CHAPTER IV

GENERALIZATIONS OF NON-CREATIVITY

In this chapter, we want to define a generalized criterion of non-creativity and show that explicit definitions also satisfy this criterion.

4.1 <u>Definition</u>. Let L and L' be two first-order languages such that L \subset L'. A sentence ϕ in L' is non-creative with respect to L if and only if: for all sentences ψ in L; if $\phi \models \psi$ then $\models \psi$.

We want to show that non-creativity with respect to the first-order language of theory T (L(T)) is more general than non-creativity with respect to T.

4.2 <u>Theorem</u>. If a sentence ϕ in L' \supset L(T) is non-creative with respect to L(T), then ϕ is non-creative with respect to T.

<u>proof.</u> Assume ϕ is non-creative with respect to L(T), i.e. for all sentences ψ in L(T); if $\phi \vdash \psi$ then $\vdash \psi$.

Let ψ be any sentence in L(T). Assume $T \models \phi \rightarrow \psi$. Then there exists a finite sequence of formulas $\theta_1, \dots, \theta_n$ such that $\theta_n = \phi \rightarrow \psi$ and for each i, θ_i is a logical axiom, or $\theta_i \in T$, or θ_i comes from θ_i ,

- 4.3 Theorem. (Interpolation Theorem). Let ϕ and ψ be sentences in first-order language without identity such that $\vdash \phi \longrightarrow \psi$. Then
- (i) if φ and ψ contain common symbols, then there is a sentence θ such $\models \varphi \!\to \theta$ and $\models \theta \!\to \psi$ and the symbols of θ are common to φ and ψ ,

proof. We can find this proof in [2].

4.4 Theorem. The converse of Theorem 4.2 is not necessarily true.

<u>proof.</u> To prove this theorem, we must show that there exists a sentence ϕ in L' \supset L(T) which is non-creative with respect to theory T but not non-creative with respect to L(T). So we must find a sentence

 ϕ in L' \supset L(T) and a sentence ψ in L(T) such that : for all formulas t in L(T); if T $\longmapsto \phi \longrightarrow t$ then T $\longmapsto t$ and $\phi \longmapsto \psi$ but $\biguplus \psi$.

Let $T = \{\sigma\}$ where σ is a sentence in first-order language without identity such that $\not\models \sigma$. Let $L' = L(T) \cup \{P\}$ where P is a new 1-placed relation symbol. Let ϕ be the sentence $(\sigma \land \exists v P \lor v)$ in L'. Want to show that, for all formulas t in L(T); if $T \models \phi \to t$ then $T \models t$. To show this, let t be any formula in L(T). Assume $T \models \phi \to t$, i.e. $\{\sigma\} \models (\sigma \land \exists v P \lor v) \to t$. By Deduction Theorem; we get $\sigma \land \exists v P \lor v \models t$ and so $\exists v P \lor v \models \sigma \to t$. Since $\exists v P \lor v \Rightarrow t$ are sentences contain no common symbols, by Interpolation Theorem, we get either $\models \sim (\exists v P \lor v)$ or $\models \sigma \to t$. By Gödel's Completeness Theorem, we get $\models \sim (\exists v P \lor v)$ which is impossible, hence $\not\models \sim (\exists v P \lor v)$. So $\not\models \sigma \to t$ and hence $\sigma \models t$, i.e. $\{\sigma\} \models t$. Then ϕ is non-creative with respect to T.

Let ψ be a sentence σ in T, we see that $(\sigma \land \exists v P v) \models \sigma$ but $\not\models \sigma$. Thus φ is not non-creative with respect to L(T).

Hence, from Theorem 4.2 and 4.4, we see that non-creativity with respect L(T) is more general than non-creativity with respect to T.

