CHAPTER II

THE SPACE (A) AND SCHWARTZ FUNCTIONS

In this chapter we first recall some notations in the real n-dimensional Euclidean space \mathbb{R}^n . Later on we are going to study the space $\mathbb{R}^{(4)}$ and Schwartz functions which will be used constantly in the succeeding chapters.

The materials of this chapter are drawn from references [4], [5], [7], [9], [10] and [11].

For function defined on \mathbb{R}^n we need a concise notation for partial derivatives. First we denote $\sqrt[n]{n}$ by $\sqrt[n]{n}$ and then we write, for each family $\mathbf{r}=(\mathbf{r}_1,\ldots,\mathbf{r}_n)$ of non-negative integer, $\mathbf{d}^{\mathbf{r}}=\sqrt[n]{n}$. The symbol \mathbf{r} is called a multi-index, and its order is $|\mathbf{r}|=\mathbf{r}_1+\cdots+\mathbf{r}_n$.

2.1 The Space $\mathcal{D}(\Lambda)$

- 2.1.1 <u>Definition</u>. Let φ be a real-valued function defined on an open subset α of \mathbb{R}^n . The <u>support</u> (or carrier) of φ , denoted by Supp (φ) , is the closure of the set on which its valued are different from zero.
- 2.1.2 Remark. For any two real-valued functions ψ and ψ , defined on an open subset Ω of \mathbb{R}^n , and any real number $\not\propto \neq 0$,

Supp($\psi + \psi$) \subseteq Supp(ψ) U Supp(ψ), Supp(ϕ) = Supp(ψ). <u>Proof</u>: For each x belongs to Ω such that $(\psi + \psi)(x) = \psi(x) + \psi(x) \neq 0$, we have that either $\psi(x) \neq 0$ or $\psi(x) \neq 0$. Then by using the facts, $A \subseteq B$ implies $\overline{A} \subseteq \overline{B}$ and $\overline{A \cup B} = \overline{A} \cup \overline{B}$, we get the first result.

For any $x \neq 0$ and for each x belongs to Ω such that $x \neq 0$, we have that $x \neq 0$. And for each x such that $x \neq 0$, we have that $x \neq 0$, $x \neq 0$. Hence the second result.

2.1.3 Notations. Let Ω be an open subset of \mathbb{R}^n . The infinitely differentiable functions on Ω with compact support form a vector space, denoted by $\mathcal{D}(\Omega)$.

For each compact subset K of Ω , these functions ψ of $\mathcal{A}(\Omega)$ for which $\mathrm{Supp}(\psi)\subseteq K$ form a vector subspace of $\mathcal{A}(\Omega)$, which we shall denote by $\mathcal{A}(\Omega;K)$.

2.1.4 Remark. $\mathcal{P}(\Omega)$ is the union of its subspace $\mathcal{Q}(\Omega; K)$ as K varies over all the compact subsets of Ω .

Proof: It suffices to prove that $\mathcal{R}(\Omega) \subseteq \mathbb{U} \mathcal{R}(\Omega; K)$. $K \in \Omega$ For every $\psi \in \mathcal{R}(\Omega)$, ψ has the compact support K, say. Then $\psi \in \mathcal{R}(\Omega; K)$.

2.1.5 Theorem. For any compact subset K of Λ and any non-negative integer m, let

$$p_{m,K}(\varphi) = \max_{|\mathbf{r}| \leq m} \sup_{\mathbf{x} \in K} \left| \partial^{\mathbf{r}} \varphi(\mathbf{x}) \right| \quad (\varphi \in \mathcal{D}(\Omega; K)),$$

(note that in the bracket means " for all $\varphi \in \mathfrak{D}(\Omega \; ; \; K)$ "). Then $p_{m,K}$ is a norm on $\mathfrak{D}(\Omega \; ; \; K)$.

Proof: It follows immediately from the properties of absolute values and the definition.

