CHAPTER TII
DISTRIBUTIONS

In this chapter, the definitions and some properties
of distributions and Radon measures will be studied in so far
as they can be applied in the following chapters. It will be .
shown that every Radon measure is a distribution but the converse

is not true,

The materials of this chapter are drawn from references
[11[3).51, (7] (10 +[1) ama [12].
3.1 Definition and Basic Properties

3.1.1 Definition. Let £ be an open subset of R%. A mapping

T+ D (L) — R is a distribution (or generalized function) on n if

(i) T is linear, and

(ii) for every compact set K in Q. , the restriction of T
to A ((13K) is continuous, i.e., for all compact sets K in 0L,
there exists an integer m 2 O and a real number (5,,0 such that

‘T(‘f)l £ pr, x(g) for all ¢ £ R @3K).

The distributions on O form a vector space, denoted by

/
&K ().
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3+1.2 Examples. (i) The Dirac measure T6 given by Ts({) = ¢ (0)

for all y ¢ gn(mn) is a distribution on Rn. The linearity is

clear and since |T£(%)]= [\Q(O)’ & su£ g ()] = pO,K(%) for all
Xe
%ev@(an;x), we have the result.

(ii) The Lebesgue measure Th given by T, (§) =

Sn\g (x)ax for all & @ (R™) is & distribution on R". The linearity
R

is clear and since 'T (@)‘z lgk{(x)dx; £ S;%(x);dx £ sup l%(x)l =
" LK K x €K

B Po K(%) for all y e ®(R?;K), where b= § dx is a real number > O,
. K

we have the result.
(iii) Let f be a locally integrable function
(with respect to Lebesgue measure) on o , i.e., for every compact

set K of o, S ‘f(x)ﬁdx < +® . The mapping T, given by Tf(f) =
K

S £(x)  (x)dx for all ¢ €A (Q) is a distribution on A and is
Q

called a regular distribution. The linearity is clear and since

le(&g)t = | f{ f(x)t((x)dx‘ L Iéli‘(x)‘((x)ldx £ P:l:é) l e (x) ' = PPO,K(\(’)

for all ¢ € R(A;K), where p = SIf(x)ldx is a real number > O ,
K ‘

we have the result

3e1+3 Definition. A distribution T on £ is said to be positive

if, for each function ¢ ¢ () such that ¢ 2 O, we have T(w) > O,
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3e1.4 Lemma. Let ¢q1p0 € R @) and 2 A distribution T

2.
on {1 is positive if and only if T(«€1) a T("\(/Z).
Proof : Apply (3.1.3) and the linearity of T to %1- Yoo The converse

follows immediately by reversing,

3+41¢5 Theoreme If T is a positive distribution on (L , then T
satisfies (ii) in (3.1.1) with m = O, i.e., for every compact set

K in . , there exists a real number B > 0O such that IT(y)| £
p ¥

p P, K(q) = p sup ‘Y(x)l for all \ee A3K).
. x¢ K

Proof : For every ( ¢ A1;K), we have
- s (x)] & glx) £ sup|y((x)| .
g P I

Since K is compact, there exists a Lfe;m(fn such that 4 (x) = 1

on K and is between O and 1 on - K (2.2.5), so we have

i~

sup l{(x)! 3 (x)e

- (%) (x) & (x)
=S HUKRLONARORN WhrIERSITY:

By (3.1.4), we get

"

- sup h{(x)l T(4) & T(y) £ sup l{(x)f T(4)
xeK x¢K

or, equivalently }|T( )| &€ T(4) sup x| .
% t xtK %

Let T(q) = P. Clearly p is a non-negative constant (3.1.3).

Hence the result,
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241.,6 Theoreme Let T be a distribution on <L . Then there exists
e { n y .
a distribution T on R such that T QB(W)' = T RAlw) where w is

an open set such that w ¢ wec i,

Proof : Since w is compact, there exists a function 4 ¢ & (1)
such that 4 (x) &£ 1 for all x ¢ O and 4 = 1 on w (2.2.,5). For

any ¢ ¢ 2 (R™), we have 4ioe (), We define
I
T (¢) = T(kY) (¢ € ARM).

