

4.1 Chelex-100

4.1.1 Effect of pH on the Recovery Yields of $\mathrm{Cd}_{2} \mathrm{Cu}_{2}$ Pb and Zn through Chelex-100

The recovery yields of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn at pH 5 to 8 are given in Table 4.1-4.5 and plotted in Fig. 4.1-4.4.A slightly higher yield was observed for all elements at pH7.6. At this pH the precision of the experiment was also observed to be the best.
4.1.2 Effect of Flow Rates on the Recovery of Cd, Cu, Pb and Zn flom Sea Water through Chelex-100

The concentration of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn in $4 \mathrm{dm}^{3}$ sea water as determined by varying the flow rate between 1-4 $\mathrm{cm}^{3} /$ min are given in Table 4.6 . No significance difference in the concentration was observed when the flow rate was changed although a better precision was observed when the flow rate of $1 \mathrm{~cm}^{3} / \min$ was used.
4.1.3 Effect of Nitric Acid Concentration on the Stripping of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn from Chelex-100

The stripping yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn using nitric acid at various concentration are given in Table 4.7 and plotted in Fig. 4.5-4.8. A complete stripping of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$
and Zn could be obtained if the concentration of the nitric acid is higher than $2 \mathrm{M}_{\text {. }}$ As for Pb a lower acid concentration is also feasible. In the present experiment, 2 M nitric acid was normally used as eluting agent.

The elution patterns of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn with 2 M HNO_{3} are given in Table 4.8. The elution curves are plotted in Fig. 4.9-4.12. Complete elution of Cd, Cu and Zn was observed by using only $10 \mathrm{~cm}^{3} \quad 2 \mathrm{M} \mathrm{HNO}_{3}$.

4.2 Reverse Phase Chromatography

4.2.1 Effect of pH on the Recovery Yield of $\mathrm{Cd}, \mathrm{Cu}_{2}$ Pb and Zn by Reverse Phase Chromatography

The recovery yields of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn at pH between 4-7 with APDC as complexing agent, using 60-80 mesh chromosorb W-DMCS, are given in Table 4.9-4. 12 and plotted in Fig. 4.13-4.16. Complete recovery of Cu was obtained between pH5-7. A maximum recovery yield of 80% at pH5 was obtained for Cd . The recovery yield of Zn between $\mathrm{pH} 5-7$ was practically constant at $80-85 \%$. The recovery yield of Pb was poor all through the pH range applied.

The recovery yields of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn at pH between 4-7 with APDC as complexing agent, using 100-120 mesh chromosorb W-DMCS, are given in Table 4.13-4. 16 and plotted in Fig. 4.17-4.20. Complete recovery of Cu was observed at pH between 4-7. A maximum recovery yield of 88% was obtained for Cd at pH 5 . The recovery yield of Cd
decreases markedly at pH higher than 5. A maximum recovery yield of 90% was obtained for Zn at pH5. The recovery yield of Pb was poor all through the pH range applied.

The recovery yields of Cu at pH between $4-7$ with sodium diethyl-dithiocarbamate as complexing agent, using 100-120 mesh chromosorb W-DMCS, are given in Table 4.17 and plotted in Fig. 4.21. Complete recovery of Cu was obtained all through the pH range. The recovery yield of Cd, Pb and Zn was measured and found to be lower than 20% and hence were not reported.
4.2.2 Effect of Particle Size of the Solid Support on the Recovery Yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn by Reverse Phase Chromatography

The recovery yields of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn through chromosorb W-DMCS with particle sizes $60-80,80-100$ and 100-120 mesh are given in Table $4.10,4.14$ and 4.18 and plotted in Fig. 4.22-4.25. No significant difference was observed in all catseso
4.2.3 Effect of Flow Rates on the Recovery Yield of $\mathrm{Cd}, \mathrm{Cu}_{2} \mathrm{~Pb}$ and Zn by Reverse Phase Chromatography

The recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn are determined by varying the flow rate between $2-8 \mathrm{~cm}^{3} /$ min are given in Table 4.10, 4.19-4. 21 and plotted in Fig. 4.26-4.29. A slight-: 1y decrease in the recovery yield of Cd was observed when the rate is higher than $4 \mathrm{~cm}^{3} / \min$. The recovery yield of Cu
is constant at flow rate between $2-6 \mathrm{~cm}^{3} / \min$. The recovery yield of Cu decreases 20% when the flow rate is higher than $6 \mathrm{~cm}^{3} / \min$. No significant difference in the recovery yield was observed for Pb and Zn when the flow rate was changed although a better precision was observed when the flow rate is lower than $4 \mathrm{~cm}^{3} / \min$ 。
4.2.4 Effect of Eluting Agents on the Recovery Yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn by Reverse Phase Chromatography

The recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn using chloroform, benzene and toluene as eluting agents are given in Table 4.10, 4.22 and 4.23 and plotted in Fig. 4.30-4.33. Complete recovery of Cu was observed when chloroform was used as eluting agent. No significant difference was observed in the cases of Cd and Zn^{\wedge} which the recovery yield was about 80% The recovery yield of Pb was low in all cases.
4.2.5 Effect of Acid Concentration on the Stripping of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn from Chloroform

The stripping of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn by hydrochloric acid at various concentration are given in Table 4.24 and plotted in Fig. 4.34-4.37. Complete stripping of Cd, Pb and Zn could be obtained if the concentration of HCl is higher than $2 \mathrm{M}, 4 \mathrm{M}$ and 0.5 M respectively. Cu could not be stripped quantitatively with HCl . The stripping of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn using nitric acid at various concentration are given in Table 4. 25 and plotted in Fig. 4.38-4.41. Complete stripping of
$\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn could be obtained if the concentration of HNO_{3} is higher than $1 \mathrm{M}, 6 \mathrm{M}, 5 \mathrm{M}$ and 1 M respectively. $6 \mathrm{M} \mathrm{HNO}_{3}$ was normally used as stripping agent.

The results of the analysis of five samples of sea water after preconcentration by chelex-100 are given in Table 4.26. Table 4.27 gives the results by reverse phase
 chromatography prior ${ }^{\wedge}$ and after correction of chemical yield. Table 4.28 gives the results of both procedures in comparision to each other. It is obvious that the results from both procedures agree very well with each other.

Table 4.1 The recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn at pH 5.0 .

$\frac{\mathrm{No}}{\mathrm{of}}$	Cu			Cd			Zn			Pb		
Experi- ment	$\begin{aligned} & \mathrm{yg} \\ & \text { added } \end{aligned}$	found	\% Recovery	$\underset{\text { added }}{\mu \mathrm{g}}$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	\% Recovery	μg added	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	\% Recovery	$\underset{\text { added }}{\mu \mathrm{g}}$	$\mu \mathrm{g}$ found	\% Recovery
1	4	3.38	84.62	2	0.55	27.33	30	25. 79	85.95	10	8.87	88.67
2	4	3.43	85.67	2	0.48	24.00	30	26.35	87.83	10	8.87	38.67
3	4	3.73	93.33	2	0.99	49.33	30	27.90	93.00	10	8.76	87.60
4	4	3.73	93.33	2	1.06	53.20	30	25.92	86.40	10	8.54	85.40
5	4	3.60	90.00	2	0.62	30.93	30	27.49	91.63	10	8.66	86.60
6	4	3.69	92.30	2	0.56	28.00	30	28.31	94.36	10	8.66	86.60
7	4	3.43	85.67	2	0.64	31.87	30	28.55	95.18	10	9.08	90.80
8	4	3.54	88.60	2	0.56	27.75	30	28.02	94.40	10	9.28	92.80
9	4	3.90	97.60	2	0.51	25.60	30	26.78	89.28	10	9.28	92.80
10	4	3.84	96.00	2	0.48	24.00	30	27.28	90.93	10	8.85	88.50
$\overline{\mathrm{x}}$			90.68			32.30			90.80			88.84
SD			4.518			10.411			3.303			2.556
RSD			4.928			32.332			3.637			2.877

Table 4.2 The recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn at pH6.0.

