CHAPTER II
THE SPACE- #({L) AND SCHWARTZ FUNCTIONS

In this chapter we first recall some notations in the
real n-dimensional Euclidean space R". Later on we are going
to study the space K (i1) and Schwartz functions which will be
used constantly in the succeeding chapters,
The materials of this chapter are drawn from references [4],
[5],171,T9), [0} ana-Tae):
For function defined on R" we need a concise notation

for partial derivatives. First we denote 'Q/Qixj by /aj and then

we write, for each family r = (r1,..., rn) of non-negative integer,
r r r

¥ = @1 L @2 o .../‘5n %, The symbol r is called a multi-index,

and its order is |r| = r,¥ eee + T .

2.1 The Space & («£1)

2e¢1e1 Definitione. Let <€ be a real-valued function defined on
an open subset 4 of R, The support (or carrier) of (¢ » denoted
by Supp (i), is the closure of the set on which its valued are

different from zero.

2.1¢2 Remarks, For any two real-valued functions ‘¢ and 4 , defined
on an open subset . of Bn, and any real number X # O,
Supp(y +y ) G Supp(y) U  Supp(4) ,

Supp( K \9 ) = Supp( \p Ya
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Proof : For each x belongs to 1 such that (Y+q)(x) = ?(x)+%(x) £ 0,
we have that either \f(x) # 0 or 4(x) # O. Then by using the
facts, A G B implies A € B and 5_E~% = AU ane get the
first result,

For any X # O and for each x belongs to . such that
K (x) # 0, we have that ( (x) # O.. And for each x such that
g (x) # 04 we have that ‘Xt{(x) #Z 0, X# O, Hence the second

result.

2.1.3 Notations. Let 41 be an open subset of R%. The infinitely
differentiable functions on . with compact support form a vector
space, denoted by &K (1) .

For each compact subset X of (L , these functions 4 of

AR (L) for which Supp(t{) € K form a vector subspace of & ({1),

which we shall denote by & (L3 K).

2.1.4 Remark. R (1) is the union of its subspace R (A K) as K

varies over all the compact subsets of (2 .

Proof : It suffices to prove that RN () < U D K.
Kecay

For every Y ¢ & (<), Y has the compact support K, say. Then

e & (L3 K)o

2+1+.5 Theorem. For any compact subset K of /L and any non-negative

integer m, let

_ max sup
pm,K((€) T Iri¢m  xe¢K

r
3\("(){)! (ge @ (5 K)),
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(note that in the bracket means " for all ‘¢ € R(iLj; K) "),

Then p is a norm on R (L ; K).

m,K

Proof : It follows immediately from the properties of absolute

values and the definition.

2.17.6 Theorem. For all i Yo € D(0; K), let
+ K

AN P,k Ge, - §2)
Ay, 0, = R ,
T ¢ gap (.-, |
L P,k 17 €07

where p is defined as 4in (2.1.5). Then d is a metric on D(2;K).
m,K

From now on we shall use the metric d to define a topology for R(L;K).

Proof : Since 7—%—; £ 1 for all t 2 O, we see that for every

non-negative integer m,

P,k (P '¥2) £ '
m n°r ] ~m
- [1+Pm,K (1= %) -
+ 00
Aind since the series zz: ’1/2m converges, we set that
m=o0
2 By xlieyy) =1
) = : X & s o0 : DULs
d(\(/1 S‘fa) - L_, m < * (\e,l,\fz € &LL,K)).
m=o0 m=o0 2

1 Wi
m[ 1
2 1+pm’K(f1-%2Z

% i & p i S (n 'y = 1 G =
The conditions d(Y1’f2) Q, d(%qyfa) 0 1ff‘ﬁ1 CIE and
d(W1’\€2) = d(fa,qu) are obvious. We must therefore ckeck the

triangular inequality. The result will follow if we prove that
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A iy

if a, b, ¢ are three non~-negative numbers and if - =" 1 ™

* Z 4
then \ ‘* »: /‘:,. g
{*%) c/(1+c) & a/(M1+a)+ b/(1+b),

If ¢ or a+b are equal to zero, there is nothing to prove so that
we may assume that none of these two numbers is equal to zero.

Then (¥) is equivalent to
-1
(a+b) Y 1/e
which implies
(1+1/¢)" " ¢ (1+1/(a+b))—1 = a/(1+a+b) + b/(1+a+b).

