CHAPTER V

BOREL ME.,SURES

In this chapter we study some properties of the semicontinuous
functicnsand the representation of Radlon measures in terms of Boxrol
measures. JlLater on some well-known intepgration theorems will also

be discussed .

e |

The materials of this chapter are drawn from references [2?,
]

[3],[4]:]6],[8] ana [9].
5.1 Semicontinvous Functions

Let .. be an open subset of R™ and f a mapping of L
into the extended real line R, Tor each x =« L let N(x) be the
collection of neighborhoods of x. If A ¢ L1 and X, is any point

of Z, we define

inf f(x);
X&Uni’\. ;

Y— o

i

lim  inf f(x) sup
X X Ue N(xo)

P

x& A

(5.1 oa)

=
1lim sup f(x) inf i sup f(x) | ;
X X, UEN(XO) Lx(-U oA

X €A

If A = o we simply write 1lim inf f(x) and lim  sup £lx)s

X X X=X
* (0] Q
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5e1e1 Definition The function f is said to be lower semi-
~continuous (l.s.c.) at a point xoe.ﬂ.if f(xo) = 1im inf f(x) and
XX
o

upper semicontinuous (u.s.c.) at a point x b if £(x )=1lim sup £(x).
X=X
o

The function f is said to be leSeCe On A (UeSeCe On ) if leSeCe

at each point of A (u.s.c. at each point of < ).

Clearly, if f is l.s.c. /at X then ~f is ue.se.c., at this

point. Hence we need consider only lower semicontinuous functions.,.

5e1.2 Theorem., A mapping f: o — R is l.s.c. at x_ € 2 if and only
if, for each « € R such that « < f(xo), there exists a neighborhood
U of x_ such that, for all x €& U, we have « < f(x).

Proof : If the condition is satisfied, we have that ® £ inf f(x),
xeU

so that f(xo) £ sup I¥f I(X) = Iim _3naf f(x). But in fact,
U xeU X=X

lim inf £(x) £ £(x), so we get f(x 31894  4nf £(x). Therefore
X - XO o X - xo

f is l.5.c. at xo(5.1.1). The converse is immediately true from

(501 01) and (5.1.&)0

5e¢1¢3 Theorem. A mapping f: & — R is l.s.c. on 2 if and only if,
for each « ¢ R, the set f"1((u,+ w}) of points x at which f(x)>»
is open in & (or, equivalently, if and only if, for each « € ﬁ,
the set f-1([- w,:@) of points of x at which f(x) £ X is closed

in o )o
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Proof : (5.1.2) implies that, for each « ¢ R, the set f-1((x,+m] )
is a neighborhood of each of its points, so we get the result.

The equivalent assertion follows by taking complements.
5.1+t Theorem. Let f, g be two mappings of .o into R each of
which is le.s.c. at a point xoe {2, Then

(i) f+g is lesece at x_ if f(x)+g(x) is defined for all

X e L, and

(ii) sup (f,g) and inf (f,g) are l.s.c. at X e

Proof : (i) The result is obvious if f(xo) or g(xo) is equal to

-+ If not, then we have f(xo)+g(xo) > = ® , Every number « € R
such that « < f(xo)+g(xo) can be written in the form « = p+ [,

with p < f(x_ ) and y < g(x ) (it is enough to choose y such that

ok -f(xo) < Y < g(xo)). By the hypothesis, there exists a neighborhood
U of x_ such that, for all x € U, we have p < £f(x) and y < g(x)
(5.1.2). Tt follows that X = p + § < £(x)+g(x) for all x € U.

Hence the result (5.1.2).

(i1) For every number « & R such that « < sup (f(xo),g(xo)).
we have & <« f(xo) or & < g(xo). By the hypothesis, there exists
a neighborhood U of x_ such that for all x € U, we have « < f£(x)
or A < g(x)(5.1.2). If follows that « < sup (f(x),g(x)) for all

x € U, Hence the result (5.1.2). The other case is analogous.
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51,5 Definition. Given a set .2 and any family (fh)oe 5 of

mappings of 2 into R, the upper (resp. lower) envelope of the
family is defined to be the mapping x#— sup f (x) (resp.x gsinf f (x))
he A re

of 4 into R. It is denoted by sup f (resp. inf f ). We have
MNe A NE L

sup (=f ) = = inf £
red A Me

51.6 Theorem. Let . be an open subset of R" and let (fh) Y

be a family of mappings of «a into R. If each fh is l.s.c. at

a point X € 1. 4 then the upper envelope f = sup f is l.s.c. at X e
. Ae A

Pyroof : Given any « < f(x ) = sup f)(xé), there exists by the
At A

hypothesis a .z ¢ A suchethat==gli'< £, (xo). Since f_  is lesSecCe
o

)\O

at the point X s there exists a neighborhood U of X, such that

& & £y (x) for all x € U (5,1.2), and therefore K< fy (x) £ £(x)
(o] 0

for all x ¢ U, Hence the result (5.,1.2)4

541.7 Theorem. A mapping f: < — R is continuous on o, if and

only if it is both U.s.c. and l.sece on 2 .