4.5 Theorem. Let L and L' be two first-order languages such that L C L', and ϕ be a sentence in L'. If for all models M of L, there exist a model M' of L such that M \equiv M' and M' can be expanded to a model M' of L' in which M' $\models \phi$, then ϕ is non-creative with respect to L.

proof. Assume for all models M of L, there exist a model M of

L such that $M \equiv M^*$ and M^* can be expanded to a model M' of L' in which $M' \models \varphi$. Want to show that φ is non-creative with respect to L, i.e. show that for all sentences ψ in L; if $\varphi \models \psi$ then $\models \psi$. To show this, let ψ be any sentence in L. Assume $\varphi \models \psi$. Suppose $\not\models \psi$. By Gödel's Completeness Theorem, we can suppose $\not\models \psi$, therefore there exists a model M of L such that $M \not\models \psi$. From first assumption, there exists model $M \not\equiv M$ and a model expansion of M^* , say M', such that $M \not\models \varphi$. Since $M \not\models \psi$, we have $M^* \not\models \psi$ and $M' \not\models \psi$, and from $\varphi \models \psi$ (i.e. $M' \models \varphi \Rightarrow M' \models \psi$), we get $M' \not\models \varphi$ which is a contradiction. Thus $\not\models \psi$.

- 4.6 <u>Definition</u>. Let L and L' be two first-order languages such that $L \subset L'$. A sentence ϕ in L' is said to be semantically non-creative with respect to L if and only if: for all models M of L, there exist a model M' of L' such that M' is an expansion of M and M' $\models \phi$.
- 4.7 Theorem. Let L and L' be two first-order languages such that L \subset L' and ϕ be a sentence in L'. If ϕ is semantically non-creative with respect to L, then for all models M of L there exist a model M' of L such that $M \equiv M^*$ and M^* can be expanded to a model M' of L' in which $M \models \phi$.

<u>proof.</u> Assume ϕ is semantically non-creative with respect to L, i.e. for all models M of L, there exist a model M' of L' such that M' is an expansion of M and M' $\models \phi$. Let M* be M, so we get for all models M of L, there exist a model M' of L such that M \equiv M' and M' can be expanded to a model M' of L' in which M' $\models \phi$.

4.8 Theorem. Let L and L' be two first-order languages such that L \subset L' and ϕ be a sentence in L'. If ϕ is semantically non-creative with res-

pect to L, then ϕ is non-creative with respect to L.

proof. From Theorem 4.5 and 4.7.

Next, we describe two first-order languages L and L' such that $L \subset L'$, and a sentence ϕ in L' such that for all models M of L, there exist a model M' of L such that $M \equiv M'$ and M' can be expanded to a model M' of L'in which $M' \models \phi$.

Let $L = \{ P, R \}$ and $L' = \{ P, R, F \}$; where P is a 1-placed relation symbol, R is a 2-placed relation symbol and F is a 1-placed function symbol. Thus $L \subset L'$.

Let ψ in L be the sentence : $\exists x P x \land \forall x (\sim R(x, x)) \land \forall x \exists y$ $(P y \land R(x, y)) \land \forall x \forall y \forall z (R(x, y) \land R(y, z) \longrightarrow R(x,z))$.

Let θ in L be the sentence : $\forall x (\sim Px \rightarrow \exists y (Py \sim F(y) = x))$.

Let ϕ in L' be the sentence : $\psi \to \theta$. (Intuitively, ϕ says that "If $\{ x/x \text{ is } P \}$ is infinite then there is a function F that maps $\{ x/x \text{ is } P \}$ onto $\{ x/x \text{ is not } P \}$ ".).

Before we show the above, we need some lemmas.

4.9 <u>Lemma</u>. If $M \models \psi$, then I_p is infinite, where I_p is the interpretation of P in M.

 \underline{proof} . Assume M $\models \psi$ and let M = < A, I_p , I_R > where A is the universe and I_p , I_R are interpretations of P and R, respectively, in M.