The left-hand side is ¢/(1+c) ; the right-hand side is obviously

at most equal to
a/(1+a) + b/(1+b) ,
whence (* *). This proves that 4 is a metric.
2.1.7 Remark., The metric d is translation invariant, i.e.,

Algqapy) = Algg=gpe O (f40f, € R (235K,

Proof. For all @0 %o € D (L13K),

+ 00

alpqaty) = 2 P,k ¥17t2)

e 2t {1+pm,K (%1'Yaﬂ
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+0C _ -
o Z pm,K((%’l—%Z)-b)

m=oc .m
2 [1+pm'K ((%1-%2)-6)]

= Alpypay Bl

2¢1.0 Lemma. Let B(%—O,E) be the open ball in A (12 ;K) with

centre §  and radius
\

(1)  Then there exists an interger m > 0 and Cg(ia) > 0

i

Gen( s , ok d , .
such that {fb (11 5K) pmo’K((( v )< é; } C Blp . €)
(44) I# (Yj) is a sequence in A (L ;K) such that for

every multi-index r, (’Bﬁaj) converges to aﬁ{o as j =+ o0,
'Y

uniformly on K, then there exists jo such that for all j » jo,

oy € B (0 ©)e

+ 0%
Proof : (i) Since the series 3. 1/2" converges, for any
m=0
given ¢ » O, we may find an integer m 2 0O such that
+ 00

1/2™ < &/2 .
m=mo+1

And since (Tég) -4 0 as t — O, there exists a Cg(éj) > 0
such that

pmo,K (%-%o)

_ < &/
1 +pmo X (t(-'fo)
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whenever PmO,K(Y-Wo) < é;(i).
As p is nondecreasing with m and e is increasing with t(t 2 0),
m, K 1+t
we have
p (=)
P (p=y ) Pn K % o
- 1 " -
L M P,k Yo =
L P K(?-% ) m . ‘.o 2
Thus 2, wbtdetloup k 3 " —w & r - L.
m=o0 2 [‘I+pm’K(l(-fO)} m=o k4e2
Therefore
+00 m + R
pm,K(R-Yo) - sgw pm,K(%-%o) 2 S pm,KQf-?O)

L am[j+pm,K(%’%O)1 iy 2mij+pm'K(%-FO)1 m=m_+1 2m[b+pm,K(t-Yo)}

P
s
+
ol

=

D
whenever P K((—YO) << <%.
o’ :

(ii) Let B(YO,®) be the open bell in & (Q3K) with centre

%O and radius ¢ . Let m_ and 5;(@) be as in (i) so that d(@,%b) { &

g
whenever p (Q-? ) < 0. Since for every multi-index r,
mo,K o 0
5

s

r
('b?j) — 3(«0 as j ->+ o , uniformly on K, for 80 % 0, there

exists jo such that for all j > jo

P K (ps-¢,) < %

and thus for all j » j

o ?

(ej € B (l(o,‘v) ’
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2.1.9 Lemma. Under this topology, a sequence (Vj) in R (L 3K)

converges to {  in (L1 3K) iff for every multi-index r ,
5 ‘)r . - .
( B%j) converges to Jip_ as j > + A uniformly on K.
Proof : lecessity. Let r be an arbitrary fixed multi-index,

let lr !l = m_, and let ¢ > O. By the hypothesis on (%j),

there exists jo such that for all j > jo,

g, = 5 ook (5t .
o m=o 2" [14p =y )] %o
m,K 15 to 2 (1+¢)

which implies that

pmo,K(?j-?b) < (%

1 s 1+ ¢
+pmo,k(‘€j b + ¢

r T
V- : i ke 2 -0 £
Therefore pmo'K(({j %o) < 4 o which implies that‘J%j(x) %O(x)' 4
T f oy
- 3 3 “ £ a
for all x & K and all j > j,» e conclude that (a(tj)*v Y.

as j =+ Q , uniformly on K.

Sufficiency. By (2.1.3 (ii)} , there exists a J such
- . 6 R . .
that for all j > j_, %j B(@O, £)e That 189(%j) ~ , in

241410 Theorem., Let ®(L2;K) be a space as defined in (2.1.6) and

let T be a linear form on A (41 3;K)., Then the following conditions

are equivalent :

000683



(i) T is continuous on & (L1;K).
(ii)  There exists a non-negative integer m  and a

positive constant » such that

e b £ pp () (y & A ;K.
O,

(aid) If (%j) is a sequence in R (L ;K) and tends to zero

in R (N 3K), then (T(\ej)) tends to zero as j-» +e0 .

Proof : (i) implies (ii). Let ¢, be any element of R (D3K)

Because of the translation invariant character of 4, we may
assune (fo = O. Then, by the continuity of T, for any given

2 » 0, there exists a Akt) > 0 such thaf for all yeR (0 3K),
| T(y) | < ¢(*) whenever al¥,0) < §'. Consider B(0O, ) 3

by (2.1.3 (i)), there exists an integer m 2 0O and a

80(5 ) > O such that

{W— AasK) op oy () < é’o} ¢ B0, d).

