CHAPTER II

AN ELEMENTARY MATHEMATICAL MODEL FOR THE
TURBULENT DIFFUSION OF SMOKE FROM A CONTINUOUS

POINT SOURCE

First divide the XZ-plane into squares and time into
discrete steps. Each step in time, assume one particle is
emitted from a fixed square, called the source, at the origin.
At each step, assume that two types of movement occur : first the
wind blows the particle one square in the x-direction, and second
turbulence may cause the particle to move one square up or down in
the z=direction, or the particle may remain with the same ordinate,
It is assumed that the movement of the particle in the z-direction

is random with fixed transition probabilities.
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Table 2.1



If for each step, we draw a separate random number to
indicate the vertical movement of each partical according to the
rules in table 2.1, then the probability of moving up is equal to

: the probability of staying with the same ordinate is equal to
T
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and the probability of moving down is equal to % .
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Table 2.2

Hence for each square there is a number which gives the

probability that it contains a particle.

Examples of the results obtained by following this procedure

are shown in figures 2.1 (a),(b) and (c).
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Figure 2.1 (b)
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Figure 2.1 (c)




Particles may occur in squares whose coordinates are
defined as shown in figute 242 with the probabilities in

table 2.2

Zh

(5,5)

(4 8)(55%)

(3,3){(4,3)(5.3)

(2, 2){(3, )| (2 (502)

ERMITEN (3,'1 )4 W5,1)

Source (1615)(4,0)](2.0) (3,0)](%,0)((5, 0) e

(4,7)](2,))(3,9)| (s (50

(a72)|(3.~ ) (h -2l(5,-2)

(3,-3)|(.-3){(5,-3)

4| (5,4

(5,-5)

Figure 2e2

Following the example of Brown (1968), who discusses

a similar model, we observe from table 2.2 that :



(i) The maximum values of the probability are on the X-axis;
this resembles coning of smoke because the centre of the

plume has the maximum concentration.

(ii) at equal distances (in z-direction) from the X-axis the
probability values are the same, i.e. the plume is
symmetrical about the X-axis.

(iii) at the point (x,2z) the probability is 2"cr /2Zx A

where r = x ~ 2z,

(iv) the sum of the probabilities along a column is unity,

%5
as is obvious since it is the value of (% + % + %f) s

where x = 0, 14 /2 %xus

(v) the mean displacement of a particle from the J-axis

is zera, i,eez—=0;

(vi) the mean-square displacement from the X-axis after x

steps is % « TIor example, after 3 steps we have

L2 2 2 2 2
3 + _5x27+ 15 x 15+ 20 x 0%+ 15 x (=1)7+ 6,(=2)+ 1,(=3)
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This result is true for all x though a general proof

requires the explicit expression for the probability Pw(z)

that after x steps the random particle is z steps from the

X-axis, which from (iii) above is

2% 1 ox
PG} = Cr(z s where r=x-12 ,
; 2%
= (2x): 1)
or PX(Z) = (x_z)'s(x"_z'ﬁ ('2- . ooc-nocnaooo(2¢1)

‘e can show that the mean displacement z is equal to

zero by using the formula

z=X
Z = E z l’x(z)
Z==
From (2.1), we obtain
Z=X
- z(2%) ! 1}2“
i1 — s (x~z)i(x+z)! \2
= 0

and we can show that the mean-square displacement z° is

equal to % for x = 0, 1, 2,4+., by mathematical induction.



s z=X
If x = 0, then a® & zZPx(z)
Z==X
z=x
2
2% (2x) 1 a s
" (xez)i(x+z)i \2
Z=ox

Z=X -
i E ' 22(2x) ! 1 e
3 = (x-z)i(x+z)! {2

S0 o’ %
If x = 1, then ?:23%(32-2=% =§
B % v A 2[;—1}-;—; (-;-)u + éz—r%-(%)h]
gkt - - 3