2.1.6 Theorem. For all
$$\psi_1$$
, $\psi_2 \in \mathcal{B}(\Omega; K)$, let
$$d(\psi_1, \psi_2) = \sum_{m=0}^{+\infty} \frac{p_{m,K} (\psi_1 - \psi_2)}{2^m \left[1 + p_{m,K} (\psi_1 - \psi_2)\right]},$$

where $p_{m,K}$ is defined as in (2.1.5). Then d is a metric on $\mathfrak{D}(\Omega;K)$. From now on we shall use the metric d to define a topology for $\mathfrak{D}(\Omega;K)$.

Proof: Since $\frac{t}{1+t} \le 1$ for all $t \ge 0$, we see that for every non-negative integer m,

$$\frac{p_{m,K}(\varphi_1 - \varphi_2)}{2^m \left[1 + p_{m,K}(\varphi_1 - \varphi_2)\right]} \stackrel{\angle}{=} \frac{1}{2^m}.$$

And since the series $\sum_{m=0}^{+\infty} 1/2^m$ converges, we set that

$$d(\varphi_1, \varphi_2) = \sum_{m=0}^{+\infty} \frac{p_{m,K}(\varphi_1 - \varphi_2)}{2^m \left[1 + p_{m,K}(\varphi_1 - \varphi_2)\right]} \stackrel{\neq}{=} \sum_{m=0}^{+\infty} \frac{1}{2^m} \left\langle +\infty \left(\varphi_1, \varphi_2 \in \varpi(\Omega; K)\right).\right\rangle$$

The conditions $d(\varphi_1, \varphi_2) \geq 0$, $d(\varphi_1, \varphi_2) = 0$ iff $\varphi_1 = \varphi_2$, and $d(\varphi_1, \varphi_2) = d(\varphi_2, \varphi_1)$ are obvious. We must therefore ckeck the triangular inequality. The result will follow if we prove that

if a, b, c are three non-negative numbers and if

then

(**)
$$c/(1+c) \leq a/(1+a) + b/(1+b)$$
.

If c or a+b are equal to zero, there is nothing to prove so that we may assume that none of these two numbers is equal to zero.

Then (*) is equivalent to

$$(a+b)^{-1} \leq 1/c$$
,

which implies

$$(1+1/c)^{-1} \le (1+1/(a+b))^{-1} = a/(1+a+b) + b/(1+a+b)$$

The left-hand side is c/(1+c); the right-hand side is obviously at most equal to

$$a/(1+a) + b/(1+b)$$
,

whence (**). This proves that d is a metric.

2.1.7 Remark. The metric d is translation invariant, i.e.,

$$\mathrm{d}(\varphi_1, \varphi_2) = \mathrm{d}(\varphi_1 - \varphi_2, \, \odot) \qquad (\varphi_1, \varphi_2 \in \, \varnothing \, (\varOmega; K)).$$

Proof. For all $\psi_1, \psi_2 \in \mathcal{A}(\Omega; K)$,

$$d(\psi_{1}, \psi_{2}) = \sum_{m=0}^{+\infty} \frac{p_{m,K}(\psi_{1} - \psi_{2})}{2^{m} \left[1 + p_{m,K}(\psi_{1} - \psi_{2})\right]}$$

$$= \sum_{m=0}^{+\infty} \frac{p_{m,K}((\varphi_1 - \varphi_2) - 0)}{2^m \left[1 + p_{m,K}((\varphi_1 - \varphi_2) - 0)\right]}$$

$$= d(\varphi_1 - \varphi_2, 0).$$

- 2.1.8 Lemma. Let $B(\varphi_0, E)$ be the open ball in $\mathcal{R}(\Omega; K)$ with centre φ_0 and radius E.
- (i) Then there exists an interger $m_0 \ge 0$ and $\delta(\epsilon) > 0$ such that $\{\varphi \in \mathfrak{D}(\Lambda; K) : p_{m_0, K}(\varphi \varphi_0) \leqslant \delta\} \subset B(\varphi_0, \epsilon).$
- (ii) If (ψ_j) is a sequence in $\mathcal{A}(\Omega;K)$ such that for every multi-index r, $(\partial^r \psi_j)$ converges to $\partial^r \psi_o$ as $j \to +\infty$, uniformly on K, then there exists j_o such that for all $j > j_o$, $\psi_j \in B(\psi_o, \psi)$.