$\frac{\text { No }}{\text { Of }}$	Cu			Cd			Zn			Pb		
Experiment	$\begin{gathered} \mu \mathrm{g} \\ \text { added } \end{gathered}$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	\% Recovery	$\stackrel{\mu g}{\text { added }}$	found	$\frac{\text { \% }}{\text { Recovery }}$	$\underset{\text { added }}{\mu \mathrm{g}}$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	\% Recovery	$\underset{\text { added }}{\mu \mathrm{g}}$	$\underset{\substack{\text { pound }}}{\text { for }}$	\% Recovery
1	4	3.37	84.20	2	1.64	82.20	30	26.99	89.96	10	8.60	86.00
2	4	3.68	92.00	2	1.68	34.00	30	27.45	91. 50	10	8.45	84.50
3	4	3.57	89.33	2	1.68	84.00	30	28.83	96. 10	10	8.57	85.67
4	4	3.75	93.70	2	1.68	84.00	30	28.56	95. 20	10	8.57	85.67
5	4	3.70	92.50	2	1.83	91.47	30	26.39	87.95	10	8.64	86.40
6	4	3.89	97.17	2	1.83	91.47	30	28.38	94.60	10	8.64	86.40
7	4	3.67	91.67	2	1.70	84.93	30	25.91	86. 38	10	9.25	92.50
8	4	3.55	88.67	2	1.75	87.33	30	25.92	86.40	10	8.80	88.80
9	4	3.51	87.67	2	1.70	85.06	30	25.98	86.60	10	9.80	98.80
10	4	3.84	96.00	2	1.75	87.47	30	27.18	90.59	10	8.80	88.00
$\overline{\mathrm{x}}$			91.29			86.19			90.53			88.27
SD			3.927			3.195			3.757			4.333
RSD			4.301			3.70%			4.150			4.909

Table 4.3 The recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn at pH 7.0 .

No	Cu			Cd			Zn			Pb		
Experiment	$\underset{\text { added }}{\mu \mathrm{g}}$	$\begin{aligned} & \mu \mathrm{g} \\ & \text { found } \end{aligned}$	$\begin{gathered} \% \\ \text { Recovery } \end{gathered}$	$\stackrel{\mu \mathrm{g}}{\text { added }}$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	Recovery	$\underset{\text { added }}{\mu \mathrm{g}}$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	$\begin{gathered} \text { \% } \\ \text { Recovery } \end{gathered}$	$\begin{gathered} \mu \mathrm{g} \\ \text { added } \end{gathered}$	品 found	Recovery
1	4	3.74	93.40	2	1.78	88.97	30	28.84	96.14	10	8.40	84.00
2	4	3.74	93.40	2	1.78	88.93	30	28.34	94.45	10	9.57	95.67
3	4	3.56	89.00	2	1.84	92. 13	30	28.82	96.05	10	9.33	93.33
4	4	3.56	89.00	2	1.81	90.53	30	28.08	93.61	10	10.00	100.00
5	4	3.75	93.67	2	1.81	90.53	30	28.50	95.00	10	8.64	86.40
6	4	3.57	89.33	2	1.81.	90.53	30	28.05	93.50	10	8.48	84.82
7	4	3.43	85. 67	2	1.83	91.33	30	28.98	96.50	10	9.20	92.00
8	4	3.56	89.00	2	1.81	90.70	30	29.16	97.20	10	10.00	100.00
9	4	3.56	8 O .00	2	1.80	89.87	30	27.83	92.78	10	9.40	94.00
10	4	3.64	91.00	2	1.83	91.33	30	30.87	102.92	10	8.48	84.80
$\overline{\mathrm{x}}$			90.24			90.49			95.83			91.64
SD			2.572			1.015			2.889			6.482
RSD			2.851			1.122			3.317			7.073

Table 4.4 The recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn at pH 7.6 .

$\frac{\mathrm{NO}}{\mathrm{Of}}$	Cu			Cd			Zn			Pb		
Experiment	$\underset{\text { added }}{\mu g}$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	$\begin{gathered} \% \\ \text { Recovery } \end{gathered}$	$\underset{\text { added }}{\mu \mathrm{g}}$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	Recovery	$\underset{\substack{\mu g \\ \text { added }}}{ }$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	\% Recovery	$\underset{\text { added }}{\mu \mathrm{g}}$	$\underset{\text { found }}{\text { ug }}$	\% Recovery
1	4	3.87	96.80	2	1.86	93.00	30	29.34	97.80	10	9.40	94.00
2	4	3.97	99.20	2	1.88	93.80	30	30.29	100.97	10	9.80	98.00
3	4	3.97	99.20	2	1.88	93.80	30	27.89	92.97	10	9.60	96.00
4	4	3.95	98.80	2	1.90	95.12	30	29.19	97.30	10	9.40	94.00
5	4	3.95	98.80	2	1.91	95.68	30	28.65	95. 50	10	10.00	100.00
6	4	3.98	99.60	2	1.93	96.60	30	28.39	94.63	10	10.24	102.40
7	4	3.98	99.60	2	1.93	96.70	30	28.70	95.68	10	10.00	100.00
8	4	3.92	98.00	2	1.88	94.13	30	29.33	97. 78	10	10.10	101.00
9	4	4.00	100.00	2	1.88	94.13	30	29.20	97.32	10	10.00	100.00
10	4	4.00	100.00	2	1.94	96.93	30	28.92	96.40	10	10.00	100.00
$\overline{\mathrm{x}}$			99.00			94.99			96.63			98.04
SD			0.984			1.416			2.147			2.893
RSD			0.994			1.491			2.222			2.951

Table 4.5 The recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn at pH8.0.

No	Cu			Cd			Zn			Pb		
Experiment	$\underset{\text { added }}{\mu \mathrm{g}}$		\% Recovery	added	$\stackrel{\mu}{g}$ found	$\frac{\%}{\text { Recovery }}$	$\begin{gathered} \mu \mathrm{g} \\ \text { added } \end{gathered}$	$\underset{\text { found }}{\mu \mathrm{g}}$	\% Recovery	$\underset{\text { added }}{\mu \mathrm{g}}$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	\% Recovery
1	4	3.49	87.33	2	1.85	92.33	30	25.47	84.90	10	8.73	87.33
2	4	3.66	91.39	2	1.80	90.00	30	25.16	83.88	10	7.97	79.76
3	4	3.57	89.23	2	1.81	90.27	30	24.09	80.30	10	9.16	91. 60
4	4	3.49	87.33	2	1.72	86.00	30	27.81	92.70	10	9.16	91. 60
5	4	3.67	91.67	2	1.72	36.00	30	26.07	86.91	10	8.14	81.40
6	4	3.65	91.33	2	1.81	90.27	30	27.21	90.69	10	8.14	81.40
7	4	3.57	89.33	2	1.84	92.13	30	27.11	90.35	10	8.64	86.40
8	4	3.56	89.00	2	1.79	89.60	30	26.61	88.70	10	8.24	82.40
9	4	3.73	93.33	2	1.34	91.87	30	26.89	89.63	10	8.74	87.40
10	4	3.65	91.33	2	1.75	87.33	30	27.71	92.35	10	8.24	82.40
$\overline{\mathrm{x}}$			90.13			89.58			88.05			85. 18
SD			1.986			2.384			4.011			4.326
RSD			2. 303			2.661			4.556			5.079

$\underset{\omega}{\sim}$

Fig. $4.1-4.4$ Effect of ph the recevery yield of Ch Cu, Pb and Za through chelexo-100

Fig. $403: ~ \mathrm{~Pb}$

Fifoct : 2 m

Table 4.6 The recovery of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn from $4 \mathrm{dm}^{3}$ sea water.

