniquely determines X and arc called the spherical coordinates
of x. The spherical cogrdinates of O are the pair (0,0). This

transformaticn from rectangular cocrdinates to spherical cocrdinates

is essentially the mapping (x1,...,xn)t-%(91,...,Qn_1, r) where

X
1
g1 T or
i
B 2
Q2 11 9]
o AR xn-1
n-1 r
)
r = (X2+oo.+ Xa)/z .
1 n
*n
We shall also let © = ol On is the cosine of the angle between

x and the vector (0,0,...,0,1); that is, the angle between x and

the " x - axis ". The Jacobian of the mapping is easily calculated

and absclute value is given by
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i (x yereaX, )

l
i = r = N & w
’B(O ,...,Or 1,r)‘ T

2
(1-‘@1-010"' Gn

If y = (y1,..., yn) ¢ RY and ey 0, then OB(y,GD is the surface

defined by the equation
2 P 2 _ .
(xq— y1) tooatlx - yn) = .

Consider a Borel set M ¢ 2B(yye) 0 {(x1,...,xn):xn-yn 2 0.
Let Mn denote the projection cf M cnto the subspace %(x1,...,xn):

‘ { . |
Xn = @ k, that 1S Mn = -\,_\‘(x1,...,Xn_,l,O)..(X,],...,Xn)61\’1 .&.

For each xé& 0B(y,p) Yet) = B(x) be the angle between the
U

" x - axis " and the outer normal to ?D(y.EO at x. Then

i

1 £

sec y = - = e
cos i

and

! e

\ )

)&..3 sec X dx1... dx
n

11

s(M) N1

represents the surface area of M, If M tLQB(y,g)lﬂé(xq,..., xn):
X = ¥, = O~}, the surface area of M is given by the same integral
with sec y = - 6/(xn— yn). The integral of a Borel function f

.

defined on 5B(y,g) relative to the surface area s is denoted by



f(x)d s(x). Lt s g o
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Consider an extended real-valued function f with domain in
kY, Ve shall take the following liberty with the functicnal
notation. then f is ccnsidered as a function of the spherical
coordinates (©,r) of x, we shall denote the value of the composite
function at (@,r) by f(O,r). /'Suppose f is integrable on B3(O, Q).

Then the integral of f over 3B(0O, Q) can be evaluated using spherical

coordinates as follows 3

&‘ C&‘ (‘ I‘n-’l
J f(x)dx = ) eoje ) 1 £(04r) === d0,... dO dr
(0. 0) 0/ liel=1 e, 1 =
5(0, ¢
(e n—1// g
= J 4E - f(e,r)d s(e) | ar.
0 \uonm /
6.1.2 Green's identity.
Let v = (v1,..., vn) be a vector-valued function whose

components vj have continuous first partial derivatives on a

neighborhood of & € R". The divergence of v is defined by

n
div v = E‘T V. .
j=1 4

We let n(x) denote the outer unit normal to the surface <L at the

point x ¢ @a. We shall take as our starting point the following
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theorem which is adequately discussed in any advanced calculus

texthock,.

Al
div v dx = 3 (vynlds.
Tl

Divergence thecrem

bcxw

We make the convention that whenever " n "' appears in an integral
over a smooth surface it is understood to be the outer unit normal
to the surface.

Suppose ncw that u is a function defined on a neighborhood
of ©. and has continuous second partial derivatives thereon.

The Laplacian of u, "Au,/ is defined by

n

Au. = }_-—J a.u °

§=1

If u is a function of variables other than x and it is necessary
to clasify the meaning of the Laplacian, we shall use A(x) to
signify that the Laplacian is relative to the coordinates of x.

The gradient of u is defined by

g‘rad. u = (ra,‘u,...,anU).

Let v be a second such function. Then

u grad v

(u?',lvguoo 'Y u-;jl’IV)

and div (u grad v) u d v + (grad u, grad v).

n
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It follows from the divergence theorem that

{ { ,
Juavdx + 2 (grad u,srad v)dx = ¢ (u grad v, u)ds
0 £ g Jon

{

) uD v ds

n

ol

since (u grad v, n) = u(grad v, n) and the latter inner product is

just the directional derivative Dnv of v in the direction n. 3By
interchanging u and v and subtracting we obtain

.
Green's identity Vin bvev Au)ax =

=

(u D vev Du)ds .
n n

3
P

<k

6.2 Harmonic Functions

6.2.1 Definition. Let .0 be an open set in R™(n 2 2). A function
h: a -— R disisaid to-berharmonicron+«t. if h is continuous on O

and for any ball B = B(x,p) such that Z¢ a ,
¢

(

h(x) = —— . n(yas (y
5.0 0B
n
p ¢
=y (x),

In order to prove (6.2.4), we need the following lemmas :
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2%
6.2.2 Lemma. TFor any ¢ > O, _‘, Snrn-’l.{,(r)dr = 1 (r <4).,
) ®
4 g
= - ( n--1 y
Proof : | 5. r270 ¢ (x)ar = } S r LI £)dr
e 4 n ¢ - n -n ne
0 0 t
= ( & e s (E)d(E
= ) Py Tneq e g)
0O
P
, T Tes') 1 £y
=11/3 = exp| - -—2](1'—';
n C \ 1_{;2 “ / \{’/[‘

1

]
Z 2

~N

"

N

Q

"

6e2.3 Lemma. If h is harmonic on A, then h * i:(;(x) = hix) for

all X é 4’2 °

be
Proof : Let x he a point in £ and let ¢ ) O:such that

B(x,&) © B(x,t) © ., Then

. "
S h(y) 6:(x—y)dy = 3 h(y) ’:/lb(x-y)dy

h* 'o/(x)
2 L

ly-x il <¢

B. ( 3 h(y) !.s/(x—y)ds(y) dr
fy-xt=r v

i
[
=~

\

z

)
z{(ﬂ{ \ h(y)ds(y))dr.

ly-x I =r
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If Ny-xli = r, then y is a point of 23(x,r). The integral within

parentheses is the integral over a sphere of radius r relative to

n+1
a uniformly distributed measure of total mass Sarand is equal tc

h-t
Snrh(x). Then

¢
he 5 (x) = % 21 (r) 5. n(x)ar
4 g L
0
/"i
- ax § s 2T (war.
n Z,
0

By (6.2.2), we have the result.
oo
6.2.4 Theorem. If h is/harmonic<on 1 , then h € C ().

Proof : Since h is locally integrable on a4 , we have, by (4.2.2)

T, » ii(x) pe h*\"z(x) 28 1R &) Cop s e Ve

Then for every multi-index r,

3 (Ty» 4 (x) ¥ n(x). (x ea).

But by (4.2.3)

T, (89, ) (),

r'l" *L(
d (‘h i)(X)
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which is meaningful for every multi-index r (since

P o
g.é c (a)),
L

Hence h € C (ui).