Suppose I_p is finite, let $I_p = \{a_1, \ldots, a_n/a_i \in A, 1 \le i \le n \}$. Since $M \models \psi$, we can define $B = \{b_1, \ldots, b_n/b_1 = a_1 \text{ and } b_{i+1} = a_j$ where $(b_i, a_j) \in I_R$. From this set, we see that $(b_i, b_{i+1}) \in I_R$ and if $(b_i, b_{i+1}) \in I_R$ and $(b_{i+1}, b_{i+2}) \in I_R$, then $(b_i, b_{i+2}) \in I_R$; $1 \le i \le n$. At last, we get $(b_i, b_n) \in I_R$ $\forall i, 1 \le i \le n$, but $(b_n, b_k) \in I_R$ for some $k, 1 \le k \le n$, therefore $(b_n, b_n) \in I_R$ contradiction. Hence I_p is infinite.

4.10 <u>Lemma</u>. For all infinite models M of L, there exist a countable (infinite) model M^* of L such that $M \equiv M^*$.

proof. Let M be any infinite model of L. Let $T = \{\phi/\phi \text{ is a} \}$ sentence in which $M \models \phi\}$, then T is consistent. By Theorem 2.57, T has a countable model, say M^* . Now we want to show that $M \equiv M^*$. Let ψ be any sentence in L. Suppose $M \models \psi$, then $\psi \in T$, and so $M^* \models \psi$. Suppose $M^* \models \psi$. If $\psi \in T$, then we get $M \models \psi$. If $\psi \notin T$, and suppose that $M \models \psi$ then $M \models \neg \psi$, therefore $\neg \psi \in T$, so $M^* \models \neg \psi$, i.e. $M^* \models \psi$ which is a contradiction. Thus $M \models \psi$.

4.11 Theorem. The converse of Theorem 4.7 is not necessarily true.

<u>proof.</u> To prove this theorem, we must show that there exist two first-order languages L and L' such that L C L' and a sentence ϕ in L' such that for all models M of L, there exist a model M' of L such that $M \equiv M^*$ and M^* can be expanded to a model M' of L' in which $M \models \phi$, but ϕ is not semantically non-creative with respect to L.

Let $L = \{P, R\}$, $L' = \{P, R, F\}$ where P is an 1-placed relation symbol, R is a 2-placed relation symbol and F is an 1-placed function

symbol. Thus L C L'.

Let ψ in L be the sentence : $\exists x \ Px \land \forall x \ (\sim R(x, x)) \land \forall x \ \exists y$ $(P y \land R(x, y)) \land \forall x \ \forall y \ \forall z \ (R(x, y) \land R(y, z) \longrightarrow R(x, z)),$

 θ in L' be the sentence : $\forall\;x\;(\sim\;Px\longrightarrow\exists y\;(Py\;\wedge\;F(y)\;=\;x))\;.$ and φ in L' be the sentence : $\psi\longrightarrow\theta\;.$

Let M = < A, I_p , I_R > where A is the universe, I_p and I_R are interpretations of P and R, respectively, in M; be any model of L.

 $\frac{\text{case 2}}{\text{p}}: \text{ M is countably infinite. Suppose M} = <A, I_p, I_R > \\ \text{where A is countably infinite and I}_p \text{ is finite. Let M}^* = \text{M and M}' = <\text{M}^*, \\ I_F > \text{where I}_F \text{ is any interpretation of F, M}' \text{ is an expansion of M}^*. By \\ \text{Lemma 4.8, M}' \not\models \psi, \text{ so we get M}' \models \psi \rightarrow \theta.$

Suppose M = <A, I_p , I_R > where A is countably infinite and I_p is also countably infinite. Let $M^* = M$. Since A and I_p are also countably infinite, there exists a function I_F maps from I_p onto A- I_p . So let $M^* = < M^*$, I_F >, thus $M^! \models \theta$. Hence $M^!$ is an expansion of M^* such that $M^! \models \psi \rightarrow \theta$.

case 3: M is uncountable. By Lemma 4.9, there exists a model M^* such that M^* is countable and $M \equiv M^*$. As in case 2, there exists an

expansion $M' = \langle M^*, I_F \rangle$ of M^* such that $M' \models \psi \rightarrow \theta$.

