

REFERENCES

- 1. Berge, C. Graphs and Hypergraphs. Amsterdam:

 North-Halland Publishing Company, 1973.
- 2. Hall, F. Graph Theory. New York: Addison-Wesley Publishing Company, 1971.
- 3. Hall, M. The Theory of Groups. New York: The Macmillan Company, 1959.
- 4. Jeamsak Trisirirat. "Algebraic Hypergraphs." Master's thesis,

 Department of Mathematics, Graduate School, Chulalongkorn University, 1980.

APPENDIX I

This appendix deals with admissible sets in groups. We describe a method which enable us to determine all the admissible sets in a group. For a given group G and a given positive integer r > 2, the set of all admissible sets of (r-1)-subsets of G is partially ordered by set inclusion. By minimal admissible sets we mean those admissible sets which are minimal with respect to this partial order.

- 1 Theorem. Let (G,*) be a group. Then any admissible set of (r-1)-subsets of G is a union of minimal admissible sets of (r-1)-subsets of G.
- 2 Theorem. Let (G,*) be a group. Then any minimal admissible set of (r-1)-subsets of G is of the form

 $\{\{a_1, a_2, \dots, a_{r-1}\}\} \cup \{a_i^{-1} * \{a_1, a_2, \dots, a_{i-1}, e, a_{i+1}, \dots, a_{r-1}\}/i = 1, 2, \dots \}$

for some distinct a_i , i = 1,2,...,r-1, in G-{e}.

To prove Theorem 1 and Theorem 2 we need the following lemmas.

1 Lemma. Let (G,*) be a group and A be a set of (r-1)subsets of G-(e). If for each A in A and each a in A, there exists
B in A such that

$$A = \{a\} = (a * B_a) - \{e\},$$

then A is admissible.

<u>Proof.</u> Let (G,*) be a group and A be a set of (r-1)subsets of $G-\{e\}$. Suppose that for each A in A and each a in A,
there exists B_A in A such that

$$A - \{a\} = (a * B_a) - \{e\}$$
.

Let A be any set in A. Let a be any element in A and g be any element in G. By supposition, there exists B_a in A such that

$$A - \{a\} = (a * B_a) - \{e\}$$

Therefore

$$(\{e\} \cup A) - \{a\} = \{e\} \cup (A - \{a\}),$$

= $\{e\} \cup (\{a * B_a\} - \{e\}),$
= $a * B_a$

Hence

$$(\{g\} \cup g * A) - \{g * a\} = g * (\{e\} \cup e * A) - g * \{a\},$$

$$= g * (\{\{e\} \cup A\} - \{a\}),$$

$$= g * (a * B_a),$$

$$= (g * a) * B_a.$$

Hence A is admissible.

2 Lemma. Let (G,*) be a group and A be an admissible set of (r-1)-subsets of G. Then e does not belong to A for all A in A.

<u>Proof.</u> Let (G, *) be a group and A be an admissible set of (r-1)-subsets of G. Suppose that there exists A in A such that e belongs to A. Since A is admissible, hence there exists B in A such that

$$(\{e\} \cup e * A) - \{e * e\} = (e * e) * B$$
.

Note that

$$|(\{e\} \cup e * A) - \{e * e\}| = |(\{e\} \cup A) - \{e\}|,$$

$$= |A - \{e\}|,$$

$$= r-2.$$

But |(e * e) * B| = |B| = r-1. Hence we have a contradiction. Therefore e does not belong to A for all A in A.

3 Lemma. Let (G,*) be a group and a_1,a_2,\dots,a_{r-1} be distinct elements in $G-\{e\}$. Then any minimal admissible set containing $\{a_1,a_2,\dots,a_{r-1}\}$ is of the form

 $\{\{a_1, a_2, \dots, a_{r-1}\}\} \cup \{a_i^{-1} * \{a_1, a_2, \dots, a_{i-1}, e, a_{i+1}, \dots, a_{r-1}\} / i = 1, 2, 3, \dots, r-1\}.$

<u>Proof.</u> Let (G,*) be a group and $a_1,a_2,...,a_{r-1}$ be distinct elements in $G-\{e\}$.