/
Clearly T is linear and also for any compact set K in R™ and
any ¢ ¢ & ((Rn;K)
/ » .
lr@@] = |T@p] ¢ p onax sup 13 Gy | (peeamsx ),
ClrlEom x «K_ .

where p> 0 and Ko = KNw . >Since 44 = *{ on KO and equal to O

otherwise, we see that
/ andF ' r n
‘T(*@)‘ L P max sup la(‘f(x)‘{i(x))-l £ p max sup‘a%(x)' (geR(RT5K)).
Irleém xéKo irl& m xeK
I
Hence T is a distribution on R". TFor any 1 ¢ ®(w), we have
[
T o= TY) = T oD »

/
since 4 (x) = 1 on W. Therefore T*a(w) = Tla(w)'
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3,2 The Radon Measure

3,2.1 Notations. Let L be an open subset of R . Let K (2)
denote the set of all real-valued continuous functions on 1

with compact supporte. Clearly *K(A) is a real vector space.

For every compact subset K of o, let "K(N;K) denote the real
vector subspace of "K({l) consisting of the functions whose support

is contained in K (and is therefore compact).

34262 Definitione. M is a Radon measure on (L if/ﬁt is a 1linear
form on 'K({l) with the following property : for each compact subset
K of {L,there exists a real number P » 0 ( in general depending

on K) sﬁch that L/b(f)l £t p sup |£(x)| for all feK(a3K).
x¢K

3e2.3 Examples. (i) Let « be an open subset of Rn, and let xoﬁxl.
Let & be the mapping of "K({) into R given by §(£) = f(xo) for all

0
£f & K{)., Clearly o is linear and we have |f(xo)| £ sup |£(x)|
xeK

for all f ¢ X({L;K). Then dis a Radon measure on 1L+ This measure

is called the Dirac measure at the point X e

(ii) Let M be the mapping of K(R™) into R given
by N(£) = R.&f(x)dx for all fe'K(R™). Clearly A is linear and

R
we have !h(f)! - S £(x)dx | & Slf(x)’ dx & p sup ‘f(x)t for
. K K xeK

all f € K(Rn;K), where P = S dx is a real number > O. Then A is
K

a Radon measure on mn. This measure is called the Lebesgue

n
measure on R,
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(iii) Let S, = <{x : x € R® and lIx! = r} « The Riemann
integral of a function f defined on 'K(Sr) relative to the surface
area element dson S, is denoted by VL(f) ¢ B 4 f(t)d s(t). Clearly

Y is linear and we have lﬂ(f): = lg £(t)a s(t)t' £ Slf(t)’d s(t) ¢
K A K

p suplf(t)lfor all f &’K(Sr;K), where P = § d s(t) is a real
teK K

number » O, Then ] is a Radon measure on Sr' This measure is

called the surface area measure on Sr'

3.2.4 Definition. A Radon measure M on an open subset o of Rr™
is said to be positive if, for each function f ¢ K({L) such that

f 2 0, we have M (f) > O,
/ﬂ

34245 Theorems If f and g are two functions belonging to ‘K(Q)
such that f £ g, and/w is a Radon measure on {1, the%/ais positive

if and only if /M(f) L M(g).

Proof : Applying (3.2.4) to g-f 2 O, and by the linearity Of/M .

we can get the results.

3+42.6 Theorem. Every Radon measure/ﬁ on - is a distribution

T on L , where ?/~ denotes the restriction of /w on ®(Q),

/M,

Proof : Since @ (#) is the subspace of 'K(1), we have
T (@) = ¢ ),l L sup‘ (x)' (@ eaL;K),
l/ﬂ %" / . P xeK ,% ?