Proof: (i) Since the series $\sum_{m=0}^{+\infty} 1/2^m$ converges, for any

given 2 > 0, we may find an integer m ≥ 0 such that

$$\sum_{m=m_0+1}^{+\infty} 1/2^m < \frac{\varepsilon}{2}.$$

And since $(\frac{t}{1+t}) \to 0$ as $t \to 0$, there exists a $d(\xi) > 0$ such that

$$\frac{p_{m_0,K} (\varphi - \varphi_0)}{1 + p_{m_0,K} (\varphi - \varphi_0)} < \frac{\xi/4}{}$$

whenever
$$P_{m_0,K}(\varphi-\varphi_0) < S(\xi)$$
.

As $p_{m,K}$ is nondecreasing with m and $\frac{t}{1+t}$ is increasing with $t(t \ge 0)$, we have

$$\frac{P_{m,K}(\varphi-\varphi_{0})}{1+P_{m,K}(\varphi-\varphi_{0})} \stackrel{=}{=} \frac{P_{m_{0},K}(\varphi-\varphi_{0})}{1+P_{m_{0},K}(\varphi-\varphi_{0})} \stackrel{<}{<} \frac{\cancel{\epsilon}/4}{\cancel{\epsilon}} \qquad (m \neq m_{0}).$$

Thus
$$\sum_{m=0}^{m} \frac{p_{m,K}(\psi-\psi_0)}{2^m \left[1+p_{m,K}(\psi-\psi_0)\right]} \leq \sum_{m=0}^{m} \frac{\xi}{4 \cdot 2^m} < \frac{\xi \cdot 2}{4} = \frac{\xi}{2}.$$

Therefore

$$\sum_{m=0}^{+\infty} \frac{p_{m,K}(\psi - \psi_{0})}{2^{m} \left[1 + p_{m,K}(\psi - \psi_{0})\right]} = \sum_{m=0}^{\infty} \frac{p_{m,K}(\psi - \psi_{0})}{2^{m} \left[1 + p_{m,K}(\psi - \psi_{0})\right]} + \sum_{m=m_{0}+1}^{+\infty} \frac{p_{m,K}(\psi - \psi_{0})}{2^{m} \left[1 + p_{m,K}(\psi - \psi_{0})\right]}$$

$$\left\langle \frac{\mathcal{L}}{2} + \frac{\mathcal{L}}{2} \right\rangle = \mathcal{L}$$

whenever $p_{m_0,K}(\psi-\psi_0) < \delta$.

(ii) Let $B(\psi_0, \mathcal{E})$ be the open bell in $\mathcal{R}(\Omega; K)$ with centre ψ_0 and radius \mathcal{E} . Let m_0 and $\delta_0(\mathcal{E})$ be as in (i) so that $d(\psi, \psi_0) < \mathcal{E}$ whenever $p_{m_0, K}(\psi - \psi_0) < \delta_0$. Since for every multi-index r, $(\mathcal{F}_j) \longrightarrow \partial \psi_0 \quad \text{as} \quad j \to +\infty \text{ , uniformly on } K, \text{ for } \delta_0 > 0, \text{ there } exists \ j_0 \text{ such that for all } j > j_0$

$$P_{m_0,K}(\gamma_j-\gamma_0) < \delta_0$$

and thus for all j > jo

2.1.9 Lemma. Under this topology, a sequence (ψ_j) in $\mathcal{N}(\Omega;K)$ converges to ψ_o in $\mathcal{P}(\Omega;K)$ iff for every multi-index r, $(\mathring{\partial}\psi_j) \text{ converges to } \mathring{\partial}\psi_o \text{ as } j \to + \infty \text{ uniformly on } K.$

<u>Proof</u>: Necessity. Let r be an arbitrary fixed multi-index, let $|r| = m_0$, and let $\ell > 0$. By the hypothesis on (ψ_j) , there exists j_0 such that for all $j > j_0$,

$$d(\varphi_{j}, \varphi_{o}) = \sum_{m=0}^{+\infty} \frac{P_{m,K}(\varphi_{j} - \varphi_{o})}{2^{m} \left[1 + P_{m,K}(\varphi_{j} - \varphi_{o})\right]} \left\langle \frac{e}{2^{m} (1 + \xi)} \right\rangle,$$

which implies that

$$\frac{P_{m_0,K}(\varphi_j - \varphi_0)}{1 + P_{m_0,K}(\varphi_j - \varphi_0)} < \frac{2}{1 + 2}.$$