Assume that it is truwe Tor x ="k,

: s BS— et YK g
cafstii i e — (k=z) 1 (k+z) ! \2 R 8
Bs
z=Kk=1
2 2k 2k
z (2k)! 1 2 (1 k
i 3 2[;@:—2)!(k+z)! (E) LR (E) } 2

z=K=1

2 G 2k 2k
EE z (2k) ! 9 k 2 {1
Hence o (k-z)i(k—f-zﬁ (-2') = E - k ("2‘) ec v cecvse (202)

We shall prove that it is also true for x = k+1, that is we

have to prove that
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=k+1 ‘
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Proof : :FT_ 5 z_(2%k+2): 43 & (k+1) (2k+2)£/1
: - < (kez+1) i (k+z+1)I\ 2 HETOF \2)

z=k 5

.y 2 2k+2) {1 )2k+2+ . 2k+2

= - (IC-Z+1) ! (k+z+1 ) E\ 2 >

Let  k+1l & hy, 1.0, k =_RQY hen we get

Z'—'h"‘ 1
Sy 2 2h 2h
. z (2h)! 1 2f 2
o E[EEEE:(h-z7S(h+z)E (E) e (5) }

; 2h 2h
h 2(1 2\
= Z[H - 'h (E) + h (-é-) J y from (2.2)
- h
o
_ ks
= : .
o
Therefore, 2z~ = 5 LIPDNCENRN 1INVERSIA

We shall find a simple form of (2,1) which is useful
when x is large because it is difficult to compute the value
of factorials 6f large numbers., The method of TFeller is used.

(Ref.?7, Volume 1, Chapter 7).

Let x tend to infinity, so that 2x also tends to infinity.
As the number of steps x increases, we suppose that also the

numbers (x-z) and (x+z) will increase, so that



12

2x-——)oo 9 X = Z OO ’ X + Z ———p OO0 .oooooo-(203)

Then we express the factorials in (2.1) by means of

Stirling's formula
1/2 e
n! ~ (27n) /2 2t e, as n—oa .
From (2.1), we get

X+z

. 1/2 x VX% o I
Px(Z) ~{ﬂx-H(X+Z7} (X’Z) (m) --nocgoo.cnn(Zo"')

The last two factors on the right are equal to unity for

z = 0, and their product decreases as |z| increases. Therefore,

it is natural to rewrite (2.%4) as follows

% 1/2 1 ,
Px(Z) r {ﬂ(x-z)(x+z7} Xwz X+ """"”'-'-"(2'.5)
P2 (

)

To evaluate the last fraction we use logarithms, In the

sl

interval |z| £ _:éc_ we may use Taylor's expansion and find for

the logarithm of the denominator

(x=2)1n(1=2) +(x+z)1n(1+2)
% x

2 3 2
= (x-z) (-- - -z—-2- - 5—5 - ...) + (x+z) (- - 2 5+ _z___s_ - :..,.) (2.6)
2x 3x 2 3x
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Reordering the terms according to powers of z, we get

2 4.
+—z-_3-+ et e QG ® e § 0001000000000(207)'
6x '

Min

Suppose that z increases with x in such a manner that

L" -
_2.3' 0 ......o......(z,f_’))
X

(In this case also i —— 0 50 that (2.3) holds and the
expansion (2,6) is justified.)
From (2.,8) the terms within braces in (2.5) become

(ﬂx)-1/ . ke logarithm of the denominator in (2.5) is given
by (2.7), but in view of (2.8) all terms except the first one
may be neglected; the first term equals z2/x . Combining

these results, we have

e-za/x

1
P(Z) e ’ oo-ooo-oonoool(2¢9)
Sl

which is known as a Gaussian distribution.

The mean displacement z is

- &0
‘( z P(z) dz
o 9

Nt
1)
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The mean-square displacement is

o0

z2 S'ZZP(z)dz

00

]

1 2-z%k

B ——

X

dz

-za/x

g zZ e dz

m X

J
s

2 A3/ 2)
Nz 2(1/x)7 2

Using the same model for the XY-plane, where y denotes

the horizontal displacement, we obtain the probability Pv(y)

that after x steps the particle is y steps from the ll-axis to be

2
Y /x

TEx

which is similar to (2.9).

See appendix B,



2

Therefore, the product Px(y) Px(z) of the independent

probabilities is the concentration of particles at the point

(x,y,2) in three dimensions. Let it be denoted by 3((x,y,z).