No	$\mathrm{Cu}(\mathrm{ppb})$.				Cd (ppb)				Zn (ppb)				Pb (ppb)			
Experiment	$\begin{aligned} & \text { Flow } \\ & \text { rate } \\ & 1.0 \\ & \mathrm{~cm} / \mathrm{min} \end{aligned}$	Flow rate 2.0 $\mathrm{cm} / \mathrm{min}$	Flow rate 3.0 $\mathrm{cm}^{3} / \mathrm{min}$	Flow rate 4.0 $\mathrm{cm} / \mathrm{min}$	Flow rate 1.0 $\mathrm{cm}^{3} / \mathrm{min}$	Flow rate 2.0 $\mathrm{cm}^{3} / \mathrm{min}$	Flow rate 3.0 $\mathrm{cm}^{3} / \mathrm{min}$	Flow rate 4.0 $\mathrm{cm}^{3} / \mathrm{min}$	Flow rate 1.0 $\mathrm{cm} / \mathrm{min}$	Flow rate 2.0 $\mathrm{cm} / \mathrm{min}$	Flow rate 3.0 $\mathrm{cm}^{3} / \mathrm{min}$	$\begin{aligned} & \text { Flow } \\ & \text { rate } \\ & 4.0 \\ & 4 \mathrm{~cm}^{3} / \mathrm{min} \end{aligned}$	Flow rate 1.0 $\mathrm{cm}^{3} /$ min	Flow rate 2.0 $\mathrm{cm}^{3} / \mathrm{mi}$	Flow rate 3.0 cm 3 min	Flow rate 4.0 $\mathrm{cm} /$ /nin
1	2.50	2.58	2.60	2.65	0.104	0.099	0.106	0.095	20.36	20.65	20.62	21.20	0.42	0.38	0.45	0.44
2	2.60	2.60	2.64	2.58	0.102	0.105	0.098	0.106	20.48	20.50	21.00	20.45	0.45	0.46	0.48	0.49
3	2.58	2.62	2.54	2.72	0.100	0.102	0.098	0.108	20.52	20.42	20.24	20. 75	0.45	0.45	0.37	0.37
4	2.56	2.54	2. 70	2.49	0.098	0.104	0.104	0.097	20,64	20.28	20.72	21.28	0.40	0.45	0.45	0.37
$\overline{\mathrm{x}}$	2.59	2.59	2.62	2.61	0.101	0.102	0.102	0.102	20.50	20.46	20.65	20.67	0.430	0.435	0.418	0.418
SD	0.019	0.034	0.067	0.098	0.002	0.003	0.004	0.006	0.115	0.155	0.314	0.403	0.024	0.037	0.056	0.058
RSD	0.741	1.322	2.569	3.771	2.556	2.593	3.786	6.378	0.563	0.758	1.521	1.951	5.696	8.498	13.438	4.001

Table 4.7 Nitric acid concentration on the stripping of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn from chelex-100。

No	Recovery yield of $\mathrm{Cu}(\%)$				Recovery yield of Cd (\%)				Recovery yield of $\mathrm{Zn}(\%)$				Recovery yield of $\mathrm{Pb}(\%)$			
Experiment	$\begin{gathered} \mathrm{HNO}_{3} \\ \mathrm{IM}^{3} \end{gathered}$	$\begin{gathered} \mathrm{HNO}_{3} \\ 2 \mathrm{M}^{3} \end{gathered}$	$\begin{gathered} \mathrm{HNO}_{3} \\ 3 \mathrm{M}^{3} \end{gathered}$	$\mathrm{HNO}_{4}{ }_{4}^{3}$	$\mathrm{HNO}^{\mathrm{HN}}$	$\mathrm{HNO}_{2}{ }_{2}$	HNO 3 M	$\mathrm{HNO}_{4}{ }_{4}$	$\begin{gathered} \mathrm{HNO}_{3} \\ 1 \mathrm{~m}^{3} \end{gathered}$	$\begin{gathered} \mathrm{HNO}_{2} \\ 2 \mathrm{M}^{3} \end{gathered}$	$\begin{gathered} \mathrm{HNO}_{3} \\ 3 \mathrm{M}^{3} \end{gathered}$	$\mathrm{HNO}_{4}{ }_{4}$	HNO_{3} $1 \mathrm{M}^{3}$	$\mathrm{HNO}_{2}{ }_{2}{ }^{3}$	$\begin{gathered} \mathrm{HNO}_{3} \\ 3 \mathrm{M}^{2} \end{gathered}$	$\begin{gathered} \mathrm{HNO}_{3} \\ 4 \mathrm{M}^{3} \end{gathered}$
1	92.33	100.00	98.00	100.00	92.40	94.83	95.25	95.40	96.33	95.68	95.25	94. 52	100.00	100.00	99.40	99.
2	92.33	100.00	100.00	100.00	92.40	94.83	94.20	94. 53	95.45	97.78	95.25	97.06	100.00	100.00	99.40	99.40
3	92.33	99.80	100.00	100.00	94. 13	95.63	96.23	94.53	94.85	97.32	96.25	96.96	100.00	100.00	99.40	98.40
4	89.66	98.80	98.27	98.40	92.40	96.00	95.25	93.60	93.80	96.40	97.50	96. 84	98.50	99.50	98.00	98.00
$\overline{\mathrm{x}}$	91.66	99.65	99.06	99.60	92.83	95. 32	95.22	94.52	95.11	96.80	96.06	96. 35	99.63	99.88	99.05	98.70
SD	1. 335	0.574	1.082	0.800	0.865	0.588	0.830	0.735	1.063	0.939	1.068	1.220	0.750	0.250	0.700	0.808
RSD	1.456	0.576	1.093	0.803	0.932	0.617	0.871	0.778	1.111	0.970	1. 112	1.226	0.753	0.251	0.707	0.819

Fif. $405-108$ Effect of nitric acid cencentration on the stripping of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and zn frem chelex-100

Table 4.8 Elution patterns of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn
Eluting agent : $2 \mathrm{M} \mathrm{HNO}_{3}$
Flow rate : $1 \mathrm{~cm}^{3} /$ min

Fraction No	Elution of $\mathrm{Cu}(\%)$			Elution of $\mathrm{Cd}(\%)$			Elution of $\mathrm{Zn}(\%)$			Elution of $\mathrm{Pb}(\%)$		
	№1	No2	No3	No1	No2	No3	No1	No2	No3	№1	No2	No3
1	-	-	-	-	-		-	-	-	-	-	-
2	-	-	-	-	-		1.33	1.33	1.33	-	-	-
3	1.85	3.50	1.85	1.51	1.38	1.82	4.33	3.56	3.74	13.40	12.28	10.35
4	15.15	16.18	17.10	17. 50	18.14	18.62	7.52	8.17	8.30	70.15	68.25	75.60
5	43.50	44.20	45.08	40.00	38.26	41.20	15.17	16.08	15.21	16.35	17.40	13.25
6	22.40	21.38	19.48	27.52	26.44	24.45	33.52	35.12	35.00	-	-	-
7	10.30	10.10	9.50	7.50	7.92	7.30	17.50	18.12	17.18	-	-	-
8	3.25	1.75	4.00	-	-	-	9.48	10.30	10.14	-	-	-
9	-	-	-	-	-	-	4.98	4.52	3.88	-	-	-
10	-	-	-	-	-	-	-	-	-	-	-	-
11	-	-	-	-	-	-	E	-	-	-	-	-
12	-	-	-	-	-	-	-	-	-	-	-	-
13	-	-	-	-	-	-	-	-	-	-	-	-
14	-	-	-	-	-	-	-	-	-	-	-	-
15	-	-	-	-	-	-	-	-	-	-	-	-

Note - : un detectable

Pig. 4.9-4.12 Elution patterns of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn with $2 \mathrm{H}^{1} \mathrm{HNO}_{3}$

Table 4.9 The recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn at pH 4.0 .
Condition:
Chromosorb W-DMCS 60-80 mesh Complexing agent : APDC

$\frac{\mathrm{No}}{0 \mathrm{f}}$	Zn			Cd			Cu			Pb		
Experiment	$\begin{gathered} \mu g \\ \text { added } \end{gathered}$	$\begin{aligned} & \mu \mathrm{g} \\ & \text { found } \end{aligned}$	\% Recovery	$\begin{gathered} \text { pg } \\ \text { added } \end{gathered}$	$\begin{aligned} & \text { ug } \\ & \text { found } \end{aligned}$	$\%$ Recovery	added	$\begin{aligned} & \mu \mathrm{g} \\ & \text { found } \end{aligned}$	$\begin{gathered} \text { \% } \\ \text { Recovery } \end{gathered}$	$\begin{aligned} & \mu \mathrm{g} \\ & \text { added } \end{aligned}$	$\stackrel{\mu g}{ }$	$\begin{gathered} \% \\ \text { Recovery } \end{gathered}$
1	10	6.50	65.00	2	1.18	59.00	4	3.76	94.00	10	4.00	40.00
2	10	7.20	72.00	2	1.11	55.70	4	3.60	90.00	10	4.20	42.00
3	10	6.45	64.50	2	1.14	57.00	4	3.68	92.00	10	4.00	40.00
4	10	7.42	74.20	2	1.21	60.50	4	3.83	95.80	10	4.50	45.00
5	10	6.60	66.00	2	1.29	64.50	4	3.74	93.60	10	4.-9	40.00
6	10	6.75	67.50	2	1.27	63.60	4	3.74	93.40	10	4.50	45.00
7	10	7.06	70.60	2	1.31	65.30	4	3.80	95.00	10	4.00	40.00
8	10	6.65	66.50	2	1.26	62.80	4	3.82	95.50	10	4.00	40.00
$\overline{\mathrm{x}}$			63.29		-	61.05			93.76			41.50
SD			3.551			3.567			1.724			2.330
RSD			5.201			5.843			1.838			5.614