6.2.5 Lenma.

If h is harmonic on a neighborhood of the.closure of

a ball B = x ,p), then
\ b hds = o
03
Proof : By (60201)g
L nei ¥ h(ylds(y)h' = h(xo) = a constant.
e
“n f DB
Then EL { 1A X h(y)ds(y) % = 0
r \ s N I A8 B :
(>

nQ 2B d

Changing into spherical coordinates relative to the pole

a | 3 §
2r |

X ¢
e}

\

,n=1
ne1 h(e,r) £ ae = 0
\\Sye i eli=1 e 4 J
nw n 4
o do
or /\'—" o h(O,r) ——— = O.
0T ol =1 le i
1
Dy (5.2.87,
[ 4
o %; e ) 2 « O,
He I =1
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Thus we can get

i

\ < rn-’l
v == h(e,r) = de = 0
ey =1 " e |
n
which implies that g Dph d s = O

Gt

6.2.6 Theorem. If h is a harmonic 'on 4, then dh = O on <L .

Proof : Let x_€ &, consider a ball B = B(xc,g) such that § ¢ a,

By (6+2.5),

Putting u = h,v = 1 in Green's identity, we have

g bh a =
B

1}
o
°

Suppose Ah(xo) # 0. Without loss of generality we may assume
that Ah(x@) > O. Dy the continuity of A h at X s there is a
ball B(xo,e), % % O such that §(xo,i) ¢ 2 and Ah(x) > O for
all x ¢ B(xo,i). Since the Lebesgue measure is positive, we have

that

,
g 4hdx)o.

pt
U~
i
»
-
LN
s
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This is a contradiction. Therefore Ah(xo) = O+ ©Since xO is

; A
arbitrary, we conclude that 4h =0 on oo .

Suppose T ¢ Czﬁﬂ) and 4T = 0 on 2, and let y be a fixed
point of -i s Then A7T(x) can be regarded as a function of the
spherical coordinates (@,r) of x relative to y for which r = ix=yl
and € is the point of intersection of the line seqment joining x

to y and a unit sphere with centre at y.

Suppose that 7 is-a function of r alone. Then 41, as a

functicn of spherical .eoordinates, is easily seen tc be given by

2

At~ a4 /) (n=1) 4T
- 2/ I r dr ' r # O
dr
The function only of r = lix-y# satisfies the equation

a°r (YAt
+ - = 0
2 23 dr
dr

on anu {yf -

If n = 2, the general solution of this equation is A log r+3

where A and B are arbitrary constants. The particular solution is

- log I'e

If n 2 3, the general solution of the above equation is

L=n+2 : . . -n+2
Ar + Bs The particular soluticon is r .

m
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We shall introcduce a notation for aforementiocned particular
solutions and, at the same time, extend their domains so as to be

defined on Rr" by putting

4

L+ 0 if x & ¥,
(Be267) ’Cy(x) = - log itx=-yil if x # y, and n = 2,
fx-y i 22 if x £y, and n » 3,

If y is the origin, we shall omit~y. - The function fy, so defined

on RY, will also belong to CZ( R™) and ATy = 0 on R".

6.2.8 Theorem. If h has continuous second partial derivatives on

a neighborhood of the closure of a ball B = B(xj.e), then

(1) for n=2 and x &€ B

b(x) =gl TR D, 1 hD(lp')jd (y)
) -Qag TR nIn B~ 10, (- og r s (y
-E%' g Ah(-1log r)dy

3

(i1i) for n =23 and x € B

% %, . W— & (2~ %*2p wond »" 224 s (3)
S (n=2) .., - -
n a3n
B NUU W PR S
S (n=2) :
n B

where r = llx-yll , vy €3 .
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Proof :(i) Consider a fixed x € B and let v(y) = @x(y) = =logix=y! =

-log r for y # xe« Then Av = O on Ra-{xﬁ. Choose ¢ > O much

that 3(x,8) ¢ ' and let <. be the open set B — 3(x,5). By

Green's identity

0]

g
Y (hav - vin)dy /((hDv-vD h)d s (y).
X n n
Ll 0 L)

Since 4v = 0 on £ and DO = A3 A GB(X,‘),

(a) - vih dy

S (hD v = ¥D h)d s (y)
n n

e 7B

S (thv - v Dnh)d s (y).
X

f(‘)l (X, O)

The minus sign precedes the second integral on the right in view
of the convention about the outer unit normal vector. The outer
unit nérmal vector for A at a point of 2D3(x,%) is the negative
of the ocuter unit normal vector for 7?B(x,d). We will now let

§ — 0 in equation (a). To show that
(b) s lv bhdg = 4% 4%aw
§>0 4 5

it suffices to prove that v is integrable over B since {h is
bounded on D, DBy transforming to spherical coordinates relative

to the pole x, for £«
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L&
s S
lvidy = o rlogq| v ¢ s(8) Jar
B(x, ) 9 "ot =1
B)
= 21?& r log - dr,
0 T
Since lim r log % = 0, the function v Ah is integrable on B(x,3).

r->0

Since v Ah is integrable on <., it is integrable on B and (b) holds.

Consider the right of (a).  The first

depend upon d and we need only consider the
{(n, prad B)/{ £ inl

3ince !Dnhl = i grad

and the first partial derivatives

integral does not
second integral.

hi = VWgrad h! =

ajh are bounded on

B, Dnh is bounded on  BB(x,4) by some constant me. For small

{

i (&
| |
' l v Dha s(y) 5 ENBNEF . vod s(y)
D an(x,8) ! 20(x, §)
1
= m S log = a s(y)
dB(x,4d)
= 2ﬁm£lq§1 .
§
Since 5 log % — 0 as 8 - 0,
J
(e) lim vDhds(y) = 0.
§-0 . \ o
98(x,4)
Now cosider 1im S h DAVd s(y). We can coumpute Dnv(y)

40 IB(x,d)



at a point y ¢ BB(x,é) as follows. Since v(y) = =log r and the
normal derivative of v is just the derivative with respect to Ty

Dnv(y) = -r ,

Therefore

J hDvads(y) = = i
! n é\
dB(x,0) dn(x,s)

The integral on the right dis just the average of the continucus

function h over &DB(x.e), éx%cept for a factor of =2 ¥, and has a

limit -2 w(x) as o°5,0///This shows that

(2) 1im S nDv/ds(y) = - 2 Thiz),

Py .
g AB(x,48)

Taking the limit as ¢ — O in (a), we obtain

-9 vhhay = S (thv—anh)d s(y)+ 2 Th(x).

B 3

The proof of (ii) is basically the same with v(y) bheing

replaced by v(y) = Hy-xlkﬁn+2.

The following theorem is the converse of (6.2.6).

6.2.9 Theorem, If h ¢ Ca(ﬂ) and dh = O on 21, then h is harmonic

on A ,
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Proof : Only the n 2 3 case will be Proved, since the n = 2
case is similar. By (6.2.8 (ii)), for any ball b = B(xo,g) such

that B ¢ «

g
B o d e oy = EAE
D h-h D_iix=y ! la sy,

{
\ o
- Joodyp -
h(xo) g ‘Ll_.xo y!

n+2 -n+2

since Ah =0 on I}y For y ¢t BB, on—yﬂ- = £ and

1

BAL ~n+2? - -(n-2)€fn+ . After substituting

Dn on—yH" = D r

in the above integral

j r
(,_n+2 ’ e; ~-n+1 \
= 3 ..} ) e i \J S
h(xo) 3;-(3:57“3 D/h d s(y) + 5. . h(y)d sly) ,

The first integral on the right is zero Wy (6.2.5). Then

{
w3 = ANNIMNBINYNG
“ B

n-1 y

N

)

n
o]
(e

Hence the result (6.2.1),

The above theorem is the another definition of harmonic
functions. The function h is said to be harmonic on the open set
o ¢ RYif n has eontinuous second partial derivatives on i and
Qh = 0 on 4L ,

Thus the function ’Cy(see 6.2.7) is harmonic on R"™ and so

called the fundamental harmonic function for &Y with pole y.
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642,10 Theorem., The class of functions harmcnic on an open set
N, . ; .
4L & R is a linear vector space over the reals which contains

the constant functions.