First, we show that the set

$$A = \{\{a_1, a_2, \dots, a_{r-1}\}\} \cup \{a_i^{-1} * \{a_1, a_2, \dots, a_{i-1}, e, a_{i+1}, \dots, a_{r-1}\} / i = 1, 2, 3, \dots, r-1\}.$$

is admissible. Let A be any element in A.

Case 1. If
$$A = \{a_1, a_2, \dots, a_{r-1}\}$$
, we see that

$$A-\{a_i\} = (a_i * (a_i^{-1} * \{a_1, a_2, \dots, a_{i-1}, e, a_{i+1}, \dots, a_{r-1}\}))-\{e\},$$

for all a_i, i = 1,2,...,r-1.

Case 2. If
$$A = a_i^{-1} * \{a_1, a_2, \dots, a_{i-1}, e, a_{i+1}, \dots, a_{r-1}\}$$
 for

some i = 1,2,...,r-1, we see that

$$A - \{a_i^{-1}\} = (a_i^{-1} * \{a_1, a_2, \dots, a_{r-1}\}) - \{e\},$$

and for j = 1, 2, ..., i-1, i+1, ..., r-1,

$$A - \{a_{i}^{-1} * a_{j}\} = ((a_{i}^{-1} * a_{j}) * (a_{j}^{-1} * \{a_{1}, a_{2}, \dots, a_{j-1}, e, a_{j+1}, \dots, a_{r-1}\})) - \{e\}.$$

Hence for any a in A there exists B_a in A such that

$$A-\{a\} = (a * B_a)-\{e\}$$
.

Hence, by Lemma 1, A is admissible.

Next, we show that A is the only minimal admissible set of (r-1)-subsets of G containing $\{a_1, a_2, \dots, a_{r-1}\}$. Let B be any minimal admissible set of (r-1)-subsets of G containing $\{a_1, a_2, \dots, a_{r-1}\}$.

Hence for each a_i , i = 1,2,...,r-1, there exists B_a in B such that

$$(\{e\} \cup e * \{a_1, a_2, \dots, a_{r-1}\}) - \{e * a_i\} = (e * a_i) * B_{a_i}$$

By straightforward verifications, it can be shown that

$$B_{a_{i}} = a_{i}^{-1} * \{a_{1}, a_{2}, \dots, a_{i-1}, e_{i+1}, \dots, a_{r-1}\},$$

for all i = 1,2,...,r-1. Hence

Since A is admissible and {a1,a2,...,ar-1} is in A, hence

Therefore A = B. Hence A is the only minimal admissible set of (r-1)-subsets of A containing $\{a_1, a_2, \dots, a_{r-1}\}$.

<u>Proof of Theorem 2.</u> Let (G,*) be a group. Let A be any minimal admissible set of (r-1)-subsets of G. Since A is non-empty, hence there exists (r-1)-subset $\{a_1,a_2,\ldots,a_{r-1}\}$ of G in A. Hence, by Lemma 2, a_1,a_2,\ldots,a_{r-1} are distinct elements in G- $\{e\}$. Hence, by Lemma 3,

$$A = \{\{a_1, a_2, \dots, a_{r-1}\}\} \cup \{a_i^{-1} * \{a_1, a_2, \dots, a_{i-1}, e, a_{i+1}, \dots, a_{r-1}\} / i = 1, 2, \dots, r-1\}.$$

Hence we have Theorem 2.

