CHAPTER III

EXPLICIT DEFINITIONS

In this chapter we study about explicit definitions, the criterion of eliminability, and the criterion of non-creativity.

Some of the material in this chapter is drawn from [4].

- 3.1 <u>Definition</u>. Let L and L' be two first-order languages such that $L' = L \cup \{P\}$ where P is a new n-placed relation symbol, and let T be a theory in L. An explicit definition in T is a sentence of the form $(\forall v_1) \dots (\forall v_n) (P(v_1 \dots v_n) \longleftrightarrow S)$ where v_1, \dots, v_n are distinct variables and S is a formula in L such that S has no free variables other than v_1, \dots, v_n .
- 3.2 The Criterion of Eliminability. Let L and L' be two first-order languages such that L \subset L', and let T be a theory in L. A sentence S in L' satisfies the criterion of eliminability with respect to L if and only if: whenever S_1 is a sentence in L' but not a sentence in L, then there is a sentence S_2 in L such that $T \vdash S \longrightarrow (S_1 \longleftrightarrow S_2)$.

We want to show that explicit definitions satisfy the criterion of eliminability.

3.3 Lemma. For any formulas ϕ and ψ ,

$$\vdash (\forall v) (\phi \longleftrightarrow \psi) \longrightarrow ((\forall v) \phi \longleftrightarrow (\forall v) \psi).$$

<u>proof.</u> In order to prove $\vdash (\forall v) (\phi \longleftrightarrow \psi) \to ((\forall v) \phi \longleftrightarrow (\forall v) \psi)$, we first prove $(\forall v) (\phi \longleftrightarrow \psi)$, $(\forall v) \phi \vdash (\forall v) \psi$.

1.
$$(\forall v) (\phi \longleftrightarrow \psi)$$

hypothesis.

2.
$$\phi \longleftrightarrow \psi$$

logical axiom (v), 1 by MP.

3.
$$(\forall v) \phi$$

hypothesis.

logical axiom (v), 3 by MP.

$$(\phi \longleftrightarrow \psi) \longrightarrow (\phi \longrightarrow \psi)$$
, 4 by MP.

generalization

7.
$$(\forall v) (\phi \longleftrightarrow \psi), (\forall v) \phi \vdash (\forall v) \psi$$
 1, 3, 6.

Similarly, we have $(\forall v)$ $(\phi \longleftrightarrow \psi)$, $(\forall v)\psi \models (\forall v)\phi$. Since v is not free in $(\forall v)\phi$ and $(\forall v)\psi$, we get $(\forall v)(\phi \longleftrightarrow \psi) \models (\forall v)\phi \longleftrightarrow (\forall v)\psi$. And since v is not free in $(\forall v)(\phi \longleftrightarrow \psi)$, we get $(\forall v)(\phi \longleftrightarrow \psi) \longleftrightarrow ((\forall v)\phi \longleftrightarrow (\forall v)\psi)$.

3.4 <u>Lemma</u>. Let S, ψ be formulas and ϕ be a subformula of S. Then $(\forall v_1) \dots (\forall v_n) (\phi \longleftrightarrow \psi) \models S \longleftrightarrow S [\psi]$ where S $[\psi]$ is a formula obtained from S that replaces every occurrence of subformula ϕ by ψ .

<u>proof</u>. We will prove this lemma by induction on the length of the formula S.

Suppose S is an atomic formula.

Assume this lemma is true for all formulas S' whose lengths < length of S.

Suppose S is ~ S'.

 $\underline{\text{case 2}}: \text{ If } \varphi \text{ is not a subformula of S}', \text{ then S is } \varphi \text{ and S } [\psi] \\ \text{is } \psi. \text{ Therefore } (\forall \ v_1) \ldots (\forall \ v_n) \ (\varphi \longleftrightarrow \psi) \models S \longleftrightarrow S \ [\psi] \ .$

Suppose S is S' , S".

case 3: If ϕ is a subformula of S' but not a subformula of S',

then similarly to case 2, we get $(\forall v_1) \dots (\forall v_n) (\phi \longleftrightarrow \psi) \vdash s' \land s'' \longleftrightarrow s' \land s'' [\psi].$

 $\underline{\text{case 4}}: \text{ If } \phi \text{ is not a subformula of either S' or S'', then } \phi$ is S and S $\begin{bmatrix} \phi \\ \psi \end{bmatrix}$ is ψ . Therefore $(\forall v_1) \dots (\forall v_n) (\phi \longleftrightarrow \psi) \vdash S \longleftrightarrow S \begin{bmatrix} \phi \\ \psi \end{bmatrix}$.