Proof : It follows from the fact that the Laplacian is a linear

differential operator,

B Theorems If T is the fundamental harmonic function for

R™ with pole at the origin (see 6.2.7), then

when k 27 for n 72 hnd R .= S\(n-2) for n > 3,
n n n

Proof : ¢ is not continuous at the origin, but we can define a
distribution TQ y since it is improperly integrable. For any

ye D@,

AT,L(({') ALBNGKbRN Un j T Ay ax .

Since 471= 0, we can get

r
br, () = ) (Lap - ¢A0)ax
{
= lim (g - ¢at)ax.
=20 4cdxu<Rh

= "
R =+
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By Green's identity,

(\
AT'@ (¢) =  1lim 2 (4D ¢ - D T)ds
£20 x| =4
[ (
= lim } ¢Dp ¢ ds - 1im ) ¢D 7 ds.
n X n
¢ 20 jxp=g¢ ¢=>0 ux | = ¢

The first integral on thé right is zero, by (6.2.8 {e)),

and the second integral is equal-to kn(t(O) when kn =27 for
n = 2 and k= Sn(n—a) for/m 2 3, by applying (6.2.8 (d)). Then

by (3.1.2 (1)) we can’condlude that
Aﬂﬁc = RSO g
when k = 2'W for nS=mg—F——= (n=2) for n > 3,
n n n

D98 Theorem. If T is a distribution on o such that AT = 0O

on ;4 there exists a harmonic function h on .o such that T = Th.

B and AT = 0O

Proof : Suppose first that T is a distribution on R
e T n 5,
on R, Then for any ¢ e &(R), Tx¢ €C (R) (4,2.3), and

A(T*Y) = (4T) = ¥ = O which implies that T*ie is harmonic on R",

Let S} and L1/ s Where m is a positive integer, be the
m

Schwartz functions, Then by ({7}§p;23),(9;1;2(i)),and (BsBs3)



T8 )b, = s - g al
(Talydely s = T"(6:*“1/ ) el nfigd
m m m
o
= (T8, ) = Tu§ .
1/m 4 1/m
Let h_ = T*G/ » Since h *6/ and T*G/ have bounded
1 1 1" 97 1/
m m
supports, we can define distributions Th - and TT N and
{Ey "1/
m m
(a) T e = Tm /" .
h1*‘)1// _L*\'1/

Since h1 and h1* f;/ are locally integrable, for any ¢ c:ﬁ(mn),

we have, by (4.2.,2),

Tp our?/ * € =  BWE ADeS = (T.w 6, ), ¢ .

h1*o1/m ( i) il ny "1/ * ¢
Then Th *( = Th*61/ .

A 1/ 1
m
¢ _ P . r .
Now we claim that TT*ﬁq/ ] Ty ,1/m. Since T*)1/m is locally
m 4 i

integrable, we have, by (4.,2.2),

T £ ¢ (0) = (Tad’, )+ ¢ (O) ( ¢ ¢ R(RY)
T*ﬁq/m % 1/m L/ (
or TT*:( (‘() = (T* .'( ) (‘Q)o
‘I/m 1/m



Therefore i o = T*tg/ .

Finally by (4.2.16) we have

h,

If now T is defined on an open set w « R™, By (3.1.6)

There exists a distribution T' on Rn such that

T

/}(WC} g J(W(\)

whenever w < ;Oc.w. For Wa VAN VINK by the above proof, there

exists a harmonic function h2 on w1 such that T' = T'h on w1 and
2

so T, =T on w,, since 7' = T on w e Dut w_ is arbitrary, and
h2 1 1 1

thus we get the result.
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6.3 The Poisson Integrals

6.3.1 Definition. TFor a function f integrable relative to surface

o e et e s s s

- . | . " '
area measure on a sphere BB(O,Q)i—R « The Poisson integral T

f

of £ in D = 5(0,y) is given by

f(y)d s(y) (x & B).

6.3.2 Theorem. I, Aefineéd as ahove is harmonic on B = B(0,¢).

Proof : Using (5.2.30), we¢ can show that I, has continuous second

partials and that

|

,, 2 2
Ar,) = = B = epa s,
nl =B thy=-xi

A tedious, but straightforward, differentiation shows that the

integrand is zero for x € B. Hence the result.,

Let B = B(0O,¢) be a ball in r™. TFor any x € D and x # O,

choose x*é T on the radial line joining O to x so that

2

flxx W xe*l ¢ . Then



and is called the inverse of x relative to the sphere 72D .

6e3¢3 Theorem. If f is harmonic on a neighborhood of the closure

of the ball 3 = B(0,¢) and x < B, then

(.»
9 X 72- hxwz
flx) = T.(x) = =—— J Lm0 f(y)d s(y).
£ IS C) T . n
n B fy=xi

In order to prove the theorem we need

6.3.4 Lemma. If h is harmonic on a neighborhood of the closure

of the ball B = B(O4¥)4 /x,hEE 4B, ‘ant x # O, then

(i) for n= 2

A
h(x) _ _ 1 5 — o ‘:‘ll()P‘ xil NZ—X*“ \\‘ q S(y) .
- 247 AT n\ - e Hy=x 1t } ’
0 /
(ii) for n 2 3
-2 X
1 S 1 k% g \ \
h(x) = = h D -— s id s(y),
Spin=2) 5p n{n?-x e i 8 “y_x,“n-2’g

where x* is the inverse of x relative to 7B,

Proof :(i) By (6,2.8) and since 4h = O on B,

(a) h(x) = S [(-log Hy-xN)Dnh-th(-log(¥y-xﬂ{]d s(y)e

|
2T g
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Consider the integral on the rigcht as a function of x. Since

-log | y=x*Il  is harmonic on a neighborhood of T and by Green's
identity

F
(b) O = oo ,} l)rJ(J—X*H)W h-hD ( -log i y=-x* n)'d s(y).

3

Although it is not essential for the following argument, we shall

modify (b) to incorporate some constants for later use. By (6.,8.4),

1 ‘X , |\X” ] N
(e) . Llog { 7 {JDnh d s(y) = o0

since the factor in brackets is a constant. Moreover,

3 r
Dn[—log(ﬂxuﬁsy—x*ﬁ /%)_J = Dnl—log ﬂy-x*l(J,

since log(ﬂxﬂ/e) is a constant. It follows from (c),(b),and this

remark that

n ; M
. ‘ - ' \‘ i o * 4y \i
(a) O = E? J i=log ‘¥t"¥”£_.;Dnb th\ lag ; }]d s(y).
I apl Vo € )

It follows from (a) and (d) that

S R f VT
=t )| WXl M y=sx*h s Xy iny=x*ull |
(e) h(x) = 3N Llogk : ny-xtg)Dnh thglog (—E v “))jd s(y).
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Let © be the angle at the origin between y and x. Then

yex) _ (yax*)
(£ Ny itx i - BisE @ - Wynonx*
n
sy
Since (y,x) = 2. y.x. = l(HyH2+uxH2-ﬂy-xH2) and by replacing
j=1 33 2
H * | ) . / 1 \ - of * - 1
- /0 L t = C g
Hx* ¢“/1xn and Yy ¢ in (f), we obtain
_ dxf L y=-x™l -
s ¢oay-xp S =5

N

ubstituting (g), independéntly of y ¢ OB, in (e), we get the
result.