4 Proposition. Let (G,*) be a group. Then distinct minimal admissible sets of (r-1)-subsets of G are disjoint.

<u>Proof.</u> Let (G,*) be a group. Let A, B be distinct minimal admissible sets of (r-1)-subsets of G. Suppose that $A \cap B \neq \emptyset$. Hence there exists (r-1)-subset $\{a_1, a_2, \dots, a_{r-1}\}$ of G in $A \cap B$. Hence, by Lemma 2., a_1, a_2, \dots, a_{r-1} are distinct elements in G- $\{e\}$. Therefore A and B are minimal admissible sets of (r-1)-subsets of G containing $\{a_1, a_2, \dots, a_{r-1}\}$. Hence, by Lemma 3,

 $A = \{\{a_1, a_2, \dots, a_{r-1}\}\} \cup \{a_i^{-1} * \{a_1, a_2, \dots, a_{i-1}, e, a_{i+1}, \dots, a_{r-1}\} /$ $i = 1, 2, 3, \dots, r-1\},$

= B .

Therefore we have a contradiction. Hence distinct minimal admissible sets of (r-1)-subsets of G are disjoint. #

5 Proposition. Let (G.*) be a group. The set of all minimal admissible sets of (r-1)-subsets of G forms a partition of $P_{r-1}(G-\{e\})$, the set of all (r-1)-subsets of G-{e}.

<u>Proof.</u> Let (G,*) be a group. Let Ω be the set of all minimal admissible sets of (r-1)-subsets of G. Hence

 $U \subseteq P_{r-1}(G-\{e\}).$ (1)

Let $\{a_1, a_2, \dots, a_{r-1}\}$ be any set in $P_{r-1}(G-\{e\})$. Hence a_1, a_2, \dots a_{r-1} are distinct elements in $G-\{e\}$. Therefore, by Lemma 3,

 $A = \{\{a_1, a_2, \dots, a_{r-1}\}\} \cup \{a_i^{-1} * \{a_i, a_2, \dots, a_{i-1}, e_i, a_{i+1}, \dots, a_{r-1}\}\}$ $i = 1, 2, 3, \dots, r-1\}$

is a minimal admissible set of (r-1)-subsets of G. Hence $\{a_1, a_2, \dots, a_{r-1}\}$ belongs to $U\Omega$. Hence

$$P_{r-1}(G-\{e\}) \subseteq \cup \Omega_{-1} \qquad (2)$$

From (1) and (2), we have

$$U\Omega = P_{r-1}(G-\{e\}).$$

By Proposition 3, any elements A, B in Ω , A = B or $A \cap B = \emptyset$. Hence Ω is a partition of $P_{r-1}(G-\{e\})$.

By Theorem 1 and Proposition 5 we can find all minimal admissible sets of (r-1)-subsets of G.

Proof of Theorem 1. Let (G,*) be a group. Let A be any admissible set of (r-1)-subsets of G. For each A in A, there exist distinct elements a_1, a_2, \dots, a_{r-1} in G- $\{e\}$ such that

$$A = \{a_1, a_2, \dots, a_{r-1}\}.$$

Let

$$M(A) = \{\{a_1, a_2, \dots, a_{r-1}\}\} \cup \{a_i^{-1} * \{a_1, a_2, \dots, a_{i-1}, e, a_{i+1}, \dots, a_{r-1}\} / i = 1, 2, 3, \dots, r-1\}.$$

Hence M(A) is a minimal admissible set of (r-1)-subsets of G.

Hence

7

$$M(A) \subseteq A$$

for all A in A. Therefore

$$A \subseteq \bigcup_{A \in A} M(A),$$

$$\subseteq A.$$

Hence

$$A = \bigcup_{A \in A} M(A).$$

Therefore any admissible set of (r-1)-subsets of G is a union of minimal admissible sets of (r-1)-subsets of G. #

APPENDIX II

This appendix is a supplement of Example 4.3.1. In this appendix we prove the followings;