Therefore $p_{m_0,K}(\psi_j-\psi_0)<\xi$, which implies that $|\partial^r\psi_j(x)-\partial^r\psi_0(x)|<\xi$ for all $x\in K$ and all $j>j_0$. We conclude that $(\partial^r\psi_j)\to\partial^r\psi_0$ as $j\to +\infty$, uniformly on K.

Sufficiency. By (2.1.8 (ii)) , there exists a j_o such that for all j > j_o, $\psi_j \in B(\psi_o, \xi)$. That is $_g(\psi_j) \rightarrow \psi_o$ in $\mathfrak{A}(\mathfrak{A}; K)$.

2.1.10 Theorem. Let $\mathcal{A}(\Omega;K)$ be a space as defined in (2.1.6) and let T be a linear form on $\mathcal{A}(\Omega;K)$. Then the following conditions are equivalent:

- (i) I is continuous on $\mathfrak{A}(\Omega;K)$.
- (ii) There exists a non-negative integer m and a positive constant & such that

$$|T(\varphi)| \leq \beta p_{m_0,K}(\varphi) \qquad (\varphi \in \mathcal{A}(\Omega;K)).$$

(iii) If (ψ_j) is a sequence in $\Re(\Omega_i;K)$ and tends to zero in $\Re(\Omega_i;K)$, then $(\mathbb{T}(\psi_j))$ tends to zero as $j\to +\infty$.

Proof: (i) implies (ii). Let ψ_0 be any element of $\mathfrak{A}(\Omega;K)$.

Because of the translation invariant character of d, we may assume $\psi_0 = 0$. Then, by the continuity of T, for any given $\xi > 0$, there exists a $\delta(\xi) > 0$ such that for all $\psi \in \mathfrak{A}(\Omega;K)$, $|T(\psi)| < \xi(*)$ whenever $d(\psi,0) < \delta$. Consider $B(0,\delta)$; by (2.1.8 (i)), there exists an integer $m_0 \ge 0$ and a $\delta_0(\delta) > 0$ such that

$$\left\{ \left\langle \mathcal{L} \left(\Omega; K \right) \right\rangle : P_{m_0, K} \left(\left\langle \mathcal{L} \right\rangle \right) \left\langle \mathcal{L} \right\rangle \right\} \subset B(0, \delta).$$

Thus for every $\psi \in \mathcal{D}(\Omega; K)$ such that $P_{m_o, K}\left(\frac{\delta_o \psi}{2 P_{m_o, K}(\psi)}\right) < \delta_o$.

we have (*) and by the linearity of T that $\frac{\delta_0}{2 p_{m_0,K}(\phi)} |T(\phi)| < 2$.

Choosing $\beta = 24/\delta_0$, we have

$$|T(\varphi)| < \beta p_{m_0,K}(\varphi)$$
 $(\varphi \in \varnothing(\Omega;K)).$

Since $O \in \mathbb{R}(A; K)$ and $P_{m_0, K}(O) = O$, we can conclude that there

exists an integer $m_0 \ge 0$ and a constant $\beta > 0$ such that

$$|T(\psi)| \leq \beta P_{m_0,K}(\psi) \qquad (\psi \in \varnothing(\Omega;K)).$$