Table 4.10 The recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn at pH 5.0
Condition:
Chromosorb W-DMCS 60-80 mesh Complexing agent : APDC

No	Zn			Cd			Cu			Pb		
Experiment	$\underset{\text { added }}{\mu \mathrm{g}}$	$\begin{aligned} & \mu \mathrm{g} \\ & \text { found } \end{aligned}$	\% Recovery	$\begin{aligned} & \text { pg } \\ & \text { added } \end{aligned}$	$\underset{\text { found }}{\mu \mathrm{g}}$	\% Recovery	$\underset{\text { added }}{\mu \mathrm{g}}$	found	\% Recovery	$\stackrel{\mu \mathrm{g}}{\text { added }}$	$\underset{\text { found }}{\text { fug }}$ found	\% Recovery
1	10	8.80	88.00	2	1.60	78.00	4	4.00	100.00	10	5.80	58.00
2	10	8.65	86.50	2	1.67	83.60	4	4.00	100.00	10	5.80	58.00
3	10	8.95	89.50	2	1.67	83.60	4	3.96	99.00	10	5.35	53.50
4	10	9.10	91.00	2	1.57	78.30	4	4.00	100.00	10	5.35	53.50
5	10	9.14	91.40	2	1.68	84.00	4	3.98	99.50	10	5.50	55.00
6	10	8.93	89.30	2	1.71	85.50	4	4.00	100.00	10	5.50	55.00
7	10	8.93	89.30	2	1.60	80.00	4	3.94	98.50	10	5.50	55.00
8	10	8.51	85.08	2	1.63	31.60	4	4.00	100.00	10	5.80	58.00
$\overline{\mathrm{x}}$			88.76			82.03		\%	99.63			55. 56
SD			2.150			2.492			0.582			2.112
RSD			2.422			3.037			0.585			3.801

Table 4.11 The recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn at pH 6.0 .
Condition:
Chromosorb W-DMCS 60-80 mesh Complexing agent : APDC

No	Zn			Cd			Cu			Pb		
Experiment	$\begin{aligned} & \text { ug } \\ & \text { added } \end{aligned}$	$\begin{aligned} & \text { fig } \\ & \text { found } \end{aligned}$	\% Recovery	$\underset{\text { added }}{\mu \mathrm{g}}$	${ }^{\mu \mathrm{g}}$ found	$\%$ Recovery	$\underset{\text { added }}{\text { ug }}$	found	$\begin{gathered} \text { \% } \\ \text { Recovery } \end{gathered}$	$\mu \mathrm{g}$ added	$\mu \mathrm{g}$ found	$\begin{gathered} \% \\ \text { Recovery } \end{gathered}$
1	10	8.40	84.00	2	1.15	57.40	4	4.00	100.00	10	5.50	55.50
2	10	8.85	88.50	2	1.21	60.50	24	4.00	100.00	10	5.50	55. 50
3	10	8.75	87.50	2	1.25	62.60	4	4.00	100.00	10	6.00	60.00
4	10	8.90	89.00	2	1. 12	60.50	4	4.00	100.00	10	6.00	60.00
5	10	8.32	83.20	2	1.16	58.00	4	3.80	95.00	10	6.00	60.00
6	10	8.65	86.50	2	1.17	58.50	4	3.92	98.00	10	5.80	58.00
7	10	8.80	88.00	2	1.30	64.80	4	3.91	97.80	10	5.80	58.00
8	10	8.28	82.80	2	1.26	63.20	4	3.94	98.50	10	5.30	58.00
$\overline{\mathrm{x}}$			86.19		บr	60.70			98.66			57.81
SD			2.494			2.666			1.764			2.086
RSD			2.894			4.392			1.788			3.609

Table 4.12 The recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn at pH7.0.
Condition:
Chromosorb W-DMCS 60-80 mesh Complexing agent : APDC

No	Zn			Cd			Cu			Pb		
Experiment	$\begin{aligned} & \mu \mathrm{g} \\ & \text { added } \end{aligned}$	found	\% Recovery	$\underset{\text { added }}{\mu g}$	found	Recovery	$\begin{gathered} \mu \mathrm{g} \\ \text { added } \end{gathered}$	found	\% Recovery	$\underset{\text { added }}{\mathrm{ug}}$	$\underset{\text { found }}{\mu \mathrm{g}}$	\% Recovery
1	10	7.80	78.00	2	1.01	50.30	4	3.98	99.50	10	5.80	58.00
2	10	7.82	78.20	2	1.03	51.50	4	4.00	100.00	10	5.50	55.00
3	10	8.18	81.80	2	0.91	45.70	4	3.93	98.25	10	6.00	60.00
4	10	7.75	77.50	2	0.94	46.80	4	3.87	96.80	10	6.00	60.00
5	10	7.72	77.20	2	0.99	49.60	4	3.92	98.00	10	5.80	58.00
6	10	7.84	78.40	2	0.96	48.00	4	4.00	100.00	10	5.50	55.00
7	10	8.16	81.60	2	0.95	47.50	4	3.90	97.50	10	5.50	55.00
8	10	8.37	83.70	2	0.91	45.60	4	3.89	97.25	10	5.80	58.00
$\overline{\mathrm{x}}$			79.55		OHO	48.12			98.41			57.38
SD			2.442			2.162			1. 265			2.134
RSD			3.070			4.492			1.286			3.719

Fig. $4.13-4.16$ Effect of pH on the recovery yield of Cd , Cu, Pb and m by reverse phase chremategraphy. : chremesert W-DHCS 60-80 mesh.

Fige 4014 : Cu

Figo $4.15: ~ P b ~$

Fige 4.16 : $2 n$

Table 4.13 The recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn at pH 4.0 。
Condition:
Chromosorb W-DMCS 100-120 mesh Complexing agent : APDC

$\stackrel{N_{0}}{O f}$	Zn			Cd			Cu			Pb		
Experiment	$\underset{\text { added }}{\mu \mathrm{g}}$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	$\begin{gathered} \% \\ \text { Recovery } \end{gathered}$	$\underset{\text { added }}{\text { adg }}$	found	Recovery	$\begin{aligned} & \mu \mathrm{g} \\ & \text { added } \end{aligned}$	found	\% Recovery	$\underset{\text { added }}{\text { ug }}$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	\% Recovery
1	10	7.85	78.50	2	1.52	75.80	4	3.84	96.00	10	5.00	50.00
2	10	8.04	80.40	2	1.51	75.40	4	3.84	96.00	10	5.50	55.00
3	10	7.36	73.60	2	1.59	79.50	4	3.94	98.50	10	5.00	50.00
4	10	7.44	74.43	2	1.41	70.50	4	3.94	98.50	10	4.85	48.50
5	10	7.05	70.54	2	1.62	81.00	4	4.00	100.00	10	5.00	50.00
6	10	7.25	72.50	2	1.54	76.80	4	4.00	100.00	10	4.85	48.50
7	10	7.52	75.20	2	1.51	75.40		3.96	99.00	10	4.85	48.50
8	10	7. 75	77. 45	2	1.58	78.80	4	3.94	98.50	10	4.85	48.50
$\overline{\mathrm{x}}$			75.33			76.65	UNIVE	SITY	98. 30			49.88
SD			3.274			3.237			1.557			2.200
RSD			4.346			4.223			1.584			4.410

Table 4.14 The recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn at $\mathrm{pH} 5.0^{\circ}$
Condition:
Chromosorb W-DMCS 100-120 mesh. Complexing agent : APDC

No_{0}	Zn			Cd			Cu			Pb		
Experiment	$\begin{gathered} \text { ng } \\ \text { added } \end{gathered}$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	$\begin{gathered} \% \\ \text { Recovery } \end{gathered}$	$\underset{\text { added }}{\mu \mathrm{g}}$	$\mu \mathrm{g}$ found	Recovery	$\underset{\text { added }}{\mu \mathrm{g}}$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	\% Recovery	$\begin{gathered} \mu \mathrm{g} \\ \text { added } \end{gathered}$	$\begin{aligned} & \mu g \\ & \text { found } \end{aligned}$	$\begin{gathered} \% \\ \text { Recovery } \end{gathered}$
1	10	8.63	86. 30	2	1.82	91.00	4	4.00	100.00	10	5.50	55.00
2	10	9.29	92.90	2	1.78	89.20	4	4.00	100.00	10	5.50	55.00
3	10	8.83	88.30	2	1.76	88.20	4	3.95	98.75	10	5.30	53.00
4	10	9.41	94.10	2	1.76	87.80	4	4.00	100.00	10	5.30	53.00
5	10	8.85	88.50	2	1.71	85.40	4	3.96	99.00	10	5.50	55.00
6	10	8.67	86.70	2	1.80	90.00	4	4.00	100.00	10	5.80	58.00
7	10	9.00	90.00	2	1.71	85.40	4	3.94	93.50	10	5.30	58.00
ε	10	8.95	89.50	2	1.77	88.50	4 水	4.00	100.00	10	5.80	53.00
$\overline{\mathrm{x}}$			89. 54			88.19		TY	99.53			55.63
SD			2. 764			2.000			0.661			2.134
RSD			3.087			2.268			0.664			3.836