ProQ£ : If f is continuous on 1, then for any X, 6 b,

lim inf f(x) = f(xo) = lim sup f(x). Hence, by (5.1.1), f is
XX XX

both u.s.c. and l.s.c. on 1 « The converse follows by reversing.
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5.1.8 Theorem. The upper (resp. lower) envelope of a family of
continuous mappings of .o into R is lower (resp. upper)

semicontinuouse.
Proof : It follows immediately from (5.7.7) and (5.1.6).

5¢1¢9 Definitione. If A is any subset of a set .« , the characteristic

function of A (usually denoted by ;{\) is the mapping of 4 into R

such that 'XA(X) = 1.for all x €& A and ‘Xq(x) = O for all x € L. =A,

So we have Z:n_= % ,X¢ £/00,) and . A = 1= XW'

LL=f

5.1.10 Theorem. A subset A of - is open (resp. closed) in 1

if and only if X;& i8”71/s sERABEESPs\ UeSsCe) ON 1. &
Proof : This follows immediately from (5.1.3).

5111 Theorem. If"f is l.s.c. on A"C R™ and there is a real-valued
continuous function g on R™ such that f 2 g on A, then there is
an increasing sequence of continuous functions (gm) on R such that

lim g = f on As
m
m-—+&K

Proof : Replacing f if necessary by f-g (which is everywhere defined),
we may assume that f 2 O and somewhere finite (the case f = + » is

trivial). For each positive integer m and each x ¢ R™ define

gm(x) = dinf 2 f(y) + m ly=x| : 7y ¢ Aj.
\ ;
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This is finite for each x. Clearly f(y)+m|y-x!| £ £(y)+(m+1)]y=-x|
L . AT e N /
for all y, so gm(x) £ gm+1(x) for all x. Also gm(x) 2 inf £(A)

2 g(x). Let X, and X, be any points of R™. For every y in A

we have f(y)+m|y-x | £

% g 3 .
A f f(y)+m{!x1—x2§+lx2—yd =(f(y)+m;X2-y]j+mlx1-x£ ;

So gm(x1) L gm(x2)+m |x -x_1

17X 1 Interchanging x

1 and X5y We get

!

P Therefore gg

gm(xz) £ gm(x1)+m Ix1—x (x1)-gm(x2)’é m]x1-x21,

m

which proves that 8 is continuous on R".

Finally, let X, ke a point in A; we must show that

gm(xo)-~+ f(xo) as m =+ + %, Let k be any number less than f(xo).

By the l.s.c. of f, there is an ¢« > O such that f(x) > k for all

X eB(xO,i). Now choose a number m, large enough so that g(x)+m0£> k.
If m > m_, then in the expression f(y)+m!xo—yi either lxo-yf 3 4

or y ¢ B(xo,i). In the first case, f£{(y)+m ]xo-yl 2 g(x)+ms >
g(x)+mo& > ke In the second case, f(y)+m] xo-ylé f(y) > k by the
choice of =« Then k is a lower bound for f(y)+m Ixo-yl, and by
definition gm(xo) 2 k, Since m was any number greater than m_,

and lim gm(xo) exists, lim ¢ (xj) = k. But k was any number <f(xc),
J
m- +0 m =+ 0 ‘

so lim g (x ) =2 f(x ).
m-=+n = &

On the other hand, in the definition of gm(xo)‘we can take
y = Xy because x_¢ A, So one possible value of f(y)+m 'xo-y, is
f(xo), and gm(xo) £ f(xo). Since this is true for all m, we have

lim gm(xo) L f(xo). Thus, with the preceding inequality, proves
m-+ o

gm(xo)—% f(xo) as m-y+ i,
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5¢1.13% Theorem. Let f 2 O be a l.s.c. function on an open set

N ¢ R, Then for all xoe £l

n

f(xo) sup &Q(xo).

Proof : The inequelity f(xo) é.?f? ‘{(xo) is clear. Let us’

¥ ELY W€ R (L)
prove the reverse inequality. For any xoé;il-and any k é.f(xo),
by the l.s.c. of f, there exists a neighborhood U of X such that
k < f(x) for all x € U.  Let B = B(xo,z) be a ball with the
compact closure B € U./ Then, by (2.2.5), there exists a function
4 € B(Q) such that 4 (x) = 1 for all x ¢ B. Let ¢(x) = k 4 (x)
for all x € B and equal to zero otherwise. Then € (L), ¢t £

and L{/(xo) 3 k, Since k is arbitrary, we conclude that

N

sup tq(xo) 2 f(xo)»,
pLf,pe D)

whence the result.

5.2 The Representation of a Radon Measure and

Some Fundamental Results on Integration Theory

In this section we will show that there is a one to one
correspondence between a positive Radon measure and a positive
Borel measure. Finally we will state some well-known integration

theorems without proof._
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Some definitions and facts from measure theory are assumed,

but we will recall some definitions and facts of Borel measure.