O

o
Thus for every‘fé'ﬁ(ll;K) such that <?g1§LXL7qD ) & AL ’
mo,K K

we have (*)and by the linearity of T that §o ‘T(')‘ < ¢
2 - KZ%S % ¢
o’
Choosing P = 2‘:‘«/(_'?0 , we have
iT(\e)| < Ppmo’K(%) (tgt R(£L3K)).

Since O ¢ N (41 3K) and P,
» ?
o

x(0) = 0, we can conclude that there
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exists an integer m 2 O and a constant B > O such that
lrcp} < e ¥, k() (f e ® (03K,

(ii) implies (iii). Assume (ii); i.e., there exists an

integer m_* O, and a constant P > O such that lT(%)léfbme,K(?)

(Y ¢ R (QA3K)). Let (vj) be any sequence in &K (L1 ;K) which tends
to zero. Then for any given % > O, there exists a jo such that

for all j » jo,

+00

P () $
a0 = AU, < 1
J _ 1 5 m
m=o 2 [’l+pm,K(l(j)T 29 g+ &)

which implies that

P ( )
mO,K L{j < £ -
50 [ (¢, 270 (p+t)
+pmo,K %j P+
or o) (?J < i/‘.
mO,K 13 P
Thus | o (“(’j)l < ¢ for all j > j_.

This means that {7 (?j)) “» 0 as j-=» +0Q.



(iii) implies (i). Suppose T is not continuous at g,

Because of the translation invariant character of d, we may
assume t{o = C. Then there exists ¢ » O such that for any

3 » o here is ‘(t @ (fL3K) such that d((e,O) £ CY and
1T(Y)‘ > & . Choose 5j | s J =1y 24 340ee¢ Then for each

J
J . , there exists . & £(43K) such that d(e.,0) £ §  ana
J J J J

Co

‘T(%j)l > £, For any given & > 0, there exists Sj

(0]

(3}
such that do & gj and therefore for every j » jo' we have
0

that <i(fj,o) L 80 . This means that there exists (fj) - 0,

but (T(&(j)) %> 0, which contradicts (iii).

2.2 Schwartz Functions

2¢2e¢1 Definition. On R, we define the function
exp (=1/t) for t >0

S(t) =
0 for £ & D

‘We can proved, by induction on the order, that derivatives of

§ of all order exist, and are zero, at t 0. Hence € is
infinitely differentiable.

Next we define on Rn the function

X exp (- . 5 ) (hxn < 1)

gz(x) = 5/(1_g(x ua) _ 1= {x I

o Qzlla 1).



The constant & is defined by

: -1
S exp | - ) dx ’

xi <1 k =11 °

K

so that we have

]
-
.

S .‘/
n‘31(x)dx
R

and hence '51 is infinitely differentiable.

For any 4% > 0O 4 we put

C>/£(x) TR ) (x € BY) .

Throughecut this thesis the function 6; will be called the

Schwartz function.

. 1
2.2.2 Remarks, (i) \S 52(x)dx = M\sn S rn-1 — (_ 1 2) i
R 0 1=r

where Sn denotes the surface area of a unit sphere.
(ii) TFor any ¢ > O, ié D (R™) and

S & (x)ax = 1.
e (2
(iii) If B = B(xo,i) is a ball such that

B C (L, then for all x € {1 , X |~ 6Z(x-xq) belongs to

‘@(il;ﬁ).



Proof : (i) 3 Gq(x)dx = §. Gi(x)dx
R B(0,1)

| oo

= X exp |- dx
- 1-HXU2
B(0,1)
1 g

=0(5 2 exp(— 2)ds(@) ar,
0 ey=1 1=

where ds(©) is the surface area element on the sphere g(O,r).

1
1
={XS T exp(- ""2) S ds(e) } ar
O 1-r ”Q":"

1
= s S -t exp (— J > )dr.
240 1=-r

(ii) Sj(x) € R (R™), since SQ(X) is infinitely

differentiable, and by changing the variable, we have

PO -, ) ]
énui(x)dx = éni 6?(x/£)dx = Rn_Sz(x/@)d(x/g) = 1.

(ii1) Since Qb(x) >0 (ixi<e), ana € (x) = 0 (IxH>4),

we have that

Supp( SZ(X)) = {.x eERrR": gxh < Z,} .

Thus

Supp(S;(x~xO)) = {x £ g* :\lx-xdléi,} = E(xo,i).
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That is, if B ¢ £ , then for all x & -, x ¥~¢Ci(x-xc) belongs

to B (.CL;E).