Therefore T is a distribution on O .
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/
34247 Example. A mapping T : ®(R) — R given by T(y) = (0)
is a distribution on R but not a Radon measure on R. The linearity

is clear, and also we have IT(Y)I - }%Qo)[ L sup !{(x)’ L
' x¢tK

P, () for all ¢ & R(R;K) and m £ 1. Hence T is a distribution
9
on R. Next, we will prove that T is not a Radon measure. We first
produce a sequence “fm) of functions in A (R) such that .~ 0
/ ;
uniformly but %&(O)-JkaO. To do this we define the functions fm by
£ (x) = ==K (x € R),
m
Then fm is infinitely differentiable. By (2.2.5), there exists a
function ¢ € A(R) such that ¥ =1 on [-1, 1] , and O £ ¢ £ 1

on R, Next we define the functions . by
?m(x) = %(x)fm(x) (x € R).

Then we can see that for all m, Supp (%m) ¢ K for some compact
1

ym

subset in R and kem&ﬁ%(ﬁ). We observe that sup

(x)
xeK Yﬁ

/ .
and (em(O) = Vm for all me From this we can see that
f
| i i 1
2o )| = J¢ @] = m = wm-l
L(m ,l{m m
which implies that

’ T(?m)‘ = m sup I{m(x)f (qme N (R3K)).
xeK

This shows that we cannot find any real number ga such that
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l7)| ¢ posup [£Go)] (£ € K(®;K)).
xeK
Therefore T is not a Radon measure (3.2.2).

3.2.8 Theorems If T is a positive distribution on £ 4 then there

exists a positive Radon measure M on Q. such that T = 3m, i.e.

S () dm(x) (ger@)).
Rn

T(y)

Proof : Let f ¢ K(), By (2.2.,4), there exists a sequence (?m)
in A () with supports contained in a compact neighborhood of

Supp (f), say K such that — £ uniformly as mes + 0 « Define
' i

/M(f) = lim T(\(m).
m-— + 00

We first show that the limit exists. Since K.is compact,

there exists a P> O such that, for all m,‘T(fm)[ £ P sup Ifm(x”
xe K

(3.141(ii))+ And since ¢, — f uniformly as m — +x, for any

¢ > 0, there exists a N(%) such that, for all m, n > N,
{‘{m(x)-f(x)l < i/L*F-' and tf(x)- tn(x)l ¢ i/l+P :

Then we can conclude that

| ¢, (0= g (0| < “/ap

for all my n 2 N and for all x ¢ (,which implies that for all m, n 2 N,

| 7Ce )= | = |70 =) | £ sz‘;l;’{'(‘ﬁmﬂ’n)(x’l L2,
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Hence (T(‘@m)) is a Cauchy sequence in R which implies that
(T((gm)) converges to c, say, in R.

Let (4 ) be another sequence in &(n) such that y — f
uniformly as n — +e, and Supp(zyn) £ K for all n. Let lim T(y Y=cs

n-»+obd =

Since I f uniformly as n —+®, for any ¢ » O, there exists
a N1(€) such that for all m 2 N_,
\ £ -k .

| e, (x)-£(x) | /68

Similarly, there exists a Na(%,) such that for all n 2 N2,

lf(x)- !vn(x)} < 2/6[5 "

> =
Then for all m, n =2 N3 max {N,], NZ}’ we have

AMEERRES

%
< /3 P 9
which implies that for all m, n 2 N3 :

| 70e,)-7G) | = |T6emi)] ¢ p osup [Cgru) 0] £ v/
Since the limits exist, for g > O, there exist N, and Ny such
that for all m 2 N, , n 2 N ,
[e-1e,) | < &/5  and [T )¢ < ¢/ .

Then for all my, n 2 N6 = max {NB, Nl+, Ns} 5

| oc'l

=T )+TCg V=T (4 )47 ) =<' |

I~

fe-m(g )| +{TCp V-1 (4 )] +|TC4 )c]
< &,
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Since ¢ is arbitrary, we can conclude that ¢ = ¢ .
To prove the linearity of/u, we need the following facts :
(1) ¢ —fand y —>8 implies that (Ym+*b)—~>(f+g)’ and

(id) %ﬁe-f implies that (myh)-—ymf for any real number X
([8h.