Table 4.15 The recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn at pH6.0.
Condition:
Chromosorb W-DMCS $100-120$ mesh Complexing agent : APDC

$\begin{aligned} & \text { No } \\ & \text { of } \end{aligned}$	Zn			Cd			Cu			Pb		
Experiment	$\begin{array}{r} \mu \mathrm{g} \\ \text { added } \end{array}$	$\begin{aligned} & \text { ug } \\ & \text { found } \end{aligned}$	\% Recovery	$\begin{aligned} & \mu \mathrm{g} \\ & \text { added } \end{aligned}$	$\begin{aligned} & \mu \mathrm{g} \\ & \text { found } \end{aligned}$	\% Recovery	$\begin{gathered} \mu \mathrm{g} \\ \text { added } \end{gathered}$	$\mu \mathrm{g}$ found	$\begin{gathered} \text { \% } \\ \text { Recovery } \end{gathered}$	$\mu \mathrm{g}$ added	$\stackrel{\mu \mathrm{g}}{\mu}$ found	\% Recovery
1	10	8.54	85.40	2	1.19	59.50	4	4.00	100.00	10	6.85	68.50
2	10	8.50	85.00	2	1.15	57.50	4	3.92	98.00	10	6.85	68.50
3	10	8.12	81.20	2	1.25	62.50	4	4.00	100.00	10	6.85	68.50
4	10	8.34	83.40	2	1.28	64.00	4	4.00	100.00	10	6.50	65.00
5	10	8.76	87.60	2	1.18	59.00	4	3.92	98.00	10	6.50	65.00
6	10	8.36	83.60	2	1.17	58.80	4	3.92	98.00	10	6.50	65.00
7	10	8.70	87.00	2	1.26	63.00	4	4.00	100.00	10	6.35	63.50
8	10	9.02	90.20	2	1.27	63.50	4	3.85	96.25	10	6.35	63.50
$\overline{\mathrm{x}}$			85.45			60.98			98.78			65.94
SD			2.812			2.531			1.423			2.211
RSD			3.290			4.150			1.441			3.353

Table 4.16 The recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn at pH 7.0 .
Condition:
Chromosorb W-DMCS $100-120$ mesh Complexing agent : APDC

No	Zn			Cd			Cu			Pb		
Experiment	$\begin{array}{\|c} \mu \mathrm{g} \\ \text { added } \end{array}$	found	\% Recovery	$\begin{gathered} \mu \mathrm{g} \\ \text { added } \end{gathered}$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	$\%$ Recovery	$\begin{gathered} \mu \mathrm{g} \\ \text { added } \end{gathered}$	found	\% Recovery	$\underset{\text { added }}{\mu \mathrm{g}}$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	\% Recovery
1	10	7.82	78.20	2	0.97	48.50	4	3.94	98. 50	10	6. 55	65.50
2	10	8.38	83.80	2	0.84	42.00	4	3.94	98.50	10	6.55	65.50
3	10	7.62	76.20	2	0.83	41.50	4	4.00	100.00	10	6.00	60.00
4	10	8.25	82.50	2	1.00	50.00	4	3.96	99.00	10	6.00	60.00
5	10	8.42	84.20	2	0.92	45.80	4	3.92	98.00	10	6.00	60.00
6	10	7.83	78.30	2	1.01	50.50	4	3.90	97.50	10	6.55	65.50
7	10	8.05	80.50	2	0.94	46.80	4	3.94	98.50	10	6.00	60.00
8	10	7.98	79.80	2	0.87	43.25	4	3.82	95.50	10	6.00	60.00
$\overline{\mathrm{x}}$			80.44		Uru	46.04		ग	98.19			62.75
SD			2.870			3.525			1.308			2.940
RSD			3.568			7.650			1.332			4.685

Fig. $4017=4.20$ Effect of pH on the recovery yield of Cd , Cu, Pb and Zn by reverse phase chromatography. 8 chromosorb W-DMCS 100-120 meah.

Fig. $4.19: ~ P m ~$

Fif. $4.20: 2 \mathrm{zn}$

Table 4.17 The recovery yield of Cu at pH between 4-7.
Condition:
Chromosorb W-DMCS 100-120 mesh Complexing agent : NaDEDTC

$\frac{\mathrm{No}}{\mathrm{of}}$	Cu at pH4			Cu at pH5			Cu at pH6			Cu at pH 7		
Experiment	adg	$\begin{aligned} & \text { pg } \\ & \text { found } \end{aligned}$	\% Recovery	$\underset{\text { added }}{\mu \mathrm{g}}$	found found	$\%$ Recovery	$\underset{\text { added }}{\mu \mathrm{g}}$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	$\begin{gathered} \text { \% } \\ \text { Recovery } \end{gathered}$	$\underset{\text { added }}{\text { ug }}$	$\begin{gathered} \mu g \\ \text { found } \end{gathered}$	$\begin{gathered} \text { \% } \\ \text { Recovery } \end{gathered}$
1	4	4.00	100.00	4	4.00	100.00	4	4.00	100.00	4	3.90	97.50
2	4	4.00	100.00	4	4.00	100.00	4	3.94	98.50	4	3.94	98.50
3	4	3.88	97.00	4	3.94	98.50	4	3.94	98.50	4	4.00	100.00
4	4	3.90	97.50	4	4.00	100.00	4	4.00	100.00	4	3.94	98.50
5	4	3.92	98.00	4	3.94	98.50	4	4.00	100.00	4	3.92	98.00
6	4	4.00	100.00	4	4.00	100.00	4	4.00	100.00	4	3.90	97. 50
7	4	4.00	100.00	4	4.00	100.00	4	3.94	98.50	4	3.96	99.00
8	4	3.94	98.50	4	4.00	100.00	4	4.00	100.00	4	3.92	98.00
$\overline{\mathrm{x}}$			98.87			99.63		ITY	99. 14			98.38
SD			1.275			0.694			0.776			0.835
RSD			1.289			0.697			0.781			0.848

Fig. 4.21 Effect of pH on the recovery yield of Cu by reverse phase chromatography.
: Chromosorb W-pMCS 100-120 mesh
: sodium diethyl-dithiecarbanate

Table 4.18 The recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn at pH 5.0 .
Condition:
Chromosorb W-DMCS 80-100 mesh Complexing agent : APDC

$\mathrm{NO}_{0 \mathrm{o}}$	Zn			Cd			Cu			Pb		
Experiment	added	$\underset{\sim}{\mu g}$ found	\% Recovery	$\mu \mathrm{g}$ added	found	\% Recovery	$\begin{aligned} & \mu \mathrm{g} \\ & \text { added } \end{aligned}$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	\% Recovery	$\underset{\text { added }}{\mu \mathrm{g}}$	$\begin{gathered} \text { ug } \\ \text { found } \end{gathered}$	\% Recovery
1	10	9.24	92.40	2	1.65	82.50	4	4.00	100.00	10	5.50	55.00
2	10	8.75	87.50	2	1.70	35.00	4	4.00	100.00	10	5.75	57. 50
3	10	9.00	90.00	2	1.72	36.00	4	4.00	100.00	10	5.75	57.50
4	10	8.90	89.00	2	1.69	84.50	4	4.00	100.00	10	5.75	57. 50
5	10	9.10	91.00	2	1.67	83.50	4	4.00	100.00	10	5.25	52.50
6	10	8.64	86.45	2	1.68	84.20	4	3.92	98.00	10	5.50	55.00
7	10	8.55	85.50	2	1.59	79.50	4	3.94	98.50	10	5.25	52.50
8	10	9.00	90.00	2	1. 72	86. 20	4	4.00	100.00	10	5.25	52.50
$\overline{\mathrm{x}}$			88.98			83.93		TY	99.56			55.00
SD			2.347			2.166			0.821			2.315
RSD			2.638			2.580			0.825			4.208

Pige $4022-4025$ Effect of particle size of the selid suppert on the recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn by reverse phase chremategraphy.