(i1) We follow the same steps as in proving (i) with

n+2

~log ly-xt replaced by Hy-xi. in (a) and with the appropriate

constant before the integral. If x* is defined as before,

-log I y=-x*il is also replaced by Hy-x*n_n+2 in (b), and the
constant before the integral in (b) is adjusted, then upon
multiplying both sides of the equation corresponding tc (b) by «

and subtracting the result from the equation corresponding to (a)

we obtain

F \
1 1 i
() h(x) = §;zn-2) g%[ N2 L*,n—2) Dnh

/ \
i1 \

- hD
eyt ry-x
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(€/uxu)n'2 , then by (g)

If we choose &

of  poed B I yx* B2
| ————. _” g _——""—-
Lxun 2 ﬂy—xln 2

for all ye¢ @Bs As before, the quetient on the right is

independent of 4 ¢ 38, ¥ith this choice of &, (h) reduces to

-

the equation in (ii).

Proof of the theorem : Consider the n = 2 case. Recall that

D f = (n, grad f). ~The suter unit normal to the surface 2B(0,¢)

at y & ¢3 is simply Jy/iyi = y/'e. With x € B fixed, x # O,

‘ - .
and x °~ the inverse of x,

grad log 'y=-xt = —X:E—Z for y ¢ 83 and
Wy=xH

’; - ! :
grad log(ifﬂ'%§:§7%) = grad logtéﬁﬂ}grad logly=x*| =grad logly=xii

i

i A oo A

R L
Therefore at y € 723
( lxh dy=x*i ¥ _y=x* y=x
Pn\ o8 Miyx ”) ) ! 2 T2 )
\ g ! /,/ ( jy=x*{ y=xU

Substituting x* = sz/uxuz into the right side of this equation,

and alsc using (6.3.4 (g)), we obtain
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D ilog \lxw yex*y 1 Ga—nxxz
Yy 100 v .-
i g BIE AT, X iiy-x:!2
for y& 23s Applying this result to (i) of (6.3.4),
1 3 92— “xu2
£f(x) = T 2Lyl 5 —stoa s(y) (x & B=i0}),
“Y #n Y y=xil

under the conditicns of the theorem. Note also that this equation

o B
K ";! v
holds when x = O since it reduces to f(0) = :“T(O). Then
Y, S 0’2- Hxhz
f(x) = I, (x) = 3~ —= f(y)a s(y) (x ¢ B).
£ E i/ | A,
V /0B Hy-xt

Exactly the same procedure is used to estiblish the representation

in the n 2 3 case.

6.3.5 Corollary. IfJf = 1 on the ball' B/ = B(0,¢), then I, =1 on B,

Proof : It follows from the fact that the constant function 1 is

harmonic on a neighborhood of T and by ISLPX 3) ,

"

If(x) fix) = 1 (x € B
6.3.6 Lemma. If f is integrable relative to surface area measure
on 93(0,@) and if there is a constant k such that f £ k a,e.(s)

in a neighborhood of x_€ 23, then 1lim  sup If(x) £ k.,
Hbit, -
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Proof : We first show that we can assume k) 0O, If this is not
the case, then consider f-k+1. DBy hypothesis, f-k+1 & 1 a.e.(s)

& - . N ’
k+1<x} = lim sup If(x) k1.

in a neighborhood of x and lim sup If
) X X X=X
o 0

8

1

Thus, if we can prove the k » O case, then the general case can Dhe

reduced to ite. Assuming k » O, choose & > O such that f(y) £ k

-
)

a.e«(8) for ¥y € Ba(xo,@) N 25, Then

1 ’\l: QZ_\}X $l2
Ip(x) = 5_? My=xar< oh 9B n £(y) a s(y)
n \ O {

Il y=%x i

t : "‘} ¢ "WX“' f(,y) d S( )
/ [
y Y4 R “, RN N N
S e ihy-xg‘ e 53! N\ g

It J1(x) and J2(X) denote the first and second terms,

respectively, then

fal
: \ 2 2
k ¥ ¢ =uxu
L SN
J,(x) £ = T {Hy=x < cloan o = & s(y)
n { (0) Hy=xi

7

-
Lo ) B g gy -k () =k (6.3.5).
nl 23 | y-xi

Consider now iJa(x)l. Suppose x € B(xo,ﬁ/2). Then Hy=-xi 2 %/2

when \\y-xou > 4 for if not we would have Il y=-x j éuy-xh+ux-x&tﬁ “o

Then for x € B(xo, £/2)
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iJ (y)' L 1 g . Qz-;ixilz ;f(y)!'“ s(y)
‘i - | = - il e ' & L0 ”,‘)3 Sm— IR Q S S
2 Unf (hy x i 7B , (5/2)n
ez—uxue i |
< : v)i a
= Snezi 72>n 33 !f(d). c S(y)c
Since ({x h-s p as X =3 X _, !J2(x) | = 0 as X X Therefore

lim sup If(x) £ lim. sup J1(x) + 1lim sup Jz(x) £ k.
XX XX X %

6.3.7 Lemma. If f is 4integrable relative to surface area measure

on fan(o,g), then Tor /x €60

U

lim sup If(x) £ lim sup f(x).
X > X XX

o o)
XeD8 X & 63

Proof : Ve can assume thet the right side is not +x, for
otherwise there is ncothing to prove. If k is any number greater
than the right number of the above inequality, then f(x) < k

for all x ¢ 23 in a neighborhood of x_e ®B. By (6.3.6)

I~

lim sup If(x)
XX,

x€DB

Ky

but, since k is any number greater than 1lim sup f(x), the
; . X=X -
o

Xe0D

lemma is proved,
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Bs5eD Theorem. If f is integrable relative to surface area

measure on 8B(0,¢) and u.s.c. at x_« 25, then

ir=

1lim sup If(x)
X=X

£ (x Js
O

T

X €D

Proof : By (6.3.7),

lim  sup If(x) LT3y sup f(x).
X3 X X=X

o o
xeD b, N W

Since 1lim  sup f(x)

F(x ) (5.1,
x—)xq ‘

X €90

we have the result.

6.3.9 Theorem. LetiS = PCL(0,p). If Ff € C(8), then I, is

It

harmonic on B and

lim If(x) = f(y) (y € 38).
XY 3

Proof : Since f is continuous on 5, f is integrable relative

o

to surface area measure cn S. Then If is harmonic on -

(6.3.2)e Since 1lim sup f(x) = £f(y) and by (6.3.7), we have
X >y

lim  sup If(x} Lt f(y).
SR
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Since I_f(x) = -If(x), we also have

lim  sup —If(x) £ -f(y)
X3y

1%

or lim inf If(x) £(y).