(ii) implies (iii). Assume (ii); i.e., there exists an integer $m_0 \ge 0$, and a constant $\beta > 0$ such that $|T(\psi)| \le \beta p_{m_0,K}(\psi)$ ($\psi \notin \mathcal{A}$ (Ω ;K)). Let (ψ) be any sequence in $\mathcal{A}(\Omega$;K) which tends to zero. Then for any given 2>0, there exists a j_0 such that for all j > jo,

$$d(\psi_{j},0) = \sum_{m=0}^{+\infty} \frac{p_{m,K}(\psi_{j})}{2^{m} \left[1+p_{m,K}(\psi_{j})\right]} < \frac{\varepsilon}{2^{m} (\beta+\varepsilon)}$$

which implies that

Thus

$$\frac{P_{m_{o},K}(\mathscr{V}_{\mathbf{j}})}{2^{n_{o}}[1+P_{m_{o},K}(\mathscr{V}_{\mathbf{j}})]} < \frac{2^{n_{o}}[1+P_{m_{o},K}(\mathscr{V}_{\mathbf{j}})]}{2^{n_{o}}(p+2)}$$
or
$$P_{m_{o},K}(\mathscr{V}_{\mathbf{j}}) < 2^{n_{o}}[p+2]$$
Thus
$$|T(\mathscr{V}_{\mathbf{j}})| < 2^{n_{o}}[p+2]$$
for all $j > j_{o}$.

This means that $(T(\varphi_j)) \longrightarrow 0$ as $j \to +\infty$.

Because of the translation invariant character of d, we may assume $\psi_0 = 0$. Then there exists $\ell > 0$ such that for any $\delta > 0$, there is $\psi \in \mathbb{R}$ $(\Omega; \mathbb{K})$ such that $d(\psi, 0) \leq \delta$ and $|T(\psi)| > \ell$. Choose $\delta_j = \frac{1}{j}$, $j = 1, 2, 3, \ldots$. Then for each δ_j , there exists $\psi_j \in \mathcal{B}(\Omega; \mathbb{K})$ such that $d(\psi_j, 0) \leq \delta_j$ and $|T(\psi_j)| > \ell$. For any given $\delta_0 > 0$, there exists δ_j such that $\delta_0 \geq \delta_j$ and therefore for every $j > j_0$, we have that $d(\psi_j, 0) \leq \delta_0$. This means that there exists $(\psi_j) \to 0$, but $(T(\psi_j)) \to 0$, which contradicts (i.ii).

2.2 Schwartz Functions

2.2.1 Definition. On \mathbb{R} , we define the function

$$\delta(t) = \begin{cases} \exp(-1/t) & \text{for } t > 0 \\ 0 & \text{for } t \neq 0. \end{cases}$$

We can proved, by induction on the order, that derivatives of of all order exist, and are zero, at t = 0. Hence 6 is infinitely differentiable.

Next we define on Rⁿ the function

$$S_{1}(x) = 0 \quad S(1 - ||x||^{2}) = \begin{cases} x \exp\left(-\frac{1}{1 - ||x||^{2}}\right) & (||x|| < 1) \\ 0 & (||x|| \ge 1). \end{cases}$$

The constant of is defined by

so that we have

$$\int_{\mathbb{R}^n} \int_{\mathbf{1}} (\mathbf{x}) d\mathbf{x} = 1.$$

and hence of is infinitely differentiable.

For any 2 > 0, we put

$$\mathcal{L}_{\xi}(x) = \xi^{-n} \mathcal{L}_{1}(x/\xi) \qquad (x \in \mathbb{R}^{n}).$$

Throughout this thesis the function $\int_{\mathbf{z}}$ will be called the Schwartz function.

2.2.2 Remarks. (i)
$$\int_{\mathbb{R}^n} \int_{1}^{1} (x) dx = x \int_{0}^{1} r^{n-1} \exp\left(-\frac{1}{1-r^2}\right) dr$$
,

where S_n denotes the surface area of a unit sphere.

(ii) For any
$$\{ \} > 0$$
, $\{ \} \in \mathcal{D}(\mathbb{R}^n)$ and
$$\int_{\mathbb{R}^n} \int_{\mathcal{L}} (\mathbf{x}) d\mathbf{x} = 1.$$

(iii) If $B = B(x_0, \xi)$ is a ball such that $\overline{B} \subset \Omega$, then for all $x \in \Omega$, $x \mapsto \frac{1}{\xi}(x-x_0)$ belongs to $A(\Omega; \overline{B})$.