By the linearity of T and the property of limit, we have

M (f+g) = 1im Ty ) = Lim- (T(y )+, ))
m-»+ 0 m—+ K ;

= lim (g )4/ lim  T(y ) = pm(£)+ m(g),

m-—+ 0 m-=>+ R
and u @f) = 1im T(v('(m) = lim aT(ym)
m —+ & m -+ L

= & 1im T(((m) = o(t/-u(f).

m -+ 0

Since e f uniformly as m %+ o, for any ¢ » O, there
exists m such that for all m 2 m
sup Iym(x)-f(x)’ £ £,
x¢eK ’

By using the facts that if g(x) £ h(x) on K, then sup g(x) £
xcK

sup h(x) and sup g(x)+ inf h(x) ¢ sup (g(x)+h(x)), we see that
xtK ' xeK xeK xeK

izﬁl‘fm(x”-itﬁ lf(x)' L ¢

or

sup l%%(x)‘ Lt sup 'f(x)

+ ¢ for all m 2 m .
€K xeK o
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Since % is arbitrary and the inequality is true for all m 2 m

we conclude that

lim sup 'Wm(x)‘ L sup lf(x)l .
m- +x xeK xeK '

From this we have

]

peo| = | 1 e | )= 1am [10g,)]

m—4+ R m— + o0

i~

lim  sup '?m(x)'
m- +0 xeK

4 p sup If(x)l (f € K(3K)).
x€eK :

Hence is a Radon measure on .. That is, there exists a
L

positive Radon measure M such that T =T, , ie€ay

4

() = jkg(x)d/m(x) | (g€ ™@).
En
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3.3 Support

/
3.3%3.1 Definition. A distribution T ¢ & (&) is said to be zero

on an open set U of N if T(y) = O for every ¢ eR () with

support contained in U.

[
%,3,2 Theorems If T & R(L) is zero on each of the open subsets

U of {L , then T is zero on their union U = U o, .

A Ae A ’\
Proof : Let g t @ (i) be a function with Supp (¢y) = K c U,

Since K is compact, a finite number of the U’ (say U1, U2,...,Um)

cover K. By (2.2.6) there are non-negative functions e ?&(Uj)

such that

on i,

- L1
p () =§‘{(x) {4 () % 2 -
So we have
m m
T(¢) = T(;E; i) = Eg; T(grg) = 0,
since -, e 63(Uj) and (3.3.1).

3e3%3¢3 Definition. Let T be a distribution in (.. The complement
of the largest open subset of & in which T vanishes is called
the support of T and will be denoted by Supp (T). Thus T(Y) =0

whenever Supp (T) 0 Supp (f) = @,
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{
3e3.4 Theoreme If 3 and T belong to /A (1), then

(IR

(1)  Supp (8+T) Supp (3) U Supp (T), and

(i1) Supp (X T) = Supp (T) for all constants X # O.

Proof : (1) If (¢R(A) such that Supp (¢) €  (Supp (S) U Supp (T))°
C

= (supp (8 0 (Supp (1)), then (S+1)(¥) = SCL+T(Y) = O ,

and therefore (Supp (8) U Supp (T))CQ (Supp (S+T))cor,

equivalently
Supp (S+T) / £ Supp (8) U Supp (T).

(ii) since A T(y) '= T(ALY) and Supp (d\k({) = Supp (s@)

for all constants %X £ O,we get the result immediately.

3.4 Differentiation

[ r
3,4,1 Definition, Let T & # (&), For any multi~index r, OT

is given by

irt

r r
AT () = (=) T3Q (g e R@).
/ r
%,4,2 Theorem. Let T ¢ /& (&), Tor any multi-index r, OT

!
also belongs to A1),
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Proof : By (3.4.1) and the linearity of T,

1r| r (b ot r G o

(=1) T(? (L{'1+\f'2)) = (=1) T(@L(J,]+’C(('2)

]

T e
c T(w1+Y2)

r

b r r 5
(=1) (T(!\J‘{,')+T(Bk(2)) = 3T(\f1)+7dT((€ 1
2

"

lrt r ir| r

r ‘
and 2 T(«ip) (=1) T(2 (dg)) = K(=1) T(D§)