X -y

This shows that 1lim I.(x) exists and is equal to f(y).
x =y
6 +4 Superharmonic Functions
\p
5.441 Definition. Tf£/4/i¢ 38 open.subset of RY, oL () will
denote the class of extended real-valued function on .2

satisfying
(1) u is not ddentically +« on any component of
(i4) u )« on a4,
(iii) u iS l.SoCo on L .
ek Vi 3 -
Note that for any u k& (), Uuu(x> is defined whenever
ﬁ(x,g)c £l since u is bounded below ocn 2D by the lese.c. of u.

6.4.2 Definition. An extended real-valued function u on an open

set <« is superharmonic on . if u.eéf(iD and for every ball

D = B(x,¢) such that 5¢ a u is integrable relative to

surface area measure on 727 and
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n-1

Q N

\
A
ulx) 2 ML (x) = ] < uly)a s(y).
- Sy, € 0

6.4.% Definition. 4 function u defined on an open connected

set <1 obeys the maximum principle if sup u(x) is not attained

e L

B

on & unless u is a constant. There is a corresponding mininun

prineisle if iaf u(x) is not attained unless u is a constant.

X& L

I

. . n 2
6.4.4 Theorem. If o 4i& an open connected set in R, ut o (&),

'y

and for each x ¢ & there is a PR such that i(x,ﬁx)C Ll and

gyt
ulx) 2 AAu(X) whenever /p/ 6P 4 then u satisfies the minimum

" principle on L1,

Proof : Suppose there is/a point )x_¢ o such that u(xn) = inf uix).
) X4

Since u is superharménic on 4., =R < u(xo) = inf u(x) < + ® ,
Xt u

Let M =£ v :u(y) = inf u(x)}, which is a relatively closed subset
Xt

of oo by the les.c. of u. We shall show that M is also open.

Consider any y € M. Then there is a Cy such that 5(y’fy) C <

i1 C . . .
and u(y) = dmu(y) whenever ¢ < ¢y Suppose there is a point

~
©

14
z € B(y,ey)—M. Let & = iy=-zil » 8ince y& M, u(y) & ﬁku(y).

A i

; ,xJ
Therefore ul(y) = Mﬁu(y) or‘ﬁLu_ ) (y) = 0. Since u-u(y) 2 0

{ LY ¢ 2 s
on 23(y,d), u-u(y) = 0 a.e.(s) on 2B(y,d).  But since ul(z) » uly),

there is an &« such that wu(z) > « > u(y). By the l.s.c. of u
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there is a neighborhood U of z such that us « » u(y) on
U ﬂ’DB(y,g). Since the latter set has positive surface area,
u-u(y) > O on a set of positive area, a ccntradiction.  This

show that B(y,gy)i Ms; that is, M is open. Therefore M = @ or

M = 2o Dby the connectedness of s1 with the first possibility
obviously being excluded. It follows that M = < and that u is

constant if it attains 3{s infimun,

6.4.5 Corollary. If u dis /superharmonic on an open connected set

n £ $ A . .
< ¢ R then u satisfies the minimum principle on i .
’ it ]

Proof : It follows immediately from (6.4.2) and (6.4.4).

6e.4.6 Theoreme If u is superharmonic on a bounded open set

a c BY and 1lim . dinf ulz) 2 O For all x ¢ 23, then u > O
i Y @

Proof : It suffices to prove that u 2 O on each component of 2 ;
that is,we can assume that £1 is connected. Suppose there is a
point y ¢ 2 such that u(y) < O, Then u is not a constant

function, Define a function v on 2 by

v(x) = 1lim 4inf u(z) (x & A s
Z X

u is les.c. on o since u is superharmonic. DBy (5.1,1), we have

1im inf u(z) = ulx) (x & 2),
Z> X
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Therefore v(x) = 1lim inf u(z) = u(x) (x € <),
Z X
and so
v(x) = 1lim inf v(z) (o 0 sk s
7 = X

That is, Vv is l.s.c. on.al, and we have v 2 0 on @2 and
v(y) = u(y) < 0. Then it attains a negative minimum on 7 ,
infact on o (since v 2-0O/gn @il )3 but this contradicts the

minimum principle. Therefore u 2 0 on 1.

6.4.7 Theorem. Let u be superharmonic on an open set o and let
w be an open subset of <1 with compact closure w ¢« 2, If h is

continuous on w, harmoni¢ 6n W and u 2 h on ~»w, then u 2 h on w.

Proof : If h has the above properties, then it has the same
properties on each component of ‘w. DBy considering the components
of w, we can assume that w is connected. Consider the function
u-h on w. On Qw, u~h 2 0., 8Since h is harmonic on w, u-h is
superharmonic on w and cannot attain its infimum on w by (6.4.6).
As a l.s.c. function on the compact set w, u-h attains its
infimum on w and, in fact, on 2w. Since u-h 2 0 on W,

u-=h 2 0 on We
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g : \ .
64,8 Theorem. An extended real-valued function u ¢ o (2) is
superharmonic on 1 if and only if it satisfies the following
property :
(*) If w is an open subset of A with compact closure
w ¢ < , h is continuous on w, h is harmonic on w, and u 2 h on ow,

then u 2 h on w,.

Proof : The necessity-dis—{6.4,7) . Let us prove the sufficiency.

We let Cfo(ﬂ) Le the elasg of all functions u ¢ « (i1) and satisfying
(*). Consider any u gzﬁqﬁﬂ) and any i(x,g):; £t « Bince u is

les.c. on 2B, there is a sequence (fmﬁ of continuous function on

95 such that f_ Y ubn B (5.1.11). Let

I on Z) o

£ on 0D «

Then hm is continuous on B , harmonic on 3 (6.3.,2) and u 2 f 2 h

on 3D. Since u satisfies (*), u 2 h_ on B. Therefore

with the latter equality holding since x is the center of the hall

B (6.2:1)e Binece £ * u on A8, ulx) 2 lim Jﬁ( (x)
e - m = 4+ m
)«lim £ (x) = Jwﬂu(x) by the Lebesgue monotone convergence
m

m-—= +&0
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theorem (5.2.6). Hence the result.

4 s n
6.4.9 Theorems If u is superharmonic on an open set . < R,

then for every ball B = 3B(x,{) such that B¢ .

¢ z )
w2 ) = B U () ar.
n ~n =2 u
{ 0
Proof : Suppose u is superharmonic on 1. For any ball B = B(x,k>
such that [ < , if —ulx) = + R, the inequality is trivially true.

o
Assume that u(x) < +4. /8ince u(x) é«-"/!«u(x) for all 0 < r< ¢,

r
u(x) s M () —1"n-1 J uly)d s(y) (0 <reyg)
= g r AB(x,1r)

I

g u(y)a s(y) (0<% r <« e).

or Snrn_1u(x)
' 23(x,7)

By integrating with respect to r over (O,¢),

Ny Q . g
S ( J u(y)d s(y))dr = u(y)dy
M (x,r) B(x,e)

n
s
_.n_tj._ u(x)
11

”/

0

u(x)

I
I
pm—
2] PN
(@ ey

Iﬂym.ﬂyﬂdr
n 9B(x,r)

s

¢
= S g Plr(x)dr
Jhtu
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= ""’A/ (X)a
u

s s 2 n
6.4.10 Theorem. If u is superharmonic on an open set -+ ¢ R°,
then u is finite a.e. on 1 relative to Labesgue measure and

locally integrable (with respect to Labesgue measure) on <t ,

Proof : It suffices to show that u is finite a.e. on each of the
components of O . We might as well assume that <3 is connected.
Since u is not identically + % on <t 4 there is at least one point

of o where u is finiteds Tet

M= {x £t u is finite a.ed On ﬂ(x,e)c»ﬁ(x,g)é.ﬁ~for some O%.
M is nonempty since there is.at least one point of 1 where u is
finite and, according te (644,9), u is finite a.e. on each ball
in & having this point as dits center and its closure is in 7 .

