CHAPTER IV
CONVOLUTIONS

In this chapter we characterize the c¢onvolution of
functions and of distributions, which we will use repeatedly in

the last chapter.

The materials of this chapter are drawn from references

[5]s {7129 « [11] ana fr].
L1 Convolutiop»of Functions

4,1,1 Definition. Let f, g be two continuous functions in R®
with one having a compact support. The convolution fxg of f

and g is defined by

fag(x) = S f(y)glx-y)dy = S f(x~-y)g(y)dy.
r® R®
be1,2 Remarks. (i) f«g . = gaf.

(ii) (fxg)*h = fx(g*h)(at least one has a compact

support).
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Proof :

(ii) (£*g)«h(x) SI}f*g)(x~zX]h(z)dz

il

ng(y)g(x-Z-y)dyh(z)dz

ng(y)g(x—y-z)h(z)dydz.

f+(g*h)(x)

| £ [(g+n) (x-3)] ay

g £(y) S g(x-y-z)h(z)dzdy

fl

]

SS f(y)g(x-y-z)h(z)didy.

Since fgh is continuous and has bounded support, we can change
the order of integration (apply Fubini's Theorem)., Hence the

result,

4,1.3 Theorem. Let f, g be as in (H#.1.1). We have

Supp(£f+g) & Supp(f) + Supp(g) (vector sum).

Moreover, if both Supp(f) and Supp(g) are compact, Supp(fs+g) is

also compacte.

Proof : Let x belong to the complement of Supp(f)+Supp(g) ; then,
for any y & Supp(g), x-y belongs to the complement of Supp(f),

hence

fxg(x) = S f(x=ylgly)dy = 0.
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Since both Supp(f) and Supp(g) are closed, their sum is closed

and so must contain Supp(fsg).

Clearly, if both Supp(f) and Supp(g) are compact, so is

Supp(£f*g).

4,2 Convolution of Distributions

/ {
4,2,1 Definition. Let T &€ R(R®) and ¢ € R(R®) (or T € & (R®)
and \(e&(Rn). The convolution of T and ‘P9 denoted by Tx 'L is

given by
TGO = T Cgey) (x ¢ BY),

The notation Ty means that the distribution T acts on a

function @(x-y) when the latter is regarded as a function of

the variable y.

k,2.2 Remark. If f is a locally integrable function on Rn,

we have

T Pix) = (Tf)y(q(x-y)) = Snf(y)w(x-y)dy = f*lg(x).
R

| {
b.2,3 Theorems If T € B (R™) and ¥ ¢ A(R®) (or T & & (R®) and

¢ & &R™)), then for every multi-index ¥y

b o T x
d3(T+) = (3 = T(J),
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o0
and T+ €C (R"),

Proof : For any h = (h1, Bsgvee, hn)éiRn, by Tayler's
—_— 2] -
formula applied to the function y h-ﬁigl{(x-yz,we get

n

-1(\r

& . !
Uh Lo‘y&a(x+h-y)—(/yk{(x—y)- Z hj %(ang(x-y))g

EZ:: h h tnn” u () %(x+1h-y)% where 0 < y < 1,
i, Jj=1 ’

[AV] BN

"
By commuting the order of differentiation (which is admissible by

the infinite differentiability of v )

N

n
i i—1j ¥ - - r' - e ‘
100710 (eemy )= B adyd ;hjdy(c)jt((x-y))}

Il

. 2 . r

< \ _’] A

iéj-1 hihjt!hn Bifiy%(x+lh y))
) 5

=

(the subscribt Yy signifies that the partial derivatives of the
functlon with respect to y). From this and continuity of

v h~+5 5 ¢ (x-y), we have that for any compact set K, there is

¥ 1]
positive integer Mr such that
n
. r P
=117 p o AL
Hhi™ 4 C_W(x+hey)=3 G(x-y)= ) h.0 @.4¢(x-v) }
| L yL? y y‘*’\ A'd j/,: i y( J{ v))
= = M E h, h Hhi™
i,j=1
which tends to zero as h -50. Thus for every multi-index r
n 3
r r s
-1 N N
(a) T O Gerhy)= D qGxmy)= b (9 tg(x }
Yy >ith X e E ke el & j{(x y))

converges uniformly to zero for y € K as h — O, Note that for a
fixed x, if H is the support of y ¢(x-y), then for all h with

fih {{ <1, and for every multi-index r, the supports of y &ﬁ-g%fx+h-y)
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are contained in the compact set H, = {x: dist.(x,H ) ¢ 1} .

