CHAPTER III

EXPLICIT DEFINITIONS

In this chapter we study about explicit definitions, the

criterion of eliminability, and the criterion of non-creativity.
Some of the material in this chapter is drawn from [4].

3.1 Definition. Let L and L' be two first-order languages such that
L =L U { P} where P is & pén n-placed relation symbol, and let T be
a theory in L. An explicit definition in T is a sentence of the form
12c s YV, are distinct va-

riables and S is a formula in L such that S has no free variables other

(Vvl)... (an) (P(vl... vn)+-—+S) where v

than Vl"' sV

!
3.2 The Criterion of Eliminability. Let L and L be two first-order

1
languages such that LC L', and let T be a theory in L. A sentence S
'
in L satisfies the criterion of eliminability with respect to L if and
1
only if : whenever S1 is a sentence in L but not a sentence in L, then

there is a sentence S, in L such that T s — (5, +— $,).

1

We want to show that explicit definitions satisfy the criterion

of eliminability.
3.3 Lemma. For any formulas ¢ and V),

F=(vv) (9+=)— ((VV)o+— (VV) V).
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proof. In order to prove |—(VVv) (¢ +—9)— ((Vv) ¢ ~—>

(Yv) V), we first prove (Vv) (¢ «—¥), (VV)¢ —(VV) ¥.

1. (Vv) (¢« V) hypothesis.

2, Py logical axiom (v), 1 by MP.
3. (vv)¢ hypothesis.

4. ¢ logical axiom (v), 3 by MP.
5.9 (=)= (@—>y),4 by MP.
6. (Y generalization

7. (V) (6— V), (YW |(¥yV¥ 1, 3, 6.

Similarly, we have (VvVv) (¢ < V), (VWY |- v) ¢ . Since v is not

free in (vVv) ¢ and (V v) ¥, we get (VV) (¢ «— ¥) - (VV)¢~—(VV) P.

And since v is not free in (vv) (¢ +— y), we getfl( yv) (¢ +— ) —>

(CVv) ¢ «==>(VV) V).

3.4 Lemma. Let S, ¥ be formulas and ¢ be a subformula of S. Then
(Vvl)... (v vn) (6 +=——> VY |=-5+—5 [$] where S [$] is a formula

obtained from S that replaces every occurrence of subformula ¢ by U.

proof. We will prove this lemma by induction on the length of

the formula S.
Suppose S is an atomic formula.

case 1 : S is t, =t where t,» t, are terms, Since ¢ is a

subformula of S, we see that S is ¢ and S [{B] is ¢ . And Since |-

[C(v Vl)"' (an) (¢ «—=P)]— (p+—1), we get (V vl)... (v vn) (o)

F-5«—s[J].
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case 2 : S is P(tl... tn) where P is an n-placed relation symbol
and ty,..., t are terms. Then S is ¢ and S [$] is Y. As in case 1,

(Vv).oo (V) (0= s s [].

1
Assume this lemma is true for all formulas S whose lengths <

length of S.

Suppose S is ~ S .

1
case 1 : If ¢ is a subformula of S , then by induction hypothe-
1 ]
sis, (Vv)... (Vv) (0 -8"=5" [§] . Therefore (Vv))...

(V) (99 = 8'—s.8" [f]

L}
case 2 : If ¢ is not a subformula of S , then S is ¢ and S [$]

is Y. Therefore (Vv )... (Vv) (6 |—s «—s [J] .

n

'
Suppose S is S . S

case 1 : If ¢ is a subformula of S and S, then by induction
hypothesis, (Vv))... (Vv ) (69 8'<—s"[§] anda (v Vil
(V) (4« l=s'«—s" [f] . Terefore (Vv).... (Vv ) (¢+—¥)
s’ ~s' s’ M1s" 1 . since s'[§1.8" [§1 is s' 5" (], we

get (Vv)... (Vv ) (4>y) s, s s As"[J .

case 2 : If ¢ is a subformula of S' but not a subformula of S",
1 ]
then ( Vvl)... (an) (6 «—Y) |—S «—s [$]. Since § has no sub-
1
fornula ¢ , it follows that (Vv))... (Vv ) (¢ «—) —s"s" [$].