We first show that M is open. Suppose x & M., Then u is finite
a.e. on B(x,e)C ﬁ(x,g)c i for some p > O, Consider any

y & B(x,g) and the ball B(y,g), where 3% & = min {ly=x 1l ,

e -lly-x!!}. Then B(y,E)C‘L(x,() and u is finite a.e. on B(y,é);
that is, y € M. This shows that B(x,g)ﬁ M and that M is open,

We next show that M is relatively closed in . . Let (Xi) be a

sequence in M with Xj — X &€ as j —»+k, Since . is open,
there is an % > O such that B(x,¢) < B(x,4) ¢ <1, Choose 3,

so that X, e B(x,b/z). Since X € M, there is a ¢> O such
(8} O
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that u is finite a.e. on B(Xj ,Q). In particular, u is finite
ol

BaBs ON B(xj f) i 3(x,?/2) which has positive Lebesgue measure.
9
o

It follows that there is a point z € D(xj ,Q) th B(x,i/z) such
0

that u(z) < +%. 3y (6.4.9) u is finite a.e. on R(z,i/g) -

B(z,i/a) ¢ 4. 8Since x € 3(z,€/2), there is a ball B(x,d) c

- )\ = 4 . . - . .

B(x,d) c b(z,h/z) on which u/is finite a.e.. This show that

x € M and that M is relatively closed. Since M £ @, M = L DLy
the connectedness of &',/ /By definition of M to each x ¢ M = <L

there corresponds a R(x,ex) = H(X,HX) ¢ 22 on which u is finite
2es€ee Since u is finite a.e. on each element of a countable

covering of .., u is f¥niEE el pn’ o .

Next, we will show that u is locally integrable on < .
Consider any compact set K in 1 , there is a finite number of
balls with centres xj and radii Ej such that ﬁ(xj,ei)LIL,j=1,...,m
m

and K © U B(x,,p.). Since u is finite a.e. on arbitrarily
j=1 Y

small balls containing each Xy We can assume that u(xj) <4+ AR,

4 R
Then +& > u(xj) > #¥u3(xi) for each j« Since u is bhounded

m
below on U ﬁ(xj,ej) we can assume that u 3 O on this set., Then

J=1
n
N m m
\ S N Sn_e_j
-0 < duly)dy ¢ 2 u(ylay £ ) e u(x,) < + 0
X j=1 R(xj,gj) j=1 J

and u is locally integrable on .{o .
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: : 1
Belia1 Theorem. If u is superharmonic on an open set L & R

and D = B(x,e) is a ball with B € .o , then Iu is harmonic on B

and u 2 Iu on B,

Proof : We can assume that u 2 0 on A7, Since u is l.s.c. on

03, there is a sequence ifw> of non-negative continuous functions

on 31 such that fm?u on @8 (5,1.11). Let

§ If on By
m
v 4
m
i on B8,
m
Since u =2v_ = f on @By v dis continuous on © and v is
m m m m
harmonic on B (6,3.2), u = v_—on—DB— by (6.4.8). Now (vm\ is
an increasing scquence of functions harmonic on B and v = lim T
m-= +&
s . 5 b
is either identically + ® or harmonic cn 3 (see [44, De33)e
Since u is finite a.e. on a (6,4.10) and u 2 v, v is harmonic
on B, It also follow from the Lelbesgue monotone convergence
4 & e .
theorem (5.2.6) and f 7 u that lim I, = I, on 3, dcevy, v =T

m -+, m

on B‘.

: ; .
644412 Theorem. If u is superharmonic on an open set -2 £ R
e £

-
7 |

and B = B(X,g) is a ball with 3 € i, then ﬁ%u(x) is a monotone

decreasing function of & on (O,g] and



106

1lim 7% (x) = ulx).,
u

+
£-0
Proof : Suppose 0O < ¢ £ ¢, Define a function v on R(X,P) by

v =1 on B(x,p)e Then u 2 v on B(x,p) by (6.4.11). Since

-— b\ -
Blxye) € *(x,@)‘i~ﬁ and v is harmonic on the latter ball,
1 o7
d s M(
/" (x) 2 * (%) 2/ x) = i (x)
v u

U X . q
This shows that u”u(x) is monotone decreasing on (O,'U. Since

u is l.s.c. at x, {y cu(y) ¥ u(x)- ¢ 5 is a neighborhood of x for
each ¢ > C and

o

p) G
M )y S RIS < ul(x)- <

for all sufficiently small & . This shows that

~

O 4 o |
'}Lu(x) Vooulx) as o v o',
6e4e13 Theorem. If u is superharmonic on an open set L. ( R
, compact -
and w is a relatively open 8et in .1 , then there exists an

0

increasing sequence (um) of C superharmonic functions on w such

that U = lim u on W,
m--—=+4
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Proof : Take another relatively compact open set ;L1, such that

Wooow oodig G, sk, Without loss of generality we can assume
c

Let O < ¢ <dist (w, 1. ). For every x e w

that u & 0 on 1 1

1.
and for every positive integer m, we define
;

(a) u (x) = u.s {/m (2) = ) u(y) '>/‘ (x-y)dy,

Hy=-x 1 ¢ & m
m

P

7 & v -
where 8) is the Schwartz function,

2D

e

Step I u € € (mYe

Using (5.2,3), we can show that for every multi-index r,

Py

< \
Ju (x) = 3
m

=ik

2%
uly) Bx gz(éc-y)dy (x & w).

Lyl e M
m

oo
Hence u, € C (w).

Step II u is superharmonic on we.

4 ©
It is encugh to prove that um(xo) > J%u (xo) for all m,
) m

whenever ﬁ(xo,p) ¢ we For any ball B(XQ{?) such that ﬁ(xo,g) C W,

we have
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( Voo
3 uvn(z+xo)ds(z) = | J u(z+x -y)f (y)dy ds(z)
llz!ﬂ:e H’Z‘J:.'Q%\_ ity (f: !"’1 /

m
g |
= 3 o u(z+xo-y)ds(z))6/i(y)dy
i

{',yn<";'\.uzu=.€ /' onm
m

3 . -1
& B S/ Qn e C‘/i(y)dy,
My e ¢ m
m

according to (a),(5.2.9)/ /ApAXE. 42N, respectively, Therefore

'A\l.! Q " g 3 & / 3
c'bum(xo) = g—:p_1 . um(z+xo)ds(z) L u(xo—y)t)i(y)dy = um(xo,g
n\ Hzi=p hyhh¢ & m
m

Step III um £ u fgisall mnm.