Hence X (x,5,2) = '{‘3; e'(y2+ 2°)/x PRI L&, ©. )

This solution is similar to the solution obtain from an
equation in the book named ' Micrometeorology " by O.G.Suttonj
McGraw-IIill, 1953, Sutton derives this solution by making two steps:
first the concentration for an instantaneous point source is
calculated. Then, from this result, the concentration for a

continuous point source is found. The following treatment is

based on that of Sutton (pages 134 to 137).

Let a quantity of matter @ gm. be generated at t = O
and allowed to diffuse, The differential equation is
2
a—x = Kv X & 52‘-8;- raa"x ’ ac’c‘o..o.o¢(2.11)
ot r© Or dr

for spherical symmetry.

000905
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where X , the concentration, is the density of suspended matter

-3), T N y2+ za, with the origin at the point of

(gmecm
generation and K is the diffusivity.
The conditions arex —» 0as t—> 0, r>» O o A,

p, (SR, g t—co,

together with the continuity condition,

:J'jJde dy dz = Q

which expresses the fact that matter is neither created nor

destroyed during the diffusion process.

The solution quoted by Sutton may be obtained as follows.

From (2.13),

1 9 (raa')() _ X

;25? ar Kot

Take the Laplace transform of both sides with respect to t :
1 d (ra Q.X) = %tsX(r,s)-X(r,O)] N

T2 dr ar
r

Where, by the initial condition, X (»,0) = O,

1. .4 2 d')? g i
- 2dr<r dr)‘ e
r
— 1 / —
Hence X + -f-‘ K - %X = 0 ,. which is an ordinary

—

differential equation of the second order in X .
We can solve this by using the normal form given below,.
If in the differential equation

y”+ P(x)y’+ UX)y = -
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we let Yy = V. exp {-Jz-dex} ’

we obtain the normal form,
"

v + Iv = O,
it "1 8
where I = Q- 5 P - P
3 1
Therefore, let =V expi-3 Pdr {
2 5
where P 3 and Q = - o
gl 2 164 s
i = g '2'("‘2)' K("a) ofhuls Se.
r T

We obtain for our equation the normal form

"
S
v-k-v N o [ P

which has the solution

JS/K T

— i
¢ é&S/K Ty c e .

Y i 2

qv C, are constantse.

To determine the solution of the original equation for X we

where ¢

calculate

-%_der -%'ZS%E -ln r 1
(2] = e = e = - ’
r

|

and therefore obtain ?((r,s) = 1[01945/K A CZG'JS/K r}

r

Since )((r,t) is a bounded function of r for t > O, by

the boundary condition as t-—~.oo,cx(r,s) is also a bounded

function.
i,e. 1lim )((r;s) £ M , where M = constant.
r—co
This implies that c, = 0.



18

— -‘\Js/K r
Hence X(r,s) = ¢, ’
c "
and /X(r,t) = r_2_ { “¥orK r
02 -r /L}Kt .
sl T o
¢y =T /’+Kt

PV ET S

The value of c, is found by using the condition
oA

_SLI e

ie.06 TX (r,t)dr
(0]

Substituting for X sy We get

Q

]
Jx Ll»ﬂ—rzdr = Q Py
(9)

Tkt J
> oy 18/ 22 s ;
or = Q
Kt ( 1 Y72
5 :
)
Therefore c, = %
’ 2
lv r
Finally we obtain A (r,t) = —-—Q-—-7— exp (- )

2

.
p B, 0 S, R
g(ﬂJZWE exp( LKt )(2.12)

If the origin is at the point (x’, y’, z’), the solution is

2 2 21
~(x=x')"+(y=y')“+(z-2")
X(x,y,z,t) = m exp { IRt }.

or ,X(x,y,z,t)

* See appendix C. ** See appendix B
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This is the solution for an instantaneous point source,
if the medium is at rest. The solution for a source emitting
continuously from t = O to t = t at the point (x',y',2') is
obtained without difficulty by integrating the expression for
an instantaneous point source with respect to time.

2

Hence, writing r (x-x')24 (y-y')2+ (z-2')° F

J‘——/'Jtexp[- A
8enk)>/2 o BK(t=t1) ) (£=t)> 2

X (xvy’z vt)

. s r dy=l r. At
Juk(t-t) 172 2 N uK(t-t1)> 2

Let

With conditions : y = r/erth as th=0 , and
y =00 ag t™N= ¢t ,
o0
2
we have X(x,y,z,t): . 204K} 2 e ay
Y el L

r/NGKE

b _—Q— erfc ----I:—-
4TKr LKt

As t—s o0, this reduces to

X(x,y,z) » e orfo (D) w-mstbios |
LKy LKy

This corresponds to a source which is maintained indefinitely.