542,17 Definitions. Let i be an open subset of En, and let 1

s

E
be the & - algebra generated by the class of all open (or closed)

subsets of 2. The elements of ¥ are called the Borel_setz of L.

A positive Borel measure »/ on .2 is a positive real-valued

function on & such that

(1) S A0,

(i1) if K, 4 AZ,...E ¥ is a sequence of disjoint sets,
Cw & s
then /(U A.) = F /7%/(a),  and
j=1 © = J

3
(iii) “(X) <+ 9 for every compact set K € A1,

If £ is a mapping of {1 into &, then f is said to be

Borel function provided that f_q(V) is a Borel set in £ for

every open set V in R,

5.2.2 Examples. (i) Every continuous function of 4 is Borel
function.

(44) Every semicontinuous function of <L is

Borel function.,

(iii) If A is a Borel set in .2 , then the

characteristic function ;Lq is a Borel function.
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5.2¢3 Remark, If f and g are Borel functions on ., then so are

i1fY, f+g, fg, max (f,g) and min ({,g).

The following theorem will show the {1 -1 corresponding

between a positive Radon measure and a positive Borel measure.

5.2.4 Theorem. (The Riesz epresentation Theorem) Let £ be an

open subset of Qn, and let M be a positive Ladon measure oanCa).
/

Then there exists a & = algebra 8 in . which contains all
Borel sets in < , and there exists a unique positive Borel
measure ) on > with represents m in the sense that

M) 2 yorad

/

-
h {8

for every f € K(2) and which has the following additional

properties :

(1) Y(K) < + x for every compact set K = 1,
(ii) For every I € 13 , we have
F iy . f " )
Y(E) = inf {Y(V) : E <V, V open|.

(iii) The relation
diE) = sup-%U(K) : KCE , K compact }
holds for every open set B , and for every E & 05> with J(E) < +0,
(iv) IfE€Y, ACE, and J(E) = 0, then A& L.

The proof of the theorem will be omitted (for the completed

proof see [9], p.40).



Convention :By the uniqueness of the positive Borel measure 2 in

the theorem, we shall simply write S £ %/b instead of ) ¥ a4 .
0 L

Now we will state some integration theorems which will be
used repeatedly in the next chapter. Since they are already
well-known, we will state them without proof (for the completed

proofs see e.g.,r9] Ja

et e o e et e e e

Borel functions f on £ for which

Q !fl d < + 0,
o/ |

The numbers of L&M) are called Lebesgue integrable functions

(with respect to m).

5.2.6 Theorem. (Lebesgue's Monotone Convergence Theorem) Let (fm)

be a sequence of Borel functions on £ , and suppose that
(1) 0b fq(x) < fz(x) 2I0EREIRY 2 for every x € 41

(i1) fm(x)-—» f(x) as m — +x, for every x € L ,

Then f is a Borel function, and

lim § SEV 3 Fam,

m-—>+&
5¢2.7 Theorem., (Lebesgue's Dominated Convergence Theorem) .

Suppose (fm) is a sequence of Borel functions on < such that

f{x) = lim £ (x)
m —> + o0 .
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exists for every x € &+ . If there is a Borel function g ¢ L&M)

such that

;fm<x)! £ oglx)

for all m and for all x & &, then f € L(m) , and

~

v {
lim 5 f am = Jofdam .
m —>+ £ 5 / L /

5.2+8 Theorem. Let £ and K be open and compact subsets of mn,
respectively, let Supp&u) = K, and let (x,y) + f(x,y) be
a real-valued function on. 42 xK with the property that for

each y & K, the function X > f(x,y) is continuous on L .

Then the function h given by

h(x) = S flx,y) dvfi(y) (x € )
K

is continuous on Lk .

N
If further for each y & K the function x k—)%ﬁ(x,y)

J
is continuous on -4 , then
)
b "
gh(x) _ o
ax. = ax.f(x,y) d//Mr(y)o
J K J

(" differentiation under the integral sign ').
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5.2.9 Theorem. (Lebesgue-Fubini Theorem). Let X, Y be either

open sets or spheres in &n, let M , m be positive Borel measures
/

on X and Y, respectively, and » ® M their product.

If f(x,y) € L(A®), then

A

(i) G(x) fx(x,y)d/WL(y) (x ¢ X),

1S /

S f (x,y)d A (x) (y € Y)
x Y

and H(y)
belongs to L(A) and L/M) respectively, and

(ii) 5G(x)d A(x) = J flx,y)dAomw = J H(y)am(y)
X XxY 7" /M

which can also be written in the more usual form

{111) 3 an(x) jf(x,y)dAm(y)

amu(y) 5 flx,y)dn(x).
X v : / /

X

=< C—

These are the so-called ' iterated integrals " of f.

The following is the useful consequence of the theorem :

If f is a Borel function on XxY¥ , and if

S an(x) S!f(x,y)l d/Mz(y) <+ D,
X 4 7

then the two iterated integrals in (iii) are finite and equal.

In other words ' The order of integration may be reversed ¥
for a Borel function f on X xY whenever f 2 O and also whenever

one of the iterated integrals of {f| is finite.
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