2.2.3 Theorem. Let f be any continuous function with compact

support K contained in f1 . Let 3 be the distance from K to the

complement of X, and for any 4 , C < & < @, let

Ki = {xé 0 dist (x,K) ,__9,}.

Then f}(x) = 5 f(y)c‘é(x—y)dy 5 f(x-—y)((y)dy (x€0)
Ny-xh& ¢ Wyl & "

belongs to 33(¢1;KL). Further fi — f as § — O+, uniformly on {1,

Proof ¢ Tor any ¢, 0<4 < S, we define the regularization fz of T

by f (x) = Xf(y) \((x—y)dy = Sf(x—y) O/(y)dy.,
¢ n ¢ a &

or
£ {x) = g f(y)fi(x-y)dy = K‘ f(x=y) i(y)dy (xe4L),
2

ly-xis £ (hAEES

The integral is convergent since f and 5; have compact support,

we can differentiate £, . Then for any multi-index r, we have

%

r o ‘ r
aff/(X) = bxft(X) = .§1 f(y) —ax{?/(x—y)dy .

That is, fLE A (1), hence fie,’330&;K ), since Supp(fi) €K .

By (2.2.2(ii)), we have
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S f(x=-y) '{L(y)dy-f(x) S 0/, (y)ay
=
Wyh<g Nyll<e

tfi(x)-f(x) ‘

= S [f(x-y)—f(x)] 5Z(y)dy !

hWyli<e i

L 3 | f(x=-y)=f(x) l (‘.(y)dy
Iyhe

¢ sup | f(x=y)=£(0)| S (b(y)dy

LNAES 2 Wyh<e

£ sup ‘f(x-y)-f(x)|b
Iy i< &
But now, by the (uniform) continuity of f, the right side tends

to zero, uniformly in x, as & —> O+. The proof is completesw

2.2.4 Remark., The function f in the theorem can be uniformly
approximated by functions of & (#) with supports contained in

a given compact neighbourhood of K,

2.2.5 Theorem, If K is compact and contained in the open set Lk,
there is a function (€ RN (@) taking the value 1 in a neigh

neighbourhood of K and lying between O and 1 on L1,

Proof : Let & be the distance from K to the complement of AL,

and for any ¢ 4 0 < ¢ < é‘, let

K, = {'x ¢ £ : dist (x,K) & 9,},
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Then by the Urysohn's lemma (I91), there is a continuous function,

say f 3 taking the value 1 on Ki/z , the value O outside K32/4 ’

and values between O and 1 in the annular region hetween.

If O < 4,1 < 2/4 , by (2.2.3), we can find the function

¥ O = S‘ f(x-y)G; )iy (et 0}

ly it £, L

hich belong t R (L£23K . Set Y = £ ¢« Th has
which belongs to ( ,4_1) e (ﬁ(x) (ﬂ(x) en

all the required pronerties, i.e.,
(1) t{(— &(Q;Ki") CR@Q),

(11) Y (x) =1 on K , since f(x) 2 1 on K

& £q.
and (2422 Cid) )

(iii) O &ydx) & 1 (x€ n) ., since 0 £ f(x) &€ 1 (x e &),

2.2.,6 Theorem., Suppose that the compact set K is contained in
the union of the open sets .t‘l,],ﬂz,.., -Qm . Then there are

non-negative functions 56 R (.Qj) such that

m
m ' £ 1 (xg L= 4 nj),
¢ (x) = Z g j(x) : 3=1
51 = 1 (x € K).
m
Proof : Let K,‘ be any compact neighbourhood of K - U Q.j ’
3=2
contained in let K, be a compact neighbourhood of

b 2

m m
K - (K,‘ [UY nj), contained in _0.2 , and so on. Then K& U K

3=3 =1 7
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and K, 0 Kj =@ for i £ jo By (2.2.5), there are functions
45 £ A j) lying between O and 1 on ‘Qj and taking the value 1

on K.« Put
J

¢, =4, Y, = 42(1-43),...,%% =-4m(1-JQ)(1~2%)...(1-AE_1).

Then all the conditions are satisfied, because

(1) '{j are non-negative, since O 1-—-4'\_5 £ 1,

(ii) \63 k= @(ﬂ.j), since Supp (‘(’j) € Supp (lkj),

m
(1id) (ez zgej L{'q-ﬂfé(’]-'tl)wt...+-3;’n(1-2{r1)(1—%)...(1—%_1)

§e

1-1+2h]+1f2(1—)t|)+"'+lrm("-l*i)(1-4)2).'.(1-4;1'1._’])

1=C=4 )i, (m ) be etk (=) (=) o (e )

it

1-C1=4) (=40 oo (-4 )0
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