- (1) There does not exist a compatible full family of Γ injections of type 1: $(\alpha_1^i, \alpha_2^j, \alpha_3^k, \alpha_4^l, \alpha_5^l);$
- (2) There does not exist a compatible full family of Γ -injections of type 7: $(\alpha_1^i, \alpha_2^j, \alpha_3^k, \alpha_4^1, \alpha_5^1);$
- (3) $A_{10} = (\alpha_1^4, \alpha_2^5, \alpha_3^1, \alpha_4^1, \alpha_5^2)$ is the unique compatible full family of Γ -injections of type 10: $(\alpha_1^i, \alpha_2^j, \alpha_3^k, \alpha_4^1, \alpha_5^2)$;
- (4) $A_{11} = (\alpha_1^2, \alpha_2^1, \alpha_3^5, \alpha_4^1, \alpha_5^3)$ is the unique compatible full family of Γ -injections of type 11: $(\alpha_1^i, \alpha_2^j, \alpha_3^k, \alpha_4^1, \alpha_5^3)$;
- (5) $\Lambda_{12} = (\alpha_1^5, \alpha_2^4, \alpha_3^1, \alpha_4^2, \alpha_5^1)$ is the unique compatible full family of Γ -injections of type 12: $(\alpha_1^i, \alpha_2^j, \alpha_3^k, \alpha_4^2, \alpha_5^1)$;
- (6) $A_{13} = (\alpha_1^1, \alpha_2^2, \alpha_3^3, \alpha_4^2, \alpha_5^3)$ is the unique compatible full family of Γ -injections of type 13: $(\alpha_1^1, \alpha_2^j, \alpha_3^k, \alpha_4^2, \alpha_5^3)$;
- (7) $\Lambda_{14} = (\alpha_1^3, \alpha_2^1, \alpha_3^4, \alpha_4^5, \alpha_5^1)$ is the unique compatible full family of Γ -injections of type 14: $(\alpha_1^i, \alpha_2^j, \alpha_3^k, \alpha_4^3, \alpha_5^1)$;
- (8) $\Lambda_{15} = (\alpha_1^1, \alpha_2^3, \alpha_3^2, \alpha_4^3, \alpha_5^2)$ is the unique compatible full family of Γ -injections of type 15: $(\alpha_1^i, \alpha_2^j, \alpha_3^k, \alpha_4^3, \alpha_5^2)$;

(9) $A_{16} = (\alpha_1^1, \alpha_2^1, \alpha_3^1, \alpha_4^4, \alpha_5^4)$ is the unique compatible full family of F-injections of type 16: $(\alpha_1^i, \alpha_2^j, \alpha_3^k, \alpha_4^4, \alpha_5^4)$.

Proof of (1). Observe that

$$\mathcal{G}(\alpha_4^1,5) = \emptyset$$

and

+

$$\mathcal{G}(\alpha_5^4,4) = \{\{4,5\}\},\$$

hence α_4^1 and α_5^4 are not compatible. Hence there does not exist any compatible full family of Γ -injections of type 1: $(\alpha_1^i, \alpha_2^j, \alpha_3^k, \alpha_4^1, \alpha_5^4)$.

Proof of (2). Observe that

$$\mathcal{F}(\alpha_{4}^{1},1) = \{\{1,4\}\}$$

and

$$\mathcal{S}(\alpha_1^{1},4) = \mathcal{S}(\alpha_1^{3},4) = \mathcal{S}(\alpha_1^{5},4) = \emptyset$$
,

hence α_1^1 , α_1^3 and α_1^5 are not compatible to α_4^1 . Observe that

$$\mathcal{G}(\alpha_5^1,1) = \{\{1,5\}\}$$

and

$$\mathcal{G}(\alpha_1^2,5) = \mathcal{G}(\alpha_1^4,5) = \emptyset,$$

hence α_1^2 and α_1^4 are not compatible to α_5^1 . Observe that

$$\mathcal{G}(\alpha_1^6,5) = \mathcal{G}(\alpha_5^1,1)$$

and

+

$$\mathcal{G}(\alpha_1^6,4) = \{\{1,4\}\} = \mathcal{G}(\alpha_4^1,1).$$

Hence α_1^6 is the only (Γ ,1)-injection which is compatible to both α_4^1 and α_5^1 . Therefore, if $(\alpha_1^i,\alpha_2^j,\alpha_3^k,\alpha_4^1,\alpha_5^1)$ is compatible, then α_1^i must be α_1^6 . Observe that