Table 4.19 The recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn at flow rate $2.0 \mathrm{~cm}^{3} / \mathrm{min}$.

$\begin{array}{\|c} \text { No } \\ \text { of } \\ \text { Experi- } \\ \text { ment } \end{array}$	Zn			Cd			Cu			Pb		
	$\underset{\text { added }}{\text { ug }}$	$\underset{\text { found }}{\text { foug }}$	$\begin{gathered} \text { \% } \\ \text { Recovery } \end{gathered}$	$\begin{aligned} & \text { मg } \\ & \text { added } \end{aligned}$	$\mu \mathrm{g}$ found	\% Recovery	$\begin{gathered} \text { ug } \\ \text { added } \end{gathered}$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	\% Recovery	$\underset{\text { added }}{\mu \mathrm{g}}$	$\begin{gathered} \text { yg } \\ \text { found } \end{gathered}$	\% Recovery
1	10	9.30	93.00	2	1.70	85.00	4	4.00	100.00	10	5.50	55.00
2	10	3.82	88.15	2	1.57	78.30	4	3.98	99.50	10	5.50	55.00
3	10	8.95	89.50	2	1.65	82.50	4	4.00	100.00	10	5.75	57.50
4	10	9.10	91.00	2	1.67	83.40	4	4.00	100.00	10	5.75	57. 50
5	10	8.93	89.30	2	1.60	80.00	4	4.00	100.00	10	5.35	53.50
6	10	9.20	92.00	2	1.62	81.00	4	3.96	99.00	10	5.35	53.50
7	10	8.77	87.65	2	1.63	81.50	4	3.98	99.50	10	5. 75	57.50
8	10	8.68	86. 80	2	1.69	84.50	4	4.00	100.00	10	5.35	53.50
$\overline{\mathrm{X}}$			89.68			82.03		T	99.75			55.38
SD			2.174			2.280			0.378			1.866
RSD			2.424			2.780			0.379			3.370

Table 4.20 The recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn at flow rate $6.0 \mathrm{~cm}^{3} /$ min .

$\stackrel{N O}{o f}$	Zn			Cd			Cu			Pb		
Experiment	$\mu^{\mu \mathrm{g}}$	$\begin{aligned} & \mu \mathrm{g} \\ & \text { found } \end{aligned}$	\% Recovery	$\begin{aligned} & \mu \mathrm{g} \\ & \text { added } \end{aligned}$	$\stackrel{\mu \mathrm{g}}{\stackrel{\mathrm{f}}{\text { (}}}$ found	\% Recovery	$\begin{gathered} \text { Hg } \\ \text { added } \end{gathered}$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	\% Recovery	$\underset{\text { added }}{\mu \mathrm{g}}$	$\xrightarrow{\mu}$ found	$\%$. Recovery
1	10	8.75	87. 50	2	1.47	73.50	4	4.00	100.00	10	4.85	48.50
2	10	8.75	87.50	2	1.59	79.50	4	4.00	100.00	10	5.35	53.50
3	10	8.34	83.35	2	1.56	78.00	4	3.92	98.00	10	5.35	53.50
4	10	7.96	79.60	2	1.52	76.00	4	4.00	100.00	10	5.50	55.00
5	10	8.05	80.45	2	1.58	79.20	4	4.00	100.00	10	4.85	43.50
6	10	8.35	83.50	2	1.53	76.50	4	4.00	100.00	10	5.50	55.00
7	10	8.68	86.80	2	1.48	74.00	4	4.00	100.00	10	5.35	53.50
8	10	8.20	82.00	2	1.43	71.50	4	3.80	95.00	10	5.50	55.00
$\overline{\mathrm{x}}$			83.84			76.03		STY	99.13			52.81
SD			3.134			2.859			1.808			2. 751
RSD			3.738			3.761			1.824			5.209

Table 4.21 The recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn at flow rate $8.0 \mathrm{~cm}^{3} / \mathrm{min}$.

$\stackrel{N o}{o f}$	Zn			Cd			Cu			Pb		
Experiment	$\underset{\text { added }}{\mu \mathrm{g}}$	found	\% Recovery	$\begin{gathered} \text { pg } \\ \text { added } \end{gathered}$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	\% Recovery	$\underset{\text { added }}{\mu \mathrm{g}}$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	\% Recovery	$\underset{\text { added }}{\mu \mathrm{g}}$	μg found	\% Recovery
1	10	8.50	85.00	2	1.23	61.60	4	3.13	78.35	10	4.50	45.00
2	10	8.40	84.00	2	1.17	58.50	4	3.05	76.30	10	4.50	45.00
3	10	7.60	76.00	2	1.26	63.00	4	3.04	76.00	10	4.80	48.00
4	10	7. 75	77.45	2	1.15	57.40	4	3.05	76.35	10	4.80	48.00
5	10	7.85	78.50	2	1.31	65.50	4	3.03	75.80	10	4.25	42.50
6	10	8.25	82.50	2	1.17	58.50	4	2.85	71.25	10	4.00	40.00
7	10	7.55	75.50	2	1.28	64.10	4	2.72	68.00	10	4.25	42.50
8	10	7.93	79.30	2	1.31	65.30	4	2.82	70.50	10	4.00	40.00
$\overline{\mathrm{x}}$			79. 79			61.75		STY	74.07			43.88
SD			3.651			3.258			3.640			3.171
RSD			4.576			5.291			4.914			7.226

Pig. 4.26-4.29 Effect of flow rates en the recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn by reverse phase chromatography.

Fig. 4.26 : Cd

Fig. 4.27 : Cu (100)

Fig. 4.29 : 2 m

Table 4. 22 The recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn 。
Eluting agent : Benzene

No	Zn			Cd			Cu			Pb		
Experiment	$\underset{\text { added }}{\mu \mathrm{g}}$	$\begin{aligned} & \mu \mathrm{g} \\ & \text { found } \end{aligned}$	\% Recovery	$\underset{\text { added }}{\mu \mathrm{g}}$	$\mu \mathrm{g}$ found	Recovery	$\begin{gathered} \mu \mathrm{g} \\ \text { added } \end{gathered}$	$\mu \mathrm{g}$ found	\% Recovery	$\underset{\text { added }}{\mu \mathrm{g}}$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	\% Recovery
1	10	8.85	88.50	2	1.67	83.60	4	3.12	78.00	10	5.15	51.50
2	10	8.20	82.00	2	1.59	79.50	4	3.22	80.50	10	5.15	51.50
3	10	8.80	88.00	2	1.64	82.00	4	3.07	76.70	10	5.50	55.00
4	10	8.65	86.50	2	1.52	75.80	4	3.16	79.00	10	5.50	55.00
5	10	8.10	81.00	2	1.57	78.50	4	3.14	78.50	10	5.50	55.00
6	10	8.25	82.50	2	1.62	81.20	4	3.04	76.00	10	4,80	48.00
7	10	8.45	84. 50	2	1.52	76.00	4	3.20	80.00	10	4.80	48.00
8	10	8.55	85.50	2	1.57	78.40	าวิง4	3.11	77.80	10	5.15	51.50
$\overline{\mathrm{x}}$			84.81			79.38		SITY	78. 31			51.94
SD			2.802			2.777			1.533			2.921
RSD			3.304			3.498			1.957			5.623

Table 4.23 The recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn 。
Eluting agent : Toluene

$\begin{aligned} & \text { No } \\ & \text { of } \end{aligned}$	Zn			Cd			Cu			Pb		
Experiment	$\underset{\text { added }}{\mathrm{gg}}$	$\begin{aligned} & \mu \mathrm{g} \\ & \text { found } \end{aligned}$	\% Recovery	$\underset{\text { added }}{\mu \mathrm{g}}$	$\begin{aligned} & \text { Mg } \\ & \text { found } \end{aligned}$	\% Recovery	$\begin{gathered} \mu \mathrm{g} \\ \text { added } \end{gathered}$	found	\% Recovery	$\stackrel{\mu g}{ }$	$\stackrel{\mu \mathrm{g}}{\mathrm{f}}$	\% Recovery
1	10	8.65	86.50	2	1.66	83.00	4	3.33	83.30	10	5.35	53.50
2	10	8.60	86.00	2	1.62	81.20	4	3.47	86.70	10	5.00	50.00
3	10	8.55	85.50	2	1.59	79.50	4	3.17	79.30	10	5.35	53.50
4	10	8.30	83.00	2	1.56	78.00	4	3.22	80.50	10	5.00	50.00
5	10	8.20	82.00	2	1.51	75.50	4	3.30	82.40	10	5.00	50.00
6	10	7.95	79.50	2	1.58	79.00	4	3.20	80.00	10	4.75	47.50
7	10	7.38	78.80	2	1.44	76.80		3.26	81.50	10	4.75	47.50
8	10	8.45	84. 50	2	1.63	81. 50	4	3.42	85.50	10	4.75	47. 50
$\overline{\mathrm{x}}$			83.23			79.31		TY	82.40			49.94
SD			2.933			2.526			2.638			2. 485
RSD			3.524			3.184			3.201			4.976

Fige $4.30-4.33$ Effect of eluting agents on the recevery yield of $\mathrm{Cd}, \mathrm{Cu}_{\mathrm{p}} \mathrm{Pl}$ mich by reverse phase chremategraphy .