Suppose S is ($\forall \nu$) S .

 $\underline{\text{case 1}}: \text{ If } \varphi \text{ is not a subformula of S', then S is } \varphi \text{ and S } [\psi]$ is ψ . Therefore $(\forall v_1) \dots (\forall v_n) \ (\varphi \longleftrightarrow \psi) \vdash S \longleftrightarrow S [\psi]$.

Hence, this lemma is true for all formulas S.

3.5 <u>Corollary</u>. If S is a sentence, ϕ a subformula of S, and ψ another formula, then $(\forall v_1) \dots (\forall v_n) (\phi \longleftrightarrow \psi) \models S \longleftrightarrow S \begin{bmatrix} \phi \\ \psi \end{bmatrix}$, where $S \begin{bmatrix} \phi \\ \psi \end{bmatrix}$ is a sentence obtained from S that replaces every occurrence of subformula ϕ by ψ .

<u>proof.</u> Since S is a sentence, we see that S is a formula, and by Lemma 3.4.

3.6 <u>Theorem</u>. Explicit definitions satisfy the criterion of eliminability.

proof. Let L and L' be two first-order languages such that L' =

L U{P}where P is a new n-placed relation symbol and T be a theory in L. Let $(\forall v_1) \dots (\forall v_n) (P(v_1 \dots v_n) \longleftrightarrow S)$, where S is a formula in L, be an explicit defintion in T.

Let S_1 be any sentence in L and S_1 is not a sentence in L. Want to show that there is a sentence S_2 in L such that

Assume T U { ($\forall v_1$)... ($\forall v_n$) ($P(v_1 ... v_n) \longleftrightarrow S$ }. Let S_2 be $S_1^{[P(v_1 \cdot \dot{S} \cdot v_n)]}$. Since S is a formula in L, we get S_2 is a sentence in L. Since $P(v_1 ... v_n)$ is subformula of S_1 , we get ($\forall v_1$)... ($\forall v_n$) ($P(v_1 ... v_n) \longleftrightarrow S$) $\vdash S_1 \longleftrightarrow S_1^{[P(v_1 ... v_n)]}$. Since $S_1^{[P(v_1 ... v_n)]}$ is S_2 , it follows that ($\forall v_1$)... ($\forall v_n$) ($P(v_1 ... v_n) \longleftrightarrow S$) $\vdash S_1 \longleftrightarrow S_2$. Hence T U { ($\forall v_1$)... ($\forall v_n$) ($P(v_1 ... v_n) \longleftrightarrow S$) } $\vdash S_1 \longleftrightarrow S_2$.

3.7 <u>Corollary</u>. Let L and L' be two first-order languages such that L C L' and T be a theory in L. Let S_1 be a sentence in L' but not a sentence in L and S_2 be a sentence in L. If ϕ is a sentence in L' that satisfies the criterion of eliminability and $T \vdash \phi \longrightarrow S_2$, then $T \vdash \phi \longrightarrow S_1$.

proof. By Theorem 3.6.

3.8 The Criterion of Non-Creativity. Let L and L' be two first-order languages such that L \subset L' and T be a theory in L. A sentence S in L' satisfies the criterion of non-creativity if and only if: for any formula t in L, if T \vdash S \rightarrow t then T \vdash t.

3.9 Remark. If a sentence S in L' satisfies the criterion of non-creativity, we say that S is non-creative with respect to theory T.

We want to show that explicit definitions satisfy the criterion of non-creativity.

- 3.10 <u>Lemma</u>. Let ϕ and ψ be formulas and $P(v_1, \dots, v_n)$ a subformula of either ϕ or ψ and S is another formula such that $(\forall v_1) \dots (\forall v_n)$ $(P(v_1, \dots, v_n) \longleftrightarrow S)$. Then
 - (i) $(\phi \longrightarrow \psi)$ $[P(v_1 \dots v_n)]$ is $\phi[P(v_1 \dots v_n)] \longrightarrow \psi[P(v_1 \dots v_n)]$
 - (ii) (($\forall v$) ϕ) [$^{P(v_1, \dots, v_n)}$] is ($\forall v$) ϕ [$^{P(v_1, \dots, v_n)}$],

where $(\phi \to \psi) \begin{bmatrix} P(v_1 \dots v_n) \end{bmatrix}$, $\phi \begin{bmatrix} P(v_1 \dots v_n) \end{bmatrix}$ and $\psi \begin{bmatrix} P(v_1 \dots v_n) \end{bmatrix}$ are formulas obtained from $\phi \to \psi$, ϕ and ψ with all occurrences of $P(v_1 \dots v_n)$ replaced by S.