Xr
L&BT(Lﬁ),

' r
for all y,, oo £ R(L) and for all constants « « Hence O T is

linear. Since

B4l r

ERIY B T T(ﬁmﬁ)l - ITVZ'I\‘()]

r
and Supp kaf) & Supp () for all § A (L) and for every

multi-index r, we have

| r i r ’ s r
’73T(Y)l = IT(THQ)'S ®  max  sup ‘ﬁ(‘ﬁ?(x))t
) ; " sl ém xeK ’

€t
= P max sup ]’a (%)
VIt[& m+ |r{ xeK % 1

r
for all y ¢ A (£3K), where p> O and m 2 O, That is, 9T is

r /
continuous. Therefore ©OT € R (L) for every multi-index r.
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/
!

3.,4,3 Theorem., If T k£ ‘A (i), then for every multi-index r,
r
Supp (3717) & sSupp (T).

Proof : Since for every multi-index r, and for all Y €R(Q),

r
Supp (0) & Supp (¢), and by (3s4,1), the result fcllows

immediately.

443,4 Definition. Let T be a distribution on £ and 4 an infinitely

differentiable function on £ . The product J{wT is given by
() (¢) = TAyy) (g eR @),

4,3,5 Theorem. Let T be a distribution on A and 4 an infinitely

differentiable function on “£L o Then

%j(w)(\f) =-lg»(?:jT)(vg) - (?Eji{»)T(\{) (e » (a)).

This is called Leibniz's formula.

Proof : ’aj(zw)(\{) -(+T)(bj«{) = -T(.?:(bjk()

i

-T(ij t('-)—(ﬁjir)\(r) = -T(aj(xf ‘{))+T(('?jj1f)%’)

il

(20 (o ) +(2 1) = 4 BT (DT,
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3¢5 Distributions with Compact Support

3¢541 Definition. Let i be an open subset of Rn. The space of

infinitely differentiable functions defined on o will be denoted

by &(ﬂ).

If T is any distribution on -1, the subset of (S(IL)
consisting of those function f for which Supp (T) A Supp (%) is
compact is a vector subspace of & ({) which we denote temporarily
by Fo We also note that ®(1)C F. The linear form T can be extended
to F by taking for each ¥ € F, a function L ¢ @ (L) taking the
value 1 on a neighbourhcod of Supp (T) N Supp (Q), and then putting
T(%) = T(4 ¢). This value does not depend on the particular function

4 chosen, for, if 44 and 4 5 are any two such functions,(41-42)(€
has support disjoint from Supp (T), and so T((*ﬁ-?2)?) = & (Bs3:3)s
Further, this ekfension of T to F is linear : if € %2 EF we

can take L} so as to be 1 on a neighbourhood of Supp (T) N (Supp(%1)

U Supp(qz), and then

T(¢ ) = T(ﬁb(%»fh)): T(419,)+T (%) = T(Y'n)*T(‘fz)‘
Similarly T(Kﬂ{) = X T(Y) for all constants &« .,

In particular, if T has compact support, F = é ) and T
can be extended linearly to the whole of &(&D; the extension just

decribed is the only one that does not increase Supp (T).
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The functions P x defined in (2,1.5) are seminorms on E(JU;
b}

as m runs through the non-negative integers and K runs through an
increasing sequence of compact sets whose union is ., and each
of which is contained in the interior of its sucessor, and so define

a topology there. A distribution T with compact support K satisfies

I~

(*) jzCe) | B 1, g (O (¢ & &)

! ' /
for some contant and some compact neighborhood K of K (containin
b (3 g

the support of the function g above), Hence T is continuous for

this topology on § (L). Conversely, any continuous linear form T

satisfies an inequality of the type (*) and so defines a distribution
/

/
with support contained in K = (since if Supp (y) does not meet K 4

(*) implies that T(kf') = 0).

Thus the distribution of compact support form a vector space,

/
denoted by & (&),



	Chapter III Distributions