Figo $4.30: C A$

Fife $4.31: \mathrm{Cu}$

Pig. $4.32: ~ P b ~$

Fig. 4033 : 2m

Table 4.24 The recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn at pH 5.0 .
Stripping agent : Hydrochloric acid

$\text { Conc }{ }^{\text {IT }}$ HCl	Zn			Cd			Cu			Pb		
Molarity	adg	$\mu \mathrm{g}$ found	\% Recovery	मg added	foun found	\% Recovery	$\begin{gathered} \mathrm{ug} \\ \text { added } \end{gathered}$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	\% Recovery	$\underset{\text { added }}{\mu \mathrm{g}}$	$\mu \mathrm{g}$ found	\% Recovery
0.5	10	10.00	100.00	2	. 24	12.00	4	-	-	10	-	-
0.5	10	10.00	100.00	2	. 24	12.00	4	-	-	10	-	-
0.5	10	10.00	100.00	2	. 26	13.00	4	-	-	10	-	-
0.5	10	10.00	100.00	2	. 28	14.00	4	-	-	10	-	-
$\overline{\mathrm{x}}$			100.00			12.75						
1.0	10	10.00	100.00	2	1.44	72.00	4	-	-	10	-	-
1.0	10	10.00	100.00	2	1. 46	73.00	4	-	-	10	-	-
1.0	10	10.00	100.00	2	1.44	72.00	4	-	-	10	-	-
1.0	10	10.00	100.00	2	1.48	74.00	4	\& -	-	10	-	-
$\overline{\mathrm{x}}$			100.00			72.75		-				
2.0	10	10.00	100.00	2	2.00	100.00	4	-	-	10	-	-
2.0	10	10.00	100.00	2	2.00	100.00	4	-	-	10	-	-
2.0	10	10.00	100.00	2	1.98	99.00	4	-	-	10	-	-
2.0	10	10.00	100.00	2	1.99	99.50	4	-	-	10	-	-
$\overline{\mathrm{x}}$			100.00			99.63						

Table 4.24 The recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn . Stripping agent : Hydrochloric acid

Conc ${ }^{n}$ HCl	Zn			Cd			Cu			Pb		
$\begin{gathered} \text { Molari- } \\ \text { ty } \\ \hline \end{gathered}$	added	$\mu \mathrm{g}$ found	\% Recovery	$\underset{\text { added }}{\mu g}$	foun found	\% Recovery	$\underset{\text { added }}{\mu \mathrm{g}}$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	\% Recovery	$\underset{\text { added }}{\mu \mathrm{g}}$	$\begin{gathered} \mathrm{ug} \\ \text { found } \end{gathered}$	\% Recovery
3.0	10	10.00	100.00	2	2.00	100.00	4	-	-	10	7.00	70.00
3.0	10	10.00	100.00	2	2.00	100.00	4	-	-	10	7.50	75.00
3.0	10	10.00	100.00	2	1.99	99.50	4	-	-	10	7.50	75.00
3.0	10	10.00	100.00	2	2.00	100.00	4	-	-	10	7.50	75.00
$\overline{\mathrm{x}}$			100.00			99.88						73.75
4.0	10	10.00	100.00	2	2.00	100.00	4	-	-	10	10.00	100.00
4.0	10	10.00	100.00	2	2.00	100.00	4	-	-	10	10.00	100.00
4.0	10	10.00	100.00	2	2.00	100.00	4	-	-	10	10.00	100.00
4.0	10	10.00	100.00	2	2.00	100.00	4	-	-	10	10.00	100.00
$\overline{\mathrm{x}}$			100.00			100.00						100.00

Table 4. 24 The recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn 。
Stripping agent : Hỳdrochloric acid

Conc- ${ }^{n}$ HCl	Zn			Cd			Cu			Pb		
Molari- ty	$\begin{gathered} \mu g \\ \text { added } \end{gathered}$		\% Recovery	$\underset{\text { added }}{\mu \mathrm{g}}$	$\underset{\text { found }}{\mu \mathrm{g}}$	$\%$ Recovery	added	found	\% Recovery	$\begin{gathered} \mu \mathrm{g} \\ \text { added } \end{gathered}$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	\% Recovery
6.0	10	10.00	100.00	2	2.00	100.00	4	-	-	10	10.00	100.00
6.0	10	10.00	100.00	2	2.00	100.00	4	-	-	10	10.00	100.00
6.0	10	10.00	100.00	2	2.00	100.00	4	-	-	10	10.00	100.00
6.0	10	10.00	100.00	2	2.00	100.00	4	-	-	10	10.00	100.00
$\overline{\mathrm{x}}$			100.00			100.00						100.00
8.0	10	9.35	98.50	2	1.98	99.00	4	-	-	10	9.90	99.00
8.0	10	9.80	98.00	2	1.97	98.50	4	-	-	10	9.90	99.00
8.0	10	9.90	99.00	2	1.98	99.00	4	-	-	10	9.80	98.00
8.0	10	9.85	98.50	2	1.97	93.50	4	-	-	10	9.90	99.00
\bar{x}			98.25			98.75						98.75
10.0	10	9.75	97. 50	2	1.96	98.00	4	1.00	25.00	10	9.70	97.00
10.0	10	9.70	97.00	2	1.95	97.50	4	1.00	25.00	10	9.70	97.00
10.0	10	9.70	97.00	2	1.95	97.50	4	1.00	25.00	10	9.70	97.00
10.0	10	9.75	97. 50	2	1.95	97.50	4	1.00	25.00	10	9. 70	97.00
$\overline{\mathrm{x}}$			97.25			97.63			25.00			97.00

Fifg $4034-4.37$ Effect of acid cencentration on the stripping of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Za from chloreforn.

Table 4.25 The recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn at pH5.0.
Stripping agent : Nitric acid

$\begin{aligned} & \mathrm{Conc}^{\mathrm{n}} \\ & \mathrm{HNO}_{3} \end{aligned}$	Zn			Cd			Cu			Pb		
$\begin{gathered} \text { Molari- } \\ \text { ty } \end{gathered}$	$\begin{aligned} & \mu \mathrm{g} \\ & \text { added } \end{aligned}$	$\begin{aligned} & \mu \mathrm{g} \\ & \text { found } \end{aligned}$	\% Recovery	$\underset{\text { added }}{\mu}$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	$\%$ Recovery	added	found	$\begin{gathered} \text { \% } \\ \text { Recovery } \end{gathered}$	$\begin{gathered} \mu \mathrm{g} \\ \text { added } \end{gathered}$	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	\% Recovery
1.0	10	10.00	100.00	2	2.00	100.00	4	-	-	10	-	-
1.0	10	10.00	100.00	2	2.00	100.00	4	-	-	10	-	-
1.0	10	10.00	100.00	2	2.00	100.00	4	-	-	10	-	-
1.0	10	10.00	100.00	2	2.00	100.00	4	-	-	10	-	-
$\overline{\mathrm{x}}$			100.00			100.00						
3.0	10	10.00	100.00	2	2.00	100.00	4	-	-	10	7.00	70.00
3.0	10	10.00	100.00	2	2.00	100.00	4	3) -	-	10	7.00	70.00
3.0	10	10.00	100.00	2	2.00	100.00		-	-	10	7.00	70.00
3.0	10	10.00	100.00	2	2.00	100.00	4	-	-	10	7.00	70.00
$\overline{\mathrm{x}}$			100.00			100.00						70.00
5.0	10	10.00	100.00	2	2.00	100.00	4	3.40	85.00	10	10.00	100.00
5.0	10	10.00	100.00	2	2.00	100.00	4	3.40	85.00	10	10.00	100.00
5.0	10	10.00	100.00	2	2.00	100.00	4	3.36	84.00	10	10.00	100.00
5.0	10	10.00	100.00	2	2.00	100.00	4	3.36	84.00	10	10.00	100.00
$\overline{\mathrm{x}}$			100.00			100.00			84. 50			100.00

c|

Table 4. 25 The recovery yield of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn .
Stripping agent : Nitric acid