Therefore ( Vvl)"‘cvvn)(¢*‘*¢)F'S'A S"+——+S'A s" [$] .

" ' |
case 3 : If ¢ is a subformula of S but not a subformula of S s
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1 "
then similarly to case 2, we get (Vvl)... (vvn) (¢ «~—Y) f—S A8

*——»S' ,\S"[$],

] "
case 4 : If ¢ is not a subformula of either S or S , then ¢

is S and S [$] is y. Therefore (Vv)..e (Vv (0 ) -sos]].
Suppose S is (VvV) S'

1
case 1 : If ¢ is not a subformula of S , then S is ¢ and S [$]

is y. Therefore (vv))... (Vv) (6+—¥) s+>s [}].

case 2 : If ¢ is a subformula of S', then by induction hypothe-
sis, (vvp)... (vy) 0D s'—s' Bl s (vv)... )
(0 =W (v (s=8") [§]), and by Lemma 3.3, ve get (vv))...(wv)

] 1
(=W} (vv) s'—(vv s [{1.
Hence, this lemma is true for all formulas S.

3.5 Corollary. If S is a sentence, ¢ a subformula of S, and Y another
fornula, then (Vv))... (Vv) (& =) |=5+«—=s[$1] where s [$]is a
sentence obtained from S that replaces every occurrence of subformula ¢

by V.

proof. Since S is a sentence, we see that S is a formula, and

by Lemma 3.4.

3.6 Theorem. Explicit definitions satisfy the criterion of elimina-

bility.

1 L]
proof. Let L and L be two first-order languages such that L =
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L U{P}where P is a new n-placed relation symbol and T be a theory in
L. Let (Vvl)... (vvn) (P(Vl"' vn)*—*S), where S is a formula in L,

be an explicit defintion in T.

!
Let S1 be any sentence in L and S1 is not a sentence in L.

Want to show that there is a sentence 82 in L such that

T|—-(vv1)... (vvn)(P(vl... vn)*—-* S) (Sl*—'*Sz), or

T LT v, s (V V) (P(vy... v )+S) },—'Sl*—-* 3

Assume T U{(Vvl)... (an) (P(vl... vn)‘—> $1. “har S2 be
Sl[P(Vl’g’ Vn)]. Since S is a formula in L, we get S2 is a sentence
in L. Since P(vl...vn) is subformula of Sl’ we get (Vvl)... (an)

Bland v.) : BN, vie o200 .
(P(vl... Vn)‘_’ S) I—-Sl<—+ Sl[ We' D ] . since Sl[ 1 g n 1 is
N >
S,, it follows that (Vvl)... (an) (P(vl... vn)<-—>S)|—S1 S,.

Hence 'I’U{(Vvl)... (an) (P(vl... vn)HS) }f— Sl¢——> SZ'

3.7 Corollary.  Let L aﬁd L' be two first-order languages such that
LC L' and T be a theory in L. Let S1 be a sentence in L' but not a
sentence in L and 82 be a sentence in L. If ¢ is a sentence in L'
that satisfies the criterion of eliminability and T¢ — 52’ then

TH¢—S,.
proof. By Theorem 3.6.

!
3.8 The Criterion of Non-Creativity. Let L and L be two first-order

' 1
languages such that LC L and T be a theory in L. A sentence S in L
satisfies the criterion of non-creativity if and only if : for any

formula t in L, if T|—S—t  then T |-t.
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1
3.9 Remark. If a sentence S in L satisfies the criterion of non-

creativity, we say that S is non-creative with respect to theory T.

We want to show that explicit definitions satisfy the criterion

of non-creativity.