Thus, by (a) with H,= K and by (2.1.9), we have that for fixed x

’,
{

n
-1
Yy > ih )Lke(x+h-y)- \(J(x—y)—jgI hj 3;; ¢ (x=y) }

converges to zero in m(Rn;H1) (and hence in D(R™)) as h — 0,

It follows that

n

-1f
T {(T*t()(x+h)-('1‘*‘f)(x)—3§ B (1. ) (o |

n
-1
1 E (Gt () >-j§_;:1 b2 (3xy)) )

n
-1
Ty{uhﬂ (*(x+h-y)-f(x-y)-§§;hj5j?(x-y))}

converges to zero as h — 0, Thus Txy is differentiable and its
partial derivativesazwaT*(ij). They can be expressed in another

way, because

i}
I

T30 = T

dT,
i e
B.Vj ((x=-y))

X.

d 0
3= Q(x-y)) T (= = ¢(x-y))
j vy oy

1
n

(3, 1) xp(x)

Now this process can be repeated as often as we please and so.by

mathematical induction, we have

ar(T*le) = (BrT)*Le = T*<a’1g>,

oQ
for every multi-index r and hence T+ €C (rY).
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[ n n A n
Li2.4 Theorems If T ¢ AR(R) and we R(R") (or T € % (R") and

w € &(R™)), then
Supp(T*¢) & Supp(T)+Supp(y) (vector sum).

Moreover, if both Supp(T) and Supp(y) are compact; so is Supp(T*Y).

Proof : Let x belong to the complement of Supp(T)+Supp(y) ; then,
for any y €& Supp(T), x~y belongs to the complement of Supp(y) ,

hence

Tx g (x) = Ty(%(x-y)) = O,

Since one of Supp(T), Supp(y) 1is compact and the other closed,

their sum is closed and so must contain Supp(Txy).

Clearly, if both Supp(T) and Supp(y) are compact, so is

Supp(Tx\) .
4,2.5 Definition. For any function ¢ s define %(x) = %(-x).

{ /
4.2.6 Lemma. If T €/®(R") and ¢ € RERM(or T € B(R®) and

¢ € & (R™), then T(Y) = T« §(0).
Proof : T« W(0) = T (¢(-y)) = T (¢y)) = T(o.

[
4,2,7 Lemma. If T € P(Q), then there are regular distributions

on &t such that they approximate to T.
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Proof : Let ©, be a function of % (&) that is equal to 1 for
1 :
' o - . -
Hx i £ 3 and consider d(; = (G@T)* (w, . For all (4 e;b(ﬂ),

&L
4L(Y)

Xi{r'i/(x)tg(x)dx 5%(@ § (-x)dx

4+ 4 (0) ((8, 1)+ €)1 §(0)

(€, 1) +( + £))(0) = (6, 1)((x $)¥)

(6, T)(F *¢) T(0, (& +)).

]

Now lim , © (x)(g/*\{)(x) lin BN (x) f &(y)ﬁe(x-y)dy
s 90" i ARV

= lim G(X)Sd’(y)ﬁ((x-—y)dy (s:aneo/(y) ((y))

4/-)'0

= 1im Q (%) Q (x)
L2007

= lim @ (x). lim _ ¢ (x)
¢=0" @ ¢20"

=1lim @ (x) = () .
Q,-’O 1%

Then T ,6K —= T as i/-+O+.
a3

!
4.,2,8 Theorem. For any T & @(L) there is a sequence (lr‘m) of

functions of @ () such that, for all ¢ & A),

T(¢) = 1lim Sly (x) @ (x) ax.

m =¥ +¢Q
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Proof : For any positive integer m, choose @m= el Let wm = ”4/m=
(e T)*o/ . Then by (4,2.7), for every @ e (0),
1V Yy

lim xlkm(x)‘&e(x)dx = 1lim SVL,I/ (De(x)dx = T(¢).
m

m =+ & T/m"*0+

The above theorem is sometimes taken as part of an

alternative definition of a distribution (generalized function).

. /
I
4.2.9 Theorem. If T € RAR™Y (6x T € % (R®)), then the comvol1ition

 +—> Tx&¢ is a continuous linear map of A(R™)(or@(R™))into %(R™).

Proof : It will suffice to prove that, for every compact subset K
of R, ¢ T« is a continuous linear map of ® (R™;K) into &(R™),

The topology of & (R") is defined by the seminorms

P
Q > max sup ,aw(x)!, H, compact subset of Rn, m 3 O,
Iplém x¢€eH

For any x € H and for any ¢ such that Supp(e) ¢ K, the function
1Y
v h+5;w(x-y) varies in R (R™;H-K). The restriction of T to

ﬁb(Bn;H-K) is a continuous linear form on this space. Therefore,

there is a constant p> O and an integer moz.O such that we have,

for all 4 €@ (R™;H-K),

q
max sup
iT(JP)} . fcﬂéma y € H=K 'eylk(y)l
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’T(“’)* - IZ?ZmO y € H-K la}'(y)l
q
P, . 1Rl

1Y
We replace 4(y) by a;q(x-y) with x € H and Supp(y) € K,

This yields

p, max sup 1. <P
Ty(axxg(x-y))[ £ R lal e _ ¢ gn by( axt((x-y))l ;

and by (3.4.1), we have

P max sup | br
0T (plx=y)) | &/ P e fob g | 042
which implies that
r
max  sup max sup
|pjem x ¢ H 'g)(T*‘(’(X))‘ b P fr}émo+|p| 2 6 R® ’BT(Z)L