Conc ${ }^{\text {n }}$	Zn			Cd			Cu			Pb		
$\begin{gathered} \text { Molari- } \\ \text { ty } \end{gathered}$	$\begin{gathered} \mu \mathrm{g} \\ \text { added } \end{gathered}$	$\begin{aligned} & \mu \mathrm{g} \\ & \text { found } \end{aligned}$	$\begin{gathered} \% \\ \text { Recovery } \end{gathered}$	$\begin{gathered} \mu \mathrm{g} \\ \text { added } \end{gathered}$	found	\% Recoyery	added	$\begin{gathered} \mu \mathrm{g} \\ \text { found } \end{gathered}$	\% Recovery	$\underset{\text { added }}{\mu \mathrm{g}}$	found	\% Recovery
6.0	10	10.00	100.00	2	2.00	100.00	4	4.00	100.00	10	10.00	100.00
6.0	10	10.00	100.00	2	2.00	100.00	4	4.00	100.00	10	10.00	100.00
6.0	10	10.00	100.00	2	2.00	100.00	4	4.00	100.00	10	10.00	100.00
6.0	10	10.00	100.00	2	2.00	100.00	4	4.00	100.00	10	10.00	100.00
$\overline{\mathrm{x}}$			100.00			100.00			100.00			100.00
8.0	10	9.80	98.00	2	2.00	100.00	4	S.00	100.00	10	10.00	100.00
8.0	10	9.80	98.00	2	1.99	99.50	4	4.00	100.00	10	10.00	100.00
8.0	10	9.90	99.00	2	1.98	99.00	4	3.80	99.50	10	10.00	100.00
8.0	10	9.80	98.00	2	2.00	100.00	4	3.80	99.50	10	10.00	100.00
$\overline{\mathrm{x}}$			98. 25			99.63			99.75			100.00

Note - : un detectable

Fig. $4038-4.41$ Effect of acid concentration on the atripping of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and za from chloroform.

HNO_{3} Concentration(Melarity)
Fig. 4.38 : Cd

HNO_{3} concentration(Molarity).
Fig. 4.39 : Cu $^{\text {P }}$

Table 4.26 Concentration of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn in 5 samples of sea water after preconcentration by chelex-100.

Sample No	No	Zn		Cd		Cu		Pb	
	ofof Experiment	$\mu \mathrm{g} / 4 \mathrm{dm}^{3}$	$\underset{(\mathrm{ppb})}{\mu \mathrm{g} / \mathrm{dm}^{3}}$	$\mu \mathrm{g} / 4 \mathrm{dm}^{3}$	$\begin{gathered} \mu \mathrm{g} / \mathrm{dm}^{3} \\ (\mathrm{ppb}) \end{gathered}$	$\mu \mathrm{g} / 4 \mathrm{dm}^{3}$	$\begin{gathered} \mu \mathrm{g} / \mathrm{dm}^{3} \\ (\mathrm{ppb}) \end{gathered}$	$\mu \mathrm{g} / 4 \mathrm{dm}^{3}$.	$\underset{(\mathrm{ppb})}{\mu \mathrm{g} / \mathrm{dm}^{3}}$
1	1	158.76	39. 59	0.461	0.115	10.36	2.59	4.89	1.22
	2	163.58	40.89	. 468	0.117	10.49	2.62	4.56	1.14
	3	159.73	39.93	0.453	0.113	10.73	2.68	4.67	1.17
2	1	113.96	28.49	0.436	0.109	10.05	2.51	3.53	0.88
	2	106.07	26.52	0.423	0.106	9.96	2.49	3.24	0.81
	3	109.23	27.31	0.421	0.105	10.02	2.50	3.31	0.83
3	1	87.26	21.82	0.412	0.103	8.97	2.24	3.05	0.76
	2	88.76	22.19	0.393	0.098	8.84	2.21	3.53	0.88
	3	92.53	23.13	0.905	0.101	9.05	2.26	3.23	0.81
4	1	101.82	25.46	0.377	0.094	9.29	2.32	3.07	0.77
	2	105.42	26.36	0.360	0.090	8.86	2.21	2.92	0.73
	3	110.74	27.69	0.348	0.087	8.97	2.24	3.17	0.79
5	1	87.90	21.98	0.393	0.098	8.54	2.14	3.13	0.78
	2	85.48	21.37	0.372	0.093	8.65	2.16	3.21	0.80
	3	82. 40	20.60	0.341	0.085	8.37	2.09	3.05	0.76

Table $\frac{4027}{}$ Concentration of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn in 5 samples of sea water after preconcentration by reverse phase chromatography.

Sample No	NoofExperiment	Zn		Cd		Cu		Pb	
		${\mathrm{pg} / \mathrm{dm}^{3}}_{\text {obtained }}$	$\mu \mathrm{g} / \mathrm{dm}^{3}$ after correction for chemical yield	$\mu \mathrm{g} / \mathrm{dm}^{3}$ as obtained	$\mu \mathrm{g} / \mathrm{dm}^{3}$ after correction for chemical yield	$\mu \mathrm{g} / \mathrm{dm}^{3}$ as obtained	$\mu \mathrm{g} / \mathrm{dm}^{3}$ after correction for chemical yield	$\mu \mathrm{g} / \mathrm{dm}^{3}$ as obtained	$\mu \mathrm{g} / \mathrm{dm}^{3}$ after correction for chemical yield
1	1	31.78	35.50	. 094	0.107	2. 72	2. 72	0.56	1.00
	2	33.54	37.46	0.089	0.101	2.81	2.81	0.57	1.03
2	1	22.29	24.89	0.084	0.095	2.60	2. 60	0.43	0.78
	2	23.50	26.25	0.081	0.101	2.71	2.71	0.38	0.69
3	1	18.31	20.45	0.083	0.094 ยา	2.28	2.28	0.36	0.65
	2	16.45	18.37	0.080	0.091	2.35	2.35	0.39	0.71
4	1	21. 11	23.56	0.075	0.085	2.34	2.34	0.37	0.67
	2	19.47	21.75	0.070	0.079	2.39	2.39	0.33	0.60
5	1	18.24	20.37	0.077	0.087	2.22	2.22	0.33	0.61
	2	16.65	18.59	0.070	0.079	2.31	2.31	0.39	0.70

Table 4.28 Concentration of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$ and Zn in 5 samples of sea water by chelex-100 and by reverse phase chromatography.

Sample No	No of	Zn		Cd		Cu		Pb	
		$\begin{aligned} & \text { chelex-100 } \\ & \text { (ppb) } \end{aligned}$	Reverse phase(correction) (ppb)	chelex-100 (ppb)	Reverse phaselcorrection) (ppb)	chelex-100 (ppb)	Reverse phase(correction) (ppb)	$\begin{aligned} & \text { chelex-100 } \\ & \text { (ppb) } \end{aligned}$	Reverse phase (correction) (ppb)
1	1	39.69	35.50	0.115	0.107	2.59	2.72	1.22	1.00
	2	40.89	37.46	0.117	0.101	2.62	2.81	1.14	1.03
	3	39.93		.113		2.68		1.17	
	1	28.94	24.89	0.109	0.095	2.51	2.60	0.88	0.78
	2	26.52	26.25	0.105	0.101	2.49	2.71	0.81	0.69
	3	27.31		0.105		2. 50		0.83	
3	1	21.82	20.45	0.103	0.09	2.24	2.28	0.76	0.65
	2	22.19	18.37	0.098	0.091	-2. 21	2.35	0.88	0.71
	3	23.13		0.101		2.26		0.81	
4	1	25.46	23.56	0.094	0.085	2.32	2.34	0.77	0.67
	2	26.36	21.75	0.090	0.079	2.21	2.39	0.73	0.60
5	3	27.69		0.087		2.24		0.79	
	1	21.98	20.37	0.098	0.087	2.14	2.22	0.73	0.61
	2	21.37	18.59	0.093	0.079	2.16	2.31	0.76	0.70
	3	20.60		0.085		2.09		0.80	