3.10 Lemma. Let ¢ and ¥ be f_ormulas and P(vl. g vn) a subformula
of either ¢ or VY and S is another formula such that (y vl) IR vn)

(P(vl... vn) +<—S5). Then

W =9 PV W1 is oMy ) 1P Vg Wy

(1) ((vwe) P 1 is cvwe PO i Valy

where (¢ — ¥) [ P(v,. S )] £ ¢[p(v » Ve and w[P(v ﬁ)] are

formulas obtained from ¢— § , ¢ and ¥ with all occurrences of P(vl. od

vn) replaced by S.

Vn)] iscb[p(vl' - vn)] el

proof. (i) To show (¢— V) [P(Vl... :

S

WL PO W),

case 1 : P(vl... vn) is a subformula of ¢ but not a subformula
of Y.  Therefore in formula ¢ —Y, we only substitute S for P(vl... vn)

in ¢ and let ¥ be the same. Then we get (¢ — ) [ l)(Vl'é"vn)] is ¢

[P(v .v)]_*w

case 2 : P(vl... vn) is a subformula of ¢ but not a subformula
of ¢. Similarly to case 1, we get (¢— V) [P(vl... Vn)] T8 P

S
sl AR



45

case 3: P(Vl... vn) is a subformula of both ¢ and Y. There-

fore in formula ¢— Y, substitute S for P(v vn) in both ¢ and Y.

P(Vl.é. ] is ¢[P(V .Vn)]+w[P(V a9 W )].

(ii) To show ((Vv V)¢ ) [

Then we get (¢—Y) [

P(v P(v vn)].

]15 G ey

Since P(vl...vn) is a subformula of ¢, we have in formula (V v)¢ ,

substitute S for P(vl... v) in ¢, and so we get (( VV)@[P(V S. v“)]

is (v oF 01y W1

3.11 Theorem.- Explicit definitions satisfy the criterion of non-

creativity.

' ]

proof. Let L and L be two first-order languages such that L

L U{P }where P is a new n-placed relation symbol and T be a theory in
L: " ek (Vvl)... (vvn) (P(vl... vn) +*S), where S is a formula in L,

be an explicit definition in T.

To prove this theorem, we must prove that : for any formula t in
L, 4% T9=( vvl)... (v vn) (P(vi... vn) “«+S)— t, then T~ t. In order
to prove the above, we prove : if T U {(v vl)... (an) (P(vy... vn) —

S)}—t, then T|-t.

Let t be any formula in L. Assume T U {(V v .. (V) (Pvy...
vn)<—>S)} l—— t. Therefore there exists a finité~:. sequence of formulas
¢1,..., ¢n such that Cbn = tand for all i,/1.£ 1 < n, ¢i is a logical
axiom, or ¢i€T, or d)i = (Vvl)... (an) (P(vl. s vn)<->S), or ¢i is
a conclusion from ¢J., ¢j—>¢i {5 <¢i)by MP., or ¢i is a conclusion from

¢J. ( j <1i) by generalization.
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We want to show T|-t. Assume T. Construct a finite sequence of
1 1
formulas d)l,..., ¢n as follows ; if ¢i has P(vl... vn) as subformula,

1 1
define ¢, is o [P(Vi‘é' ) sanin &téc 6, is ¢, .

1 1
To show d)l,..., q>n can be made into a proof of t from T. To
prove this, for each ¢i, 1 S1i 49,

1
if ¢i is a logical axiom, then d)i is also a logical axiom.

1
if cbi T, then cbi = ¢i€T.

if ¢ = (VV))... (VV) (P(vj... VI S), then ¢; = (¥V)e-
(an) (8§« S). Since j—S+—S, we get [—(Vvl)... EY N ) (B8N
n

iF d)i is a conclusion from ¢j, ¢j—*¢i (j <i) by MP., then from
1

1 [] | 1
d>j and since (¢j—>¢i) is ¢j—> ¢i’ we get ¢i by MP.

if ¢i is a conclusion from ¢j (j <1i) by generalization, then

1 1
from Lemma 3.10, we get ¢i which comes from ¢j (j < 1i) by generalization.

] ]
Therefore, we get a finite sequence of formulas ¢1,... d)n which

is a proof of t from T.
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