$$\frac{\text{Proof}}{\mathbb{R}^{n}} : \text{(i)} \quad \int_{\mathbb{R}^{n}} 6_{1}(x) dx = \int_{\overline{B}(0,1)} (x) dx$$

$$= \times \int_{\overline{B}(0,1)} \exp\left(-\frac{1}{1-||x||^{2}}\right) dx$$

$$= \times \int_{0}^{1} r^{n-1} \int_{\overline{B}(0,1)} \exp\left(-\frac{1}{1-r^{2}}\right) ds(\theta) dr,$$

where $ds(\theta)$ is the surface area element on the sphere s(0,r).

$$= \left(\left(\left(\left(\frac{1}{1-r^2} \right) \right) \right) \left(\left(\left(\frac{1}{1-r^2} \right) \right) \right) dr$$

$$= \left(\left(\left(\left(\frac{1}{1-r^2} \right) \right) \right) dr$$

(ii) $f_2(x) \in \mathfrak{A}(\mathbb{R}^n)$, since $f_1(x)$ is infinitely differentiable, and by changing the variable, we have

$$\int_{\mathbb{R}^n} \zeta_2(x) dx = \int_{\mathbb{R}^n} \xi^{-n} \zeta_1(x/\xi) dx = \int_{\mathbb{R}^n} \zeta_1(x/\xi) d(x/\xi) = 1.$$

(iii) Since $\xi(x) > 0$ (||x|| < 2), and $\xi(x) = 0$ ($||x|| \ge 2$),

we have that

Supp(
$$\mathcal{L}_{\xi}(\mathbf{x})$$
) = $\left\{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\| \leq \xi\right\}$.

Thus

$$\operatorname{Supp}(\delta_{\xi}(\mathbf{x}-\mathbf{x}_{0})) = \left\{\mathbf{x} \in \mathbb{R}^{n} : \|\mathbf{x}-\mathbf{x}_{0}\| \leq \xi\right\} = \overline{\mathbb{B}}(\mathbf{x}_{0}, \xi).$$

That is, if $\overline{B} \subset \Omega$, then for all $x \in \Omega$, $x \mapsto \delta_{\ell}(x-x_0)$ belongs to $\Omega (\Omega; \overline{B})$.

2.2.3 Theorem. Let f be any continuous function with compact support K contained in Ω . Let δ be the distance from K to the complement of Ω , and for any ξ , $0<\xi<\delta$, let

$$K_{\chi} = \left\{ x \in \Omega : \text{ dist } (x, K) \neq \xi \right\}.$$
Then $f_{\chi}(x) = \int f(y) \sigma_{\chi}(x-y) dy = \int f(x-y) \sigma_{\chi}(y) dy \quad (x \in \Omega)$

$$\|y-x\| \neq \xi$$

belongs to $\Re(\Omega; K_{\underline{\ell}})$. Further $f_{\underline{\ell}} \to f$ as $\xi \to 0^+$, uniformly on Ω .

<u>Proof</u>: For any ξ , $0 < \xi < \delta$, we define the regularization f_{ξ} of f

by
$$f_{\xi}(x) = \int_{\Omega} f(y) \langle (x-y) dy \rangle = \int_{\Omega} f(x-y) \langle (y) dy \rangle$$

or

$$f(x) = \int f(y) \int_{\xi} (x-y) dy = \int f(x-y) \int_{\xi} (y) dy \quad (x \in \Omega).$$

The integral is convergent since f and ℓ_{ℓ} have compact support, we can differentiate f_{ℓ} . Then for any multi-index r, we have

$$\partial_{f_{\xi}}^{r}(x) = \partial_{x}^{r}f_{\xi}(x) = \int_{x}^{r}f(y) \partial_{x}^{r}f(x-y)dy$$
.

That is, $f \in \mathcal{A}(\Omega)$, hence $f \in \mathcal{R}(\Lambda; K)$, since $Supp(f_{\xi}) \subseteq K$. By (2.2.2(ii)), we have

But now, by the (uniform) continuity of f, the right side tends to zero, uniformly in x, as $t \to 0^+$. The proof is complete.

