CHAPTER I

PRELIMINARIES

In this chapter, we will recall, without proof, some notions and facts from topology and real analysis.

The materials of this chapter we drawn from references [2],[3],[5],[6],[8] and [11].

1.1 Topological Spaces

- 1.1.1 <u>Definition</u>. A topology on a set E is a set T of subsets of E satisfying the following two conditions:
- (i) The union of any family $(F_{\lambda})_{\lambda \in \Lambda}$ of sets belonging to Υ ;
- (ii) The set E belongs to $\mathcal T$, and the intersection of any two sets belonging to $\mathcal T$ belongs to $\mathcal T$.
- 1.1.2 <u>Definition</u>. A set E with a topology Υ defined on it is called a <u>topological space</u>, denoted by (E,Υ) ; we shall often omit Υ and refer to E as a topological space.
- 1.1.3 <u>Definition</u>. The subsets of E which belong to Υ are called the <u>open sets</u> of the topological space E.
- 1.1.4 Example. The set 63 of open sets in a metric space E satisfies the two conditions of (1.1.1). This topology 63 is called

the topology of the metric space E (or is said to be defined by the distance given on E).

- 1.1.5 <u>Definition</u>. A topological space E is said to be <u>metrizable</u> if its topology can be defined by a distance on E. (and then this topology is also said to be metrizable).
- 1.1.6 <u>Definition</u>. A topological space E is said to be <u>Hausdorff</u> (or <u>separated</u>), if it satisfies the following " Hausdorff axiom ":

Given any two distinct points x, y in E, there exists a neighborhood U of x and a neighborhood V of y which do not intersect.

- 1.1.7 Example. Every metrizable space is Hausdorff.
- 1.1.8 <u>Definition</u>. A topological space E is called <u>connected</u> when it is not the union of two non-empty disjoint open sets.

 This is equivalent to saying that E contains no proper non-empty sets which are both open and closed.
- 1.1.9 Example. The n-dimensional real Euclidean space \mathbb{R}^n is connected.
- 1.1.10 <u>Definition</u>. A subset F of a topological space E is called <u>compact</u> if every cover of F by open subsets of E contains a finite sub-cover.
- 1.1.11 <u>Definition</u>. A subset F of a topological space E is called relatively compact if its closure F is compact.

- 1.1.12 Examples. A closed bounded subset of \mathbb{R}^n is compact. A bounded set of \mathbb{R}^n is relatively compact.
- 1.1.13 <u>Definition</u>. A topological space E is said to be <u>locally</u> compact if each point of the space has a compact neighborhood.

1.1.14 Example. Rⁿ is locally compact but not compact.

1,2 Vector Spaces

- 1.2.1 <u>Definitions</u>. Let K be an arbitrary (commutative) field with elements (called scalars) &, p, ..., with zero element 0 and identity element 1. A <u>vector space</u> over K (or <u>linear space</u> over K) is a set E with elements (called points or vectors) x, y, z,..., which has the following properties:
- (i) For every two elements x, $y \in E$ a sum x + y is defined in E; under this addition, E is an abelian group, i.e. for all x, y, $z \in E$ we have
 - (a) x + y = y + x,
 - (b) x + (y + z) = (x + y) + z,
 - (c) There exists $0 \in E$ with x + 0 = x for all $x \in E$,
 - (d) There exists for each x E an x \in E with x+x = 0.
- (ii) For every $x \in K$ and every $x \in E$ the product $x = x \times x$ of $x = x \times x$ and $x = x \times x$ of $x \times x =$

(e)
$$x(x + \beta) = x x + x \beta$$
,

(f)
$$(x+y) \times = x \times + y \times,$$

(g)
$$x(\alpha \beta) = (x \alpha) \beta$$
,

(h)
$$x \cdot 1 = x$$
.

If K is the field R of real numbers or the field C of complex numbers, then E is called a <u>real</u> or <u>complex vector space</u> respectively.

A subset F of elements of a vector space E is a vector space provided that whenever it contains x and y it also contains $x \not x + y \not \beta$, for arbitrary $\not x$, $\not \beta$ in K. F is then called a <u>linear subspace</u> (or simply <u>subspace</u>) of E.

1.2.2 Examples. (i) The n-dimensional real Euclidean space \mathbb{R}^n is the set of all n-tuples $\mathbf{x}=(\mathbf{x}_1,\dots,\mathbf{x}_n)$ of real numbers, where addition and multiplication by a scalar $\alpha \in \mathbb{R}$ are defined by

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n)$$

$$(x_1, \dots, x_n) = ((x_1, \dots, (x_n)).$$

The zero vector is (0,..., 0). The properties of a real vector space can be easily verified.

(ii) Let Ω be an open subset of \mathbb{R}^n . The set $C(\Omega)$ of all continuous real-value functions on Ω is a vector space.

(iii) The set $C(\Omega)$ of all infinitely differentiable real-value functions on Ω is a subspace of $C(\Omega)$.

1.3 Linear Maps

1.3.1 <u>Definition</u>. Let E and F be two vector spaces over the same field of scalars K. We recall that a map f from E into F is said to be <u>linear</u> if it satisfies the identity

$$f(x x + \beta y) = \alpha f(x) + \beta f(y)$$

for all $x, y \in E$ and $x, p \in K$.

1.3.2 <u>Definition</u>. Let E be a vector space over the field K.

A <u>linear form</u> (or <u>linear functional</u>) on E is a map f from E into K which satisfies the identity

$$f(x x + \beta y) = \alpha f(x) + \beta f(y)$$

for all $x, y \in E$ and $x, \beta \in K$.

1.4 Topological Vector Spaces

1.4.1 <u>Definitions</u>. Let E be a vector space over K. A topology on E is said to be <u>compatable</u> with the vector space structure if the mapping $(x,y) \mapsto x + y$ of E x E into E, and $(x,x) \mapsto x$ of K x E into E are continuous. A vector space endowed with a topology compatible with its vector space structure is called a <u>topological vector space</u>.

- 1.4.2 Example. A normed vector space, equipped with the topology defined by its norm, is a topological vector space.
- 1.4.3 <u>Definition</u>. A real-valued function q defined on a vector space E is called a <u>semi-norm</u> (psurdo-norm, pre-norm) on E, of the following conditions are satisfied:
 - (i) $q(x) \ge 0$ for all $x \in E$,
 - (ii) q(x) = |x|q(x) for any $x \in E$ and any scalar $x \in K$,
 - (iii) $q(x+y) \le q(x)+q(y)$ (subadditivity) for any pair $x,y \in E$.
- 1.4.4 Example. In the n-dimensional Euclidean space, define $q(x) = \max_{j \in \mathbb{N}} |x_j|.$ Then q(x) is a semi-norm. $1 \le j \le n$
- 1.4.5 Remark. A semi-norm q on a vector space E is a norm if for all $x \in E$, q(x) = 0 implies x = 0.

1.4.7 hear ha. I count in the start, weathput white her hypology

delived by the e-re, to a constructed Durric space.

CIN'T WAS BOUNDED BY CAR STREET

(Site of the section of the section

d. A. Grang place in the restaurantement Capitions are re. Actino

alki e oman jirji. Nesa jirjias masakwara.

The state of the state of the second state of

า เมื่อเป็นเป็นสมกับสร้อง และเมษาหลายสาว และ กละ และสมกับสมาชาย สำนัก และสาราธิ