Consider any x_ € w. If u(xq) = + #®, then there is

nothing to prove. Assume that u(xo) < + A ¢ Then

& \
um(xo) = S u(x -y? (;( Ydy = ‘ dr! E u(x -y) G/(y)ds(y)}
hyics m o \iy m /
m

E Lo \

5 3 C/ (r)dr \ u(xo—y)ds(y)l

I /

|§tl
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1% f
- ; |
p LB gl 15/ (r)ar " 3 u(x «y)ds(y) i
~ 4. 3 n“" (@] }
0 - S r ) K
m n liyi=r
Therefore,
- - P o
(b) u(x) = ™ g rn"qifl (x ) 6( (r)ar
m o B n u © 4,
./ C S
m
, X
& \ m g rn*qué(r)dr‘-u(x )
< n . o
O -
m
= u(xo),

where the inequality and the final equality follow from (6.4.11)

and {(6«2¢2), respectively.

3
Step IV LI SO for all m.
Put = —=r . Therefore
u+1
. (m+1)€
[ —— n=1 n-=14; m /
{ m+1 | m+ y v (m+1p\ { m+1 )
a0 =) BR) M7 oo o fetpl (22 o
m
1 Iv(m+1)p
m+1 n-1 4 m .
-SO 5, ¢ M " (_&(@ ap

m+1
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n
$ [ ﬁil & - | B ) s
since ({;\ =y ) = Lm+1\ Ci;* (t)‘ According to (6.4.11)
m m+1

and (b), we get

.4 &
{ n ne1 fil i
u_(x) ¢\ B g 2 M (x) 6§ (p) ayp
m 0 n \ u & N :
m+1
= u +1(x).
Step V u — U as m — # o9,

It is encugh td prove that for any x ¢ w, if k < u(x),

then there exists a positive integer m_ such that u_ (x) > ke
0

If k < u(x), by the l.svce of u there exists a neighborhood U of
x such that u(y) » k  for all y ¢ U, which imples that u(y) 2

f{i(y) > k¥ for all p such that B(y,p) < ﬁ(y,g) € U. For any
5 0, let m_ be such that g, |< @ Then by (b) and (BBt
O

4
{ /mo o Y,
- P Sl " - .
umo(y) = \)O Sy b JLu(y) Uf/mo(() dp

7
y k 5.0 Gz;mo(g) dy

D n
0]
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Sincé for any x ¢ wy the 1im u (x) exist#8j we have lim um(X)=u(x)
m=+ & m- +w

for ali_x € wi

3
6sko14 Theorems Let u € C7(2)s Then u is superharmonic on .

if and only if 4u & O on L ,

Proof : Let x ¢ £ and e > O be such that H(x ' E )& £ 3
—_— o o o' Lo

Then for all ¢ & Q’O, we have by Green's identity that

.\\ bu(x)dx & Dnu(y)d s(y)

It x-xo.-" < ¢ it y-xon = ¢
{
= 3 E‘n- Dnu(xo+€;t)d s(t)
it tn=1 ’
—— » ] 3
_ a1\ 2 (x ) s(®)
oL
itp="1 3
= (,.n"" o § u(x,)+(,t)d s(t)
TR gy=1
(a) - - s 2 Ma,
ne o u o

Now, if u is superharmonic on L, then by (6.4.12) we have
¢
that uMu(xo) is a monotone decreasing function of P and hence by

(a),
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B Au(x)ax £ 0 (tfé fo).

ux—xalte
It then follows from the continuity of Au that Au(xo) & Q4

Suppose conversely that Au £ O on (1. Then by (a) we

J

. E
get that ﬁﬁu(xc) is a monotone decreasing function of E on
(O,(“t. Since continuity of u /alene implies ;%u(xo)v—é u(xo)

as ¢ - 0", Hence we conclude that

—~
e
N
I~
[+
—~
b
~

(o<eégo).

664415 Theorem, If u is superharmonic on sL 4 then ATu £ 0 on
Lk o
In order to prove the theorem we need

64416 Lemma. If u & C-(4) and superharmonic on .2 , then

s
ATu & O

Proof : u is locally integrable on L, since u ¢ Ca(ﬂ). Then

Tu exists, Take any ¢ € & (a) and ké 2 O, we have

ATu(Y) = T (8¢) = .g u A ax,

Since Supp(%) is compact, there exists r » O such that

Supp (¢) ¢ B(O,r). Thus
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il
L\.Tu(LQ) = .) u f\l( dx
txlter
[ \
= 4 (u Ag - %,Au)dx + ¢ A udx
ixligr Rxh<r
(2) = B (u DY - \(Dn wds + J ({Audx .

2B(0,r) pxu<r

Since 713 is outside the support of g o we have that the first

integral in (a) must vanish. Therefore

D
1§l (%) & } i 4 udx X 0, since fdu £ 0,
u ¢

i x jf <2

That is, ATu £ 0,

Proof of the theorem : It is enough to prove that dTu 4 9 d9n

an open set w which is relatively compact in .. By (6.4.12)
o0
there exists an increasing sequence (um) of C superharmonic

functions on w such that u = lim u on we Then for all
m- + 0

¢ € A(w), we have

3

T, (\() =

m

um(x) p (x)dx for all m

W

1
"

and Tu(%) u(x) t€(x)dx .
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E)
Since uo ' u, and u and u are integrable on w, we have, by

the Lebesgue's monotone convergence theorem (5.2.6),

lim T (%) = T (y) ( § £ & (w))e
u u
m- 4+~ M
Replacing Y by ﬁ%, we get
1 D = < A
lim T ( f) Tu( )

m—=+3 m

or equivalently. by (3.4.1)

lim 4T (y) =/ AT (¢ (Lﬁe&(w)).
m++w‘% : X

Since u_ € Ca(w) and superharmonie on w, we have, by (6.4.16),

{ing

that AT 0 for all m.

Hence 4T L s

6.4.17 Lemma., If u, v are superharmonic functions on < and

Tu = Tv on L , then u = v on <« .

Proof : For any point x_ & &, let ¢ > O be such that B(xo,ib)ﬁil.

Take 0 < % 426, we can see that
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r
Tl %

{ \
J uly) s/(y—x )dy &= o u(x +z) a\/(z)dz
4 © (]
ol Y sl e v
! i\ <4
v /
| )
s | ar () u(xQ+z)ds(z)
& ' lzh=r
.2 .
\ _ Iy
<\ /A r™ 1<) M (x)ar.
O 1 2/ u O

By (6.4412) and (6.292)4 W&/ obtain

n i.'i, P
Mo (%) Lod s 2" (o) M (x dar
u O 0 n ?./ u (o]
P2
£ ulx) 5 s o1 ¢ (r)ar
o ¢
= u(xo)g
i.eog
ey e | (v) € (y=x day £ ulx)
otuxo £ quy»,byoy L P
L
Similarly for v,
e E
M) ¢ I ey £ vix).

Q 2
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Since T = T_ 4 we have
u v

[

)
) uly) § (y=x_)dy v(y) € (y=-x_)dy.

I 7 Ll
1 i’
4 Z
ZARN = ulx
Hence p v(x ) ( o)'
G
i ,
and dVe (x ) 2 vix ).
u o o

Taking 4% — 0%, by (644.12) we have
L , L .
V(xo) L u(xo) and u(xo) v(xo)
Then we conclude that u(xo) = v(xo).