Finally, we must show that ϕ is not semantically non-creative with respect to L, i.e. there exists a model M of L such that for all model M of L which M are expansions of M, M $\models \phi$ (i.e. M $\models \psi$ and M $\models \theta$).

Let M = < \mathbb{R} , \mathbb{Q} , < > , we see that M $\models \psi$. Let M' = < \mathbb{R} , \mathbb{Q} , < , I_F > is any model of L', we get M' is an expansion of M, therefore M' $\models \psi$. If I_F is any function maps from \mathbb{Q} to \mathbb{R} - \mathbb{Q} , then I_F is not onto, so M' $\models \theta$.

4.12 Theorem. The converse of Theorem 4.8 is not necessarily true.

<u>proof.</u> To proof this theorem, we must show that there exist two first-order languages L and L' such that L C L' and a sentence ϕ in L' such that ϕ is non-creative with respect to L but is not semantically non-creative with respect to L.

Let L, L and φ as in Theorem 4.10. By Theorem 4.4, φ is non-creative with respect to L.

We see that semantical non-creativity with respect to L \Longrightarrow non-creativity with respect to L(T) \Longrightarrow non-creativity with respect to T, but the converses are not true. Hence semantical non-creativity with respect to L is the most general criterion of non-creativity among these three.

4.13 Theorem. Explicit definitions are semantically non-creative.

proof. Let L and L' be two first-order languages such that $L \subset L' = L \cup \{P\}$ where P is a new n-placed relation symbol. Let ϕ be an explicit definition, therefore ϕ is of the form $(\forall v_1) \dots (\forall v_n) (P(v_1 \dots v_n) \longleftrightarrow S)$, where S is a formula in L. We must show that ϕ is semantically non-creative with respect to L.

Let $M = \langle A, \mathcal{Y} \rangle$ be any model of L. Want to show that there exists a model M' of L' which is an expansion of M and such that $M' \models (\forall v_1) \dots (\forall v_n) (P(v_1 \dots v_n) \longleftrightarrow S)$.

Let B = { $(a_1, \ldots, a_n)/a_i \in A$ and there exists $(b_1, \ldots, b_n, \ldots)$ satisfies S in M such that $b_1 = a_1, \ldots, b_n = a_n$ }.

Let interpretation of P = I_p = B. Let M' = < M, I_p > , hence M' is an expansion of M.

Next, we want to show that $M' \models P(v_1 \dots v_n) \longleftrightarrow S$, i.e. to show all sequence of elements of A satisfy $P(v_1 \dots v_n) \longleftrightarrow S$ in M'.

Let $s = (c_1, \ldots, c_n, \ldots)$ be any sequence of elements of A which satisfies $P(v_1, \ldots, v_n)$ in M', therefore $(c_1, \ldots, c_n) \in I_p$. Then there exists sequence of elements of A: $s' = (b_1, \ldots, b_n, \ldots)$ such that $b_1 = c_1, \ldots, b_n = c_n$ satisfies S in M'. By Lemma 2.38, s satisfies S in M'.

Let $s = (d_1, \ldots, d_n, \ldots)$ be any sequence of elements of A does not satisfy $P(v_1, \ldots, v_n)$ in M', therefore $(d_1, \ldots, d_n) \notin I_p$. Then for all sequence of elements of A: $(b_1, \ldots, b_n, \ldots)$ such that $b_1 = d_1, \ldots, d_n = d_n$ does not satisfy S in M'. So s does not satisfy S in M'.

Thus, all sequences of elements of A satisfy $P(v_1 \dots v_n) \longleftrightarrow S$ in M' and so M' $\models P(v_1 \dots v_n) \longleftrightarrow S$. Hence M' $\models (\forall \ v_1) \dots (\forall \ v_n)$ (P $(v_1 \dots v_n) \longleftrightarrow S$).