(ii) To show $((\forall v)_{\varphi})$ $[{}^{P(v_1...v_n)}]$ is $(\forall v)_{\varphi}$ $[{}^{P(v_1...v_n)}]$. Since $P(v_1...v_n)$ is a subformula of φ , we have in formula $(\forall v)_{\varphi}$, substitute S for $P(v_1...v_n)$ in φ , and so we get $((\forall v)_{\varphi})[{}^{P(v_1...v_n)}]$ is $(\forall v)_{\varphi}$ $[{}^{P(v_1...v_n)}]$.

3.11 <u>Theorem</u>. Explicit definitions satisfy the criterion of non-creativity.

<u>proof.</u> Let L and L' be two first-order languages such that L' = L U {P} where P is a new n-placed relation symbol and T be a theory in L. Let $(\forall v_1) \dots (\forall v_n) (P(v_1 \dots v_n) \leftrightarrow S)$, where S is a formula in L, be an explicit definition in T.

To prove this theorem, we must prove that : for any formula t in L, if $T \vdash (\forall v_1) \dots (\forall v_n) (P(v_1 \dots v_n) \leftrightarrow S) \rightarrow t$, then $T \vdash t$. In order to prove the above, we prove : if $T \cup \{(\forall v_1) \dots (\forall v_n) (P(v_1 \dots v_n) \leftrightarrow S)\} \vdash t$, then $T \vdash t$.

Let t be any formula in L. Assume T U $\{(v_1), \ldots, (v_n) \ (P(v_1, \ldots, v_n) \leftrightarrow S)\} \vdash t$. Therefore there exists a finite i sequence of formulas ϕ_1, \ldots, ϕ_n such that $\phi_n = t$ and for all $i, 1 \leq i \leq n$, ϕ_i is a logical axiom, or $\phi_i \in T$, or $\phi_i = (\forall v_1), \ldots, (\forall v_n) (P(v_1, \ldots, v_n) \leftrightarrow S)$, or ϕ_i is a conclusion from $\phi_j, \phi_j \rightarrow \phi_i$ (j < i) by MP., or ϕ_i is a conclusion from ϕ_i (j < i) by generalization.

We want to show T \vdash t. Assume T. Construct a finite sequence of formulas ϕ_1',\ldots,ϕ_n' as follows; if ϕ_i has $P(v_1,\ldots,v_n)$ as subformula, define ϕ_i' is ϕ_i [$P(v_1,\ldots,v_n)$], otherwise define ϕ_i' is ϕ_i .

To show ϕ_1',\ldots,ϕ_n' can be made into a proof of t from T. To prove this, for each ϕ_i , $1\leq i\leq n$;

if ϕ_i is a logical axiom, then ϕ_i' is also a logical axiom.

if ϕ_i T, then $\phi_i' = \phi_i \in T$.

 $\text{if } \phi_{\mathbf{i}} = (\forall v_1) \dots (\forall v_n) \ (P(v_1 \dots v_n) \longleftrightarrow S), \text{ then } \phi_{\mathbf{i}}' = (\forall v_1) \dots \\ (\forall v_n) \ (S \longleftrightarrow S). \text{ Since } \vdash S \longleftrightarrow S, \text{ we get } \vdash (\forall v_1) \dots (\forall v_n) \ (S \longleftrightarrow S).$

if ϕ_i is a conclusion from ϕ_j , $\phi_j \rightarrow \phi_i$ (j < i) by MP., then from ϕ_j' and since $(\phi_j \rightarrow \phi_i)'$ is $\phi_j' \rightarrow \phi_i'$, we get ϕ_i' by MP.

if ϕ_i is a conclusion from ϕ_j (j < i) by generalization, then from Lemma 3.10, we get ϕ_i' which comes from ϕ_j' (j < i) by generalization.

Therefore, we get a finite sequence of formulas ϕ_1',\ldots,ϕ_n' which is a proof of t from T.