- 2.2.4 Remark. The function f in the theorem can be uniformly approximated by functions of $\stackrel{>}{\nearrow}$ (A) with supports contained in a given compact neighbourhood of K.
- 2.2.5 Theorem. If K is compact and contained in the open set Ω , there is a function $\varphi \in \mathcal{D}(\Omega)$ taking the value 1 in a neighbourhood of K and lying between 0 and 1 on Ω .

Proof: Let δ be the distance from K to the complement of Λ , and for any ξ , $0 < \xi < \delta$, let

$$K_{\xi} = \left(x \in \Omega : dist(x,K) \leq \xi\right).$$

Then by the Urysohn's lemma ([9]), there is a continuous function, say f; taking the value 1 on $K_{\xi/2}$, the value 0 outside $K_{3\xi/4}$, and values between 0 and 1 in the annular region between. If $0 < \ell_1 < \ell_{/4}$, by (2.2.3), we can find the function

$$f_{\xi_1}(x) = \int f(x-y) \int_{\xi_1} (y) dy \qquad (x \in \Omega)$$

which belongs to $\mathcal{A}(\Omega; K_{i_1})$. Set $\psi(x) = f_{i_1}(x)$. Then ψ has all the required properties, i.e.,

(i)
$$\psi \in \mathcal{D}(\Omega; K_{\xi_1}) \subset \mathcal{D}(\Omega)$$
,

(ii) $\psi(x) = 1$ on K_{ξ_1} , since f(x) = 1 on K_{ξ_1} and (2.2.2 (ii)),

(iii)
$$0 \le \ell(x) \le 1$$
 $(x \in \Omega)$, since $0 \le f(x) \le 1$ $(x \in \Omega)$.

2.2.6 Theorem. Suppose that the compact set K is contained in the union of the open sets $\Omega_1,\Omega_2,\ldots,\Omega_m$. Then there are non-negative functions $\psi_j \in \mathfrak{A}(\Omega_j)$ such that

$$\psi(\mathbf{x}) = \sum_{\mathbf{j}=1}^{m} \psi_{\mathbf{j}}(\mathbf{x}) \qquad \left\{ \begin{array}{c} \leq 1 & (\mathbf{x} \in \Omega = \bigcup_{\mathbf{j}=1}^{m} \Omega_{\mathbf{j}}), \\ = 1 & (\mathbf{x} \in K). \end{array} \right.$$

Proof: Let K_1 be any compact neighbourhood of $K - \bigcup_{j=2}^{m} \Omega_j$, contained in Ω_1 , let K_2 be a compact neighbourhood of $K - (K_1 \cup \bigcup_{j=3}^{m} \Omega_j)$, contained in Ω_2 , and so on. Then $K \subseteq \bigcup_{j=1}^{m} K_j$

and $K_i \cap K_j = \emptyset$ for $i \neq j$. By (2.2.5), there are functions $4j \in \mathcal{A}(\Omega_j)$ lying between 0 and 1 on Ω_j and taking the value 1 on K_j . Put

$$\ell_1 = \ell_1, \ \ell_2 = \ell_2(1-\ell_1), \dots, \ell_m = \ell_m(1-\ell_1)(1-\ell_2), \dots (1-\ell_{m-1}).$$

Then all the conditions are satisfied, because

(i)
$$\forall_j$$
 are non-negative, since $0 \le 4 \le 1$,

(ii)
$$\psi_{j} \in \mathcal{B}(\Omega_{j})$$
, since Supp $(\psi_{j}) \subseteq \text{Supp }(\psi_{j})$,

(iii)
$$\psi = \sum_{j=1}^{m} \psi_j = \psi_1 + \psi_2(1 - \psi_1) + \dots + \psi_m(1 - \psi_n)(1 - \psi_n) \dots + \psi_m(1 - \psi_n)(1 - \psi_n)$$

$$= 1 - 1 + 4_1 + 4_2(1 - 4_1) + \dots + 4_m(1 - 4_1)(1 - 4_2) \dots (1 - 4_{m-1})$$

$$= 1 - (1 - 4_1) + 4_2(1 - 4_1) + \cdots + 4_m(1 - 4_1)(1 - 4_2) \cdots (1 - 4_{m-1})$$

$$= 1-(1-4_1)(1-4_2)...(1-4_m).$$