Z
A z
7/
——u—L_.)
/ ——————

o

F
gt Y
/ / ;
£ Cloud axis %47}/

477




20

In the analysis which follows it is supposed that the wind
velocity u is constant at all points. The solution for the
continuous point source in a moving medium can be obtained from
that for the instantaneous point source if the system of axes be
fixed in space instead of moving downwind with the puff. The axis
of x is chosen as the direction of the wind, the source of Q gm.sec-’I
being placed at the origin, as shown in figure 2.4, In the fixed-
axes system, the coordinates (x,y,z) of the moving system are to be
replaced by (x-ut,y,z). The continuous point source is equivalent
to a succession of elementary instantaneous point sources, the
concentration at any point being due to the integrated effect of
the elementary puffs. At time t' the source emits Qdt' gm of matter,
but, because of the wind, the clement of air which is at (x,y,z,t)
has come from [x-u(t-t'),y,z,t'}. The concéntration at (x;y,z,t)
due to an instantaneous puff of content Qdt' emitted at time t' is

thus, by (2.12),

dX " Qdt ! e-[{x-u(t-t')}2+ y2+ ZZJAK(t-t') (2.15)
8[ﬂ'K(t-t')P/2

The total concentration at (x,y,z,t) in the continuous-point-
source cloud is the sum of all such contributions, i.e.equals the
integral of (2.13) with respect to t' from t' = O to t' = t.

If the source is supposed to be maintained indefinitely,
the range of integration is from t'= O to t' = & ; in practice this

is by far the most important case.
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Then the equation (2.13) becomes

’((x T 0 JI [{x-u(t—t )} + y + 2 ]/éK(t £ )

8@K)2 ) (tatr)/2

The reduction of this formula by evaluating the integral

is as follows

te-(x2+ y2+ za)/hK(t-t')+ux/2K-uel(t-t' ) /4K

Q
= at!
X(x'y'Z) 8(m<)372 J (t-t')3/2
QUx/2K te—(x2+ y2+ za)/hK(t-t')-uz(t-t'\)/b:K
& __9__77_ at?
(1K) > 2 ! (g-t1)/2 '
now let t=t' = v, =dt' = dv ,
and v =t ags t) /&HxEQ =y
v = 0 as t¥ i
= = 2
ux/2K -r /4Kv-u“v/LK
i e e
Thus )((x,y,z) = S J' —;375— av ,
where r» = X +Y + 2 .
2 2 2 2
Put 3 = 7 ! v - —E——"- V3/2 = -———7-——-31.
v hK’r ' 8Kk~ 2'r ?
2
r-dv
- = 2Tar dv=-——--dT.
LKy ' 2K
With limits : T = ©0 as v =0,
and 'T -T:= as v = t,
x/2K a2 _ 2 2 2
Hence IX(x,y,z) J /16K T oanr
Kr
M/ak F

2 2P 2
J.e T =eu"r</16K~T ar,
0

as t - 00,

Kr
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eux/u( ﬁ' e-ur/2K>

2"3 2Kr 2

) e-ﬁ(r-x)/2K
LTKr

]

Observations of smoke clouds show that, unless the wind is
very light, the cloud takes the form of a long thin plume, and
interest is centered on concentrations at points not too far
removed from the axes of the cloud (y = z = 0). In most practical

2

applications (y2+ zz)/ X may be regarded as a quantity whose square

is negligibly small. In this case,

1/2
- M = -'—2- > 4 I NS f:—z—z - X
2K Ly 2K 2
x
o Bt (XEI-EE)
X x
Hence, for all but the lightest winds,
2 2
j((x,y,z) = e-u(y + 27)/hKx .
LKy
In practice, this expression is frequently replaced by
Pl '
X(x’y’z) = —R_ e-u(y e )/l}Kx ®Pe s s s e (2.11’)
LMKx

without serious error,
Therefore the equation (2.14) will be the same as the

equation (2.10) if the values of Q, u and 4K are equal to unity,
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