$$\mathcal{G}(\alpha_1^6,2) = \emptyset$$

and

$$\mathcal{G}(\alpha_2^1,1) = \mathcal{G}(\alpha_2^2,1) = \mathcal{G}(\alpha_2^3,1) = \{\{1,2\}\},\$$

hence α_2^1 , α_2^2 and α_2^3 are not compatible to α_1^6 . Observe that

$$\mathcal{G}(\alpha_2^4,4) = \{\{2,4\}\}$$

and

$$\mathcal{G}(\alpha_4^1,2) = \emptyset.$$

hence α_2^4 is not compatible to α_4^1 . Observe that

$$\mathcal{G}(\alpha_{5,2}^{1}) = \emptyset$$

and

$$\mathcal{L}(\alpha_2^5,5) = \mathcal{L}(\alpha_2^6,5) = \{\{2,5\}\},$$

hence α_2^5 and α_2^6 are not compatible to α_5^4 . Hence there does not exist any α_2^j which is compatible to α_1^6 , α_4^1 , α_5^1 . Therefore there does not exist a compatible full family of Γ -injections of type 7: $(\alpha_1^i, \alpha_2^j, \alpha_3^k, \alpha_4^1, \alpha_5^1)$.

Proof of (3). First, we find all the (Γ ,3)-injections which are compatible to α_4^1 and α_5^2 . Observe that

$$\mathcal{G}(\alpha_4^1,3) = \emptyset = \mathcal{G}(\alpha_3^1,4)$$

and

T

$$\mathcal{Y}(\alpha_{5}^{2},3) = \emptyset = \mathcal{Y}(\alpha_{3}^{1},5),$$

hence α_3^2 is compatible to α_4^2 and α_5^2 . Observe that

$$\mathcal{G}(\alpha_4^1,3) = \emptyset$$

and

$$\mathcal{G}(\alpha_3^2,4) = \mathcal{G}(\alpha_3^4,4) = \mathcal{G}(\alpha_3^6,4) = \{\{3,4\}\},$$

hence α_3^2 , α_3^4 and α_3^6 are not compatible to α_4^1 . Observe that

$$\mathcal{G}(\alpha_5^2,3) = \emptyset$$

and

$$\mathcal{G}(\alpha_3^3,5) = \mathcal{G}(\alpha_3^5,5) = \{\{3,5\}\},\$$

hence α_3^3 and α_3^5 are not compatible to α_5^2 . Hence α_3^1 is the only (Γ ,3)-injection which is compatible to α_4^1 and α_5^2 .

Next, we find all the (\Gamma,2)-injections which are compatible to α_3^1 , α_4^1 and α_5^2 . Observe that

$$\mathcal{G}(\alpha_5^2, 2) = \{\{2,5\}\}$$

and

$$\mathcal{G}(\alpha_2^{1},5) = \mathcal{G}(\alpha_2^{2},5) = \mathcal{G}(\alpha_2^{4},5) = \emptyset$$

hence α_2^1 , α_2^2 and α_2^4 are not compatible to α_5^2 . Observe that

$$\mathcal{G}(\alpha_3^1,2) = \{\{2,3\}\}$$

and

T

$$\mathcal{G}(\alpha_2^3,3) = \mathcal{G}(\alpha_2^6,3) = \emptyset,$$

hence α_2^3 and α_2^6 are not compatible to α_3^1 . Observe that

$$\mathcal{G}(\alpha_2^5,3) = \{\{2,3\}\} = \mathcal{G}(\alpha_3^1,2),$$

$$\mathcal{G}(\alpha_2^5,4) = \emptyset = \mathcal{G}(\alpha_4^1,2)$$

and

$$\mathcal{L}(\alpha_2^5,5) = \{\{2,5\}\} = \mathcal{L}(\alpha_5^2,2),$$

hence α_2^5 is compatible to α_3^1 , α_4^1 and α_5^2 . Hence α_2^5 is the only $(\Gamma,2)$ -injection which is compatible to α_3^1 , α_4^1 and α_5^2 .