This proves the asserted continuity.
The other case can easily follow by the above one.
4,2.10 Definition. Let S and T be two distributions on R"

of which at least one has compact support. The convolution ST

is defined by
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v
(sxT) (¢) = (s«(Tx9))(0) = §,(T (g(y+2)))

for all § & AR,

4,2.11 Theorem. The convolution ST defined above is a distribution

n
on R,

Proof : We can assume that T has a compact support, so that

T € 1{(Rn). Now we first show that the convolution S«T is a
distribution on R, By (4.2.9), the map ¢ T+ 4 is continuous
linear on QA (R™) into W(R™), since Supp(T) is compact. Also,
by (4.2.9), the map T t—>Sx(T+¢) is continuous linear on R(R")
into &(R™). So the compositeé map obtained from the sequence of
mapping ¢ ¢ h—)T*% h—%S*(T*%)k——é(S*(T*%))(O) is continuous
linear on R (R™) into R. Hence by the definition (4,2.10), the

convolution S*T is a distribution on Rn.

Similarly we can show that the composite map obtained from
' vy v v
the sequence of mapping N F> 4§ 8« > Tx(Sx) +— (T*(5x¢))(0)
is continuous linear on &(R™) into L. IHence by the definition

. n
(4,2.10), the convolution T+S is a distribution on R,

o - ,
4,2,12 Theorems If S € ND(R") and T € Z(R"), then for all

€ € DERM),

(8*T)* & Sx(Tx )

Tx(S*@).

and (T*8)* ¥
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|
Proof : Since S &€ A(R™) and Txy¢ € D (R™), the convolution

Sx(Tx) makes sénsé.By (o Bt
Sx(Txy) (x) = SZ(T*Q(x-z)) = SZ(Ty(%(x-y-z))).
Since S*T is a distribution on R" (4,2.10) and by (4.2.11),

(S5xT) * ¢ (x)

(84T, (g(x-t)) = 8, (T (g (x=y=2))).

Hence (S*T)=x

S+ (T ).

{
Similarly T € B(R™) and S«¢ ¢ &(R®), the convolution

Tx(Sx9) makes sense. By (4.2.1)
Tx(S*@)(x) = T, (8x@(x-2)) = TZ(Sy(Q(x-—y-z))).
Since T+S is a distribution on R (4.2.10) and by (4.2.1),

(T+8) *@(x)

(Tx8), (@lx=t)) = T (S (¢(x-y-2))).

Hence (T*S)x'@ T+ (S*),

{ {
4.2.13 Theorem. If S &€ N(R®) and T € (R™), then ST = T4S.

Proof : For any G, 4 & RRM),

1}
n

[(ssmrwe)s v = [se(ree]+ g sv (1) %]

]
I

S« [ (T2 ] (5% )+ (Txg)



= (Tw@)x(Sxy) e [gx (554

= Tx [(S*LP)* \{'] T*[S*(Z}o*\{)]

= Py [-S*((f*l*)] T*[(S*‘e)* 4’]

[(T+8) x ¢]w 3,

= [re(sr@]x 4

according to ([7], p.23), (4.2.12) and (4.1.2 (i)). Hence
(S+T)x @ = (T«S)x ¢ (¢ edE®M).
Replacing § by % and taking x = O, we get

(5+T)* § (0) (Ts8)x ¥ (0)

H

or equivalently by (4.2.6)
(5+1)(@) = (Tx8)(Y) ( ¢ eRARM),

whence the resulte.

! &
4.2.14 Theorems If S & @D(R™) and T € &(R™), then

Supp(S*T)‘AG Supp(S)+ Supp(T).

Moreover,if both S and T belong to &(R™),then Supp(Ss+T)is compact.

Proof : If § €& R(R™) is zero on the closed set H = Supp(S)+Supp(T),

then, for each x € Supp(S), Ty(%(x+y))is zero,because the function

y +> ¢(x+y) vanishes on Supp(T). Hence SaT(y) = Sx(Ty(%(x+y))) = O,
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/
Clearly, if both S and T belong to & (R™), then Supp(S*T)

is compact.

{ {
4,2.15 Theorem. If § & D(R™) and T ¢ 't (R™), then for every

multi-index r
r X r
O (SxT) = (DB} = S+(0T).

Proof : For all & € & (R™),

i
1]

r 34 r
B(S*T)x ¢ = (S¥T)x( D) S«(T+ Jp)

" ko
S*((O0T)wp) (5+(O T ¢,

according to (4.2.11),(4.2.3) and (4.2.12), whence the result.

{
4.2.16 Theorem. If T €& RQ(R™), then TaTy = To*T = T and T g

is called the convolution identity.

Proof : For all (p & a(r"),

T, (@) = (T*<T5*¥>><o> =TT (qly+z))).
But by (3.102 (i))’

(T5)y (¢(y+2z)) = Q(z).
Hence  T*T (¢) = Tz(w(z)) = T(y)

)
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which implies the result.
! n
4,2.17 Corollary. If T €& DN (R ), then for every multi-index r

r 5 e
dT = (BT‘S)*T.

r r

i g
Proof : OT = E\(T£*T) s (\()Té)*T.
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