CHAPTER II

PRELIMINARIES

2.1 Hypergraphs

A hypergraph H is an ordered pair (V, E), where V is a finite set and E is a set of non-empty subsets of V such that UE = V. Any element v in V is called a vertex and any element E in E is called an edge. We allow the set V to be empty. When this is this case, such a hypergraph H will be called the empty hypergraph. The other hypergraphs will be called a non-empty hypergraph. For any positive integer r, an r-uniform hypergraph we mean a hypergraph in which every edge has cardinality r. A 2-uniform hypergraph is called a graph.

2.2 Isomorphisms

Let H = (V, E) and $H_1 = (V_1, E_1)$ be hypergraphs. A one-to-one mapping ψ from V onto V_1 is called an isomorphism from H to H_1 if for each subset E of V,

E belongs to \mathbf{E} if and only if $\psi[\mathbf{E}]$ belongs to \mathbf{E}_1 .

Here, and in the sequal, $\psi[\mathbf{E}]$ denotes the set $\{\psi(\mathbf{v})/\mathbf{v}\in\mathbf{E}\}$, the image of \mathbf{E} under ψ . If there is an isomorphism from \mathbf{H} to \mathbf{H}_1 , then we say that \mathbf{H} is isomorphic to \mathbf{H}_1 and we write $\mathbf{H} \supseteq \mathbf{H}_1$. When this

is the case, we have $|V| = |V_1|$ and $|E| = |E_1|$. Here, and in the sequal, the notation |S| will be used to denote the cardinality of the set S. If ψ is an isomorphism from H into itself, then ψ is called an <u>automorphism</u> of H.

2.2.1 Proposition Let $H = (V, \mathbf{E})$ be a hypergraph, V_1 be a set, f be a bijection from V to V_1 , and $\mathbf{E}_1 = \{f[E]/E \in \mathbf{E}\}$. Then f is an isomorphism from H to H_1 , where $H_1 = (V_1, \mathbf{E})$.

Proof. This is clear from the definition of E. #

2.3 Degree and Degree Sequence.

Let H = (V, E) be a hypergraph. For each vertex v in V the degree of a vertex v, written $d_H(v)$, is the cardinality of the set $\{E \in E/v \in E\}$, i.e.

$$d_{H}(v) = |\{E \in \mathcal{E}/v \in E\}|$$
.

2.3.1 <u>Proposition</u>. Let ψ be an isomorphism from $H = (V, \mathcal{E})$ to $H_1 = (V_1, \mathcal{E}_1)$. Let v be any vertex in H. Then $d_H(v) = d_{H_1}(\psi(v))$.

<u>Proof.</u> Let ψ be an isomorphism from $H = (V, \mathcal{E})$ to $H_1 = (V_1, \mathcal{E}_1)$. Let v be any vertex in H. Observe that

$$d_{H}(v) = |\{ \mathbb{E} \epsilon \xi / v \epsilon \mathbb{E} \}|,$$

= $|\{\psi[E]/E\varepsilon\xi$ and $v\varepsilon E\}|$,

= $|\{\psi[E]/E \in \text{and } \psi(v) \in \psi[E]\}|$,

=
$$\left|\left\{ E_{1}/E_{1} \in E_{1} \text{ and } \psi(v) \in E_{1}\right\}\right|$$
,
= $d_{H_{1}}(\psi(v))$.

Therefore $d_{H}(v) = d_{H_{1}}(\psi(v))$.

#

Then $\Sigma_{v \in V} d_{H}(v) = r \cdot |E|$.

Proof. Let H = (V, E) be an r-uniform hypergraph. For each v in V, let

$$\mathcal{L}(v) = \{(v, E)/E \in \mathcal{E} \text{ and } v \in E\}.$$

For each E in E, let

$$S(E) = \{(v, E)/v \in E\}.$$

Observe that

(1) If
$$v \neq v'$$
, then $\mathcal{L}(v) \cap \mathcal{L}(v') = \emptyset$,

(2) If
$$\mathbb{D} \neq \mathbb{E}^i$$
, then $\mathcal{G}(\mathbb{E}) \cap \mathcal{G}(\mathbb{E}^i) = \emptyset$,

(3)
$$\bigcup \mathcal{L}(v) = \bigcup \mathcal{L}(E)$$
,

(4)
$$d_{H}(v) = |\mathcal{L}(v)|$$

and

Hence

$$\begin{array}{ccc}
\Sigma & d_{H}(v) &=& \Sigma & |\mathcal{L}(v)|, \\
v \in V & & v \in V
\end{array}$$

$$= \left| \begin{array}{ccc}
\cup & \mathcal{L}(v)|, \\
v \in V & & v \in V
\end{array} \right|$$

#

$$= \left| \begin{array}{c} \bigcup_{E \in \mathcal{E}} \mathcal{S}(E) \right|,$$

$$= \sum_{E \in \mathcal{E}} |\mathcal{S}(E)|,$$

$$= \sum_{E \in \mathcal{E}} r,$$

$$= r \cdot |\mathcal{E}|.$$

Therefore $\sum_{v \in V} d_{H}(v) = r \cdot |\mathcal{E}|$.

Let H be a hypergraph with vertices v_1, v_2, \dots, v_p . If $d_H(v_i) = d_i$, $i = 1, 2, 3, \dots, p$, we say that $\Pi = (d_1, d_2, \dots, d_p)$ is a degree sequence of H. A finite sequence of non-negative integers $\Pi = (d_1, d_2, \dots, d_p)$ is said to be an <u>r-degree sequence</u> if there exists an r-uniform hypergraph H such that Π is a degree sequence of H.

2.3.3 Proposition. If $\Pi = (d_1, d_2, \dots, d_p)$ is an T degree sequence, then $\sum_{i=1}^{p} d_i$ is divisible by T.

<u>Proof:</u> Let $\Pi = (d_1, d_2, \dots, d_p)$ be anr-degree sequence. Hence there exists an r-uniform hypergraph H = (V, E) such that Π is anr-degree sequence of H. By Proposition 2.3.2, we have

$$\sum_{i=1}^{p} d_{i} = \sum_{v \in V} d_{H}(v),$$

$$= r \cdot |\mathcal{E}|.$$

Hence $\sum_{i=1}^{p} d_i$ is divisible by r.

#