Finally, we find all the (Γ ,1)-injections which are compatible to α_2^5 , α_4^1 , α_4^1 and α_5^2 . Observe that

$$\mathcal{G}(\alpha_4^1,1) = \{\{1,4\}\}$$

and

$$\mathcal{S}(\alpha_1^{1},4) = \mathcal{S}(\alpha_1^{3},4) = \mathcal{S}(\alpha_1^{5},4) = \emptyset$$
,

hence α_1^1 , α_1^3 and α_1^5 are not compatible to α_4^1 . Observe that

$$\mathcal{Y}(\alpha_{1,2}^{2}) = \{\{1,2\}\}$$

and

$$\mathcal{G}(\alpha_2^5,1) = \emptyset,$$

hence α_1^2 is not compatible to α_2^5 . Observe that

$$\mathcal{Y}(\alpha_{1,5}^{6}) = \{\{1,5\}\}$$

and

$$\mathcal{G}(\alpha_{5}^{2},1) = \emptyset$$
,

hence α_1^6 is not compatible to α_5^2 . Observe that

$$\mathcal{Y}(\alpha_{1}^{4},2) = \emptyset = \mathcal{Y}(\alpha_{2}^{5},1)$$
,

$$\mathcal{G}(\alpha_{1}^{4},3) = \{\{1,3\}\} = \mathcal{G}(\alpha_{3}^{1},1),$$

$$\mathcal{G}(\alpha_1^4,4) = \{\{1,4\}\} = \mathcal{G}(\alpha_4^1,1).$$

and

$$\mathcal{Y}(\alpha_{1}^{4},5) = \emptyset = \mathcal{Y}(\alpha_{5}^{2},1)$$
,

hence α_1^4 is compatible to α_2^5 , α_3^7 , α_4^1 and α_5^2 . Hence α_1^4 is the only (Γ ,1)-injection which is compatible to α_2^5 , α_3^1 , α_4^1 and α_5^2 . Hence

 $A_{10} = (\alpha_1^4, \alpha_2^5, \alpha_3^1, \alpha_4^1, \alpha_5^2)$ is the unique compatible full family of Γ -injections of type 10: $(\alpha_1^i, \alpha_2^j, \alpha_3^k, \alpha_4^1, \alpha_5^2)$.

Proof of (4). First, we determine all the (Γ ,2)-injections which are compatible to α_4^1 and α_5^3 . It turns out that α_2^1 is the only (Γ ,2)-injection which is compatible to α_4^1 and α_5^3 . Next, we determine all the (Γ ,3)-injections which are compatible to α_2^1 , α_4^1 and α_5^3 . We find that α_5^3 is the only (Γ ,3)-injection which is compatible to α_2^1 , α_4^1 and α_5^3 . Finally, we determine all the (Γ ,1)-injections which are compatible to α_2^1 , α_3^5 , α_4^1 and α_5^3 . α_4^2 is the only (Γ ,1)-injection which is compatible to α_2^1 , α_3^5 , α_4^1 and α_5^3 . Hence $\Lambda_{11} = (\alpha_1^2, \alpha_2^1, \alpha_3^5)$, α_4^1 , α_5^3) is the unique compatible full family of Γ -injection of type 11: $(\alpha_1^1, \alpha_2^1, \alpha_3^2, \alpha_4^1, \alpha_5^3)$.

Proof of (5). To prove (5), we do similarly as we prove (3) It can be shown that α_3^1 is the only $(\Gamma,3)$ -injection which is compatible to α_4^2 and α_5^1 , α_2^4 is the only $(\Gamma,2)$ -injection which is compatible to α_3^1 , α_4^2 and α_5^1 , α_1^5 is the only $(\Gamma,1)$ -injection which is compatible to α_2^4 , α_3^1 , α_4^2 and α_5^1 . Hence $A_{12} = (\alpha_1^5, \alpha_2^4, \alpha_3^1, \alpha_4^2, \alpha_5^1)$ is the unique compatible full family of Γ -injections of type 12: $(\alpha_1^1, \alpha_2^1, \alpha_3^1, \alpha_4^2, \alpha_5^1)$.