6.5 Potentials

645.1 Definition. Let m be a positive integer and let 1m= min(T,m)

where ¢ is the fundamental harmonic function (Note that -Lm is

L

. 5 n o
real continuous and superharmonic on R7). Let m be a positive

/
Radon measure on " with compact support. We define
P (
= T - " n
v (%) 3 m(x y)%ﬂ&(y) (x &€ R,

]Rn
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M.
. / . - 3 3
64542 Lemmas (Um) is an increasing sequence of continuous

s . n
superharmonic functions on R

. M
Proof : Since {m £ 4 11 we have that Um £ U If K is a

—— m+ m+1°

compact subset of R, then for all x ¢ K and for all y ¢ Supp&m),

T%(x—y) is boundeds And since m has a compact support, we conclude

N
that Uﬁ is continuous onm R, Finally

~

€ 1 S o
J LU#(XO) = :p-1 U (x +pt)as(t)
m n X NElh=1

tl_ /4 S 3 1%(x0+et—y)gM(y)ds(t)1
N et

By (542.9) and (6.4.2), we obtain

Y
M x) = S — S T (x_+pt-y)ds(t)am(y)
M 0 Y N m Oe /M J
LA R® Snl =1
£ S T (x =y)am (y) .
r" v /VL
Then
P
m& (x ) L U/b(x ).
U/" (o] m (@]

M
This is true for all ¢ ) O and for all X € Bn. Hence Um is
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. n
superharmonic on & (6.%.2).

6$5‘3 Lemma, If X é Supp}M), then sup Uﬁt(xo) <+ 00
' / m

Proof : We first note that dist.(xo, Supp&&)) > 0. Let ¢ be a

positive real number such that ¢ < dist.(x _, Supp}M)). Choose
8]

m > C((6,0500040))s Then for all ¥ 6 Supg&u),

'Cm(xo-y) minOr(xo-y),m) = ’Z(xo—y)

IF~

CCCLHON /oo OB )
for all me« Therefore

ngxo) = Sn q%(xo—y)%/w(y) & ’C((i,O,...,qg%(Supgyw))

R

for all m, &So
— U{n”<xo> L T840y s+ 10 Ju(Supp(a) o

Since the right side is less than +®, we have the result.

. Y 5 n
6.5 4 Theorem. sup Um is superharmonic on R .
m ‘ 3

‘ M
Proof : From (6.5.2) and ([43, p.68), sup ‘Wm is either identical
m

to +o0 or superharmonic on R"., By (6.5.3), we conclude that

. " n
sup Uﬁtls superharmonic on R,
m
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64545 Definitione Le%/m be a positive Radon measure on ®R” with

AL
compact supports The potential i of/u on R is given by

A . g~

U (x) = lim U (x) (x € RY).
m
m—> +x

By the Lebesgue mcnotone convergence theorem,

lim U/?x) = 3 fr(x-y)d/u(y) (x € R™).

m
m —>+ o0 Rl
€

So U/tan be defined by

U/?x) = S ”I(x-y)g/4(y) (x € R™).

’Pn

iy

645.6 Definition. (Let S be a distribution on k™ with compact

supporte The distributional potential U° of § is

Note that the definition makes sense,since S has a compact

support and TQ? is a distribution on R™ (r is locally integrable

on Rn).
T
6.5.7 Theorem, ‘U/w = T g

148

Proof : Since U/&is superharmonic on Rn, it is locally integrable

on R (6.4.10). Therefore T M‘is a distribution on R". For all

U/



¢ € RR™), by (4.2.3), we know that T
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Ty

%
n* ¢ and U/ »y are in
U

o0 n
C (R")., Further by (h4.2.2),

ik

U

By (5.2.9), we can

T
U

/w,* ¢ (x)

/C ¢ (x)

i

see

Changing the variable,

T
A

* Y (X)

1

> Uﬂky)\f(x-y)dy
R
%

j
n n
R R

y-z)i/k(z)%(x—y)dy.

S- ST(y-z)L((x-y)dyc},w(z) "
[Rn Rn

we have
S S’Z‘( Yo(x=8=-z)dgdm(z)
R® RD i : /*

r
(1), (})nxg(x_g-z)fc(g)dp

1
/ R
(T,), ((T)y (k= §-2)))

(3w)z ((Iz*?)(x-z))

(T *(TT*{))(X).

/%
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Finally by (4.2.12) and (6.5.6); we conclude that

TT/%* L((X)

] (T,o1 )00 GO

’
ZAN SN

This is true for all € & (R™) and for all x € R7, Replacing

¥ by Cé and taking x = O, we get

P
T oLy = vy (o
WA ¢ (0)
or equivalently
T () - U’l‘jﬂ(({) ( @ eR®D),
M

whence the resulte.

6.5.8 Theorem. (Schwartz). Let T be a distribution on an open
set i € R™ such that AT £ O on Q and let w be a relatively
compact set in 0, Then there exist a positive Radon measure//t

on Rn with compact support and a harmonic function h on w such

that

U/k+h
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Proof : The last equality follows immediately from (6.5.7).
Let us prove the first one. Since AT £ 0 on 4, we have

-;RT/kn 2 0, where k_ is a positive constant (see 6.2.11). Then

by (3.2.8), there is a positive Radon measure Mmoon R" with

Vi

compact support in 1L such that

T = -AT/kn in  w.

/1{.
Since U’ is a distribution, we can take the laplacian

T
/W = A 0% = *
s’ < HEERL -\, A,

P

Substituting ZXTT by —knTS (see 6.2.11), we have

Ao '

U = T *x(=-k T ) = =k T *T )
( ) Cu ( n’ g - (/M 5
= —kngﬂ’.

T

Hence A(U7 ) = Ar in  w.
T

or A(T-U/w) = 0 in  we

By (6.2+12), there exists a harmonic function h on w such that
T
T-UW/V = 4 in w.

Hence the first equality.
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6.5.9 Theorem. (Riesz Decomposition Theorem). Let u be a
superharmonic function on an open set L < R" and let w be a

relatively compact set in L. Then

u(x) = S’t(x-y)@/b(y) + h(x) (x & w),
W 7

. . n .
where/uns a positive Radon measure on R with compact support

such that
AT
T, =- —2 4pw/(k = a constant, sce (6.2.11))
/ kn n

and h is a harmonic function on w,

Proof : By (6.4.16), ATu £ 0, and hence by (6.5.8) we can get

T e 1P

W on w,
= (U #h™)

where h”* is a harmonic function on w and/w is as stated in the
A
theorem. Since U +h" is superharmonic on w and by (6.4.17),

we conclude that

%
u = U +h on W,

le@a ’
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u(x) = g (x-y)am (y) + h'(x)
o
R
(
= j @(x—y)%/k(y) + Jéi(x-y)%/W(y) + h¥ (%)
w
= J Tix=y)am(y) + h(x),
i /
where
h(x) = S’t(x-y)%/%(y) + h*(x) (x e w),
c

W

The proof will be complete, if we show that h is harmonic on £ .
Since for any y € Supp&ﬂ@, the function x ¥ (x-y) is harmonic

on we Hence by applying (5.2.8), we have

ZS(X) g ’t(x~y)%/¢(y)

C
w

.
VA 0 (xep)am(s)
ic (x) o /ﬂl J

n

That is, 5 ’t(x—y)é/w(y) is harmonic on w.

C
w
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