Proof of (6). First, we determine all the (Γ ,1)-injections which are compatible to α_4^2 and α_5^3 . It turns out that α_1^1 is the only (Γ ,1)-injection which is compatible to α_4^2 and α_5^3 . Next, we determine all the (Γ ,2)-injections which are compatible to α_1^1 , α_4^2 and α_5^3 . We

find that α_2^2 is the only (Γ ,2)-injection which is compatible to α_1^1 , α_4^2 and α_5^3 . Finally, we determine all the (Γ ,3)-injections which are compatible to α_1^1 , α_2^2 , α_4^2 and α_5^3 . α_3^3 is the only (Γ ,3)-injection which is compatible to α_1^1 , α_2^2 , α_4^2 and α_5^3 . Hence $A_{13} = (\alpha_1^1, \alpha_2^2, \alpha_3^3, \alpha_4^2, \alpha_5^3)$ is the unique compatible full family of Γ -injections of type 13: $(\alpha_1^1, \alpha_2^1, \alpha_3^1, \alpha_4^2, \alpha_5^3)$.

Proof of (7). To prove (7), we do similarly as we prove (4). It can be shown that, α_2^1 is the only (Γ ,2)-injection which is compatible to α_4^3 and α_5^1 , α_3^4 is the only (Γ ,3)-injection which is compatible to α_2^1 , α_4^3 and α_5^1 , α_1^3 is the only (Γ ,1)-injection which is compatible to α_2^1 , α_4^3 , α_4^3 , and α_5^1 . Hence $\Lambda_{14} = (\alpha_1^3, \alpha_2^1, \alpha_3^4, \alpha_4^3)$ is the unique compatible full family of Γ -injections of type 14: $(\alpha_1^i, \alpha_2^i, \alpha_3^k, \alpha_4^3, \alpha_5^1)$.

Proof of (8). To prove (8), we do similarly as we prove (6). It can be shown that, α_1^1 is the only $(\Gamma,1)$ -injection which is compatible to α_4^3 and α_5^2 , α_2^3 is the only $(\Gamma,2)$ -injection which is compatible to α_1^1 , α_4^3 and α_5^2 , α_3^2 is the only $(\Gamma,3)$ -injection which is compatible to α_1^1 , α_2^3 , α_4^3 and α_5^2 . Hence $A_{15} = (\alpha_1^1, \alpha_2^3, \alpha_3^2, \alpha_4^3, \alpha_5^2)$ is the unique compatible full family of Γ -injections of type 15: $(\alpha_1^1, \alpha_2^1, \alpha_3^1, \alpha_4^2, \alpha_5^2)$.

Proof of (9). To prove (9), we do similarly as we prove (4). It can be shown that, α_3^1 is the only $(\Gamma,3)$ -injection which is compatible to α_4^4 and α_5^4 , α_2^1 is the only $(\Gamma,2)$ -injection which is compatible to α_3^1 , α_4^4 and α_5^4 , α_1^1 is the only $(\Gamma,1)$ -injection which is compatible to α_2^1 , α_3^1 , α_4^4 and α_5^4 . Hence $A_{16} = (\alpha_1^1, \alpha_2^1, \alpha_3^1, \alpha_4^4, \alpha_5^4)$ is the unique compatible full family of Γ -injections of type 16: $(\alpha_1^1, \alpha_2^1, \alpha_3^k, \alpha_4^k, \alpha_5^k)$.

VITA

Name

: Mr. Dumrong Tipyotha

Degree

: B.Sc., 1979.

Chulalonghorn University, Bangkok, Thailand.

Scholarship

: University Development Commission (U.D.C),

Thai Government.