CHAPTER III
SYSTEM CONTROL METHODS

As state before, by the action of the speed governor the
system automatically accommodates the new load. But, if there is no
signal input to the speed changer, the speed changer position does
not change 1ts position, the operation of the system is now at a new
frequency  other than the nominsl frequency. Thie procedure is
referred to as the uncontrolled case. In the complete control system,

the frequency error must be eliminated.

Response of the Uncontrolled Caze

Before prodeeding to e discussion of how to control the system
it is useful to see the response of the uncontrolled case. Consider
Figse 7 with no command input to the speed changer that is zﬁPb = 04
If a step load is applied to the system, there is a static frequency
error which may be computed by using eq. (l.5) setting d%é\f = 0,
and AP, = - A% or by using final-value theorem to Fig. 7 with

zlfb = 0., Thus,
Af = - —-IEE—AP = _.APL ___._APL
Static ~ 1 L T 5 1 = S B
! + =
l+ g KP 3
a 1
where B = D+gpu Mi/H,

area frequency response characteristic
= AFRC,
The physical significance of the AFRC can be stated as follows:

A system operates alone (isolated) will, if uncontrolled and subjected
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to a step load change, experience a static frequency drop inversely

proportional to its AFRC.

Control Specification

It is necessary to achieve much better frequency constancy
than is obtained by the uncontrolled case. To accomplish this the
control signals must be sent to the speed changer with some sultable
control strategy. Before doing so, the control specification should
be given. This control specification is that the static frequency
error following a step load change must be quickly reduced to zero.

This requirement is of fundamental importance in a power system,
since the operating performance of some equipments changes with
frequency. The frequency is also the surest indicator of a serious
fault, and thus by controlling it to the schedule under normal

operating condition, a fault can be detected at an early stage.

The Conventional Control Strategy

The conventional control strategy to meet the above requirement

is of linear, integral form

APy = - KJAI‘ at (3.1)

The chosen strategy meets the above requirement for the following
resson. Cince after s step load change if a new static equilibrium
exists, 1t can be achieved after the speed changer command ZlPG has
reached a constant value. This evidently requires that the integrand
in eq. (3.,1) must be zero, i.e.,

Af = 0.
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Or, the integral control will give rise to zero stetic frequency
error following a step load change, for the following physical reason.
As long as an error exists, the integrator output will increase, -
causing the speed changer to move, The generation is adjusted until
the frequency error is zero then the speed changer attains a constant
value. The gain constant K; controls the signal to the integrator,
and thus the speed of response of the system. The negative polarity
of the integral controller i1s chosen so that it couses a positive
frequency error to give rise to a negative or decrease command, The
gignal fed into the integrator is referred to as area control error
ACE; or

ACE 2 Arf.

The Optimum System Control

In the conventional control method, the signal used to control
the system is a function of only one variable, Af, That is the
system controller operates in response to the integral of ACE for that
system, By dropping the restriction of a fixed control structure, a
technique of optimal control theory can be appliedes In this method
the optimal controller is a linear function of all variables of the
system. Before using the optimal control theory to develop the optimal
controller, the system must be rewritten in state space form. The
specifications that the system must satisfy are defined mathematically
in the form of an integral cost that is to be minimized. The

minimization of this cost yields an optimal controller which is a
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linear combination of all system states. By using this optimal
controller allows one to find a new control method. This method
gives the optimum response in the sense that the integral cost

functional is minimized by the controller,

Development of the State Space Equation for the System

In this time the state variahles are introduced and the system
will be transformed into the staste space or state model form, Consider

block diasram of Fig. 7; then

K
AF(S) = (=) (ARS) ~4R()  (3.2)
1+ STp
Ar(s) = (=) AX() (3.3)
()
/. 1 4r(s) |
Ax,(8) = g STG) (% AF(3)) (3.4)
-
and AP (S) = (-J__:EE;) APC(S) . (3.5)
Let Xy = At(t)
X, = AP (t)
X, = A X (%)
X, = AP, (t)
U = AF(t) .
From eqs (3.2) ;
AF(S) + AF(S)sTp = Kp(APRy(S) - APL(S))

SAF(S) = % [KP(APG(S) —APL(S)) -AF(S)J .
P
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Taking the inverse laplace transform and substituting the state

variables defined above, then
X = 1 [k (x, -2AP) -X
i = T Pl -5
- 1 1
- gﬁ{a"‘z"mﬂ”&}
£ D
or; 117 A N2 (3.6)
’ 1 20 20 2H
£D £ £
Similarly; it can be shown that .
X, = -K-g N2 (3.7)
o X X X
s = -—1-— -.—3 + 4 (3.8)
TR Tgq Ta
X L_gJ (3.9)
and = —_— o ——— 3.9
4 T Tx

The last four equations can be written in matrix form as follows :

- = . . 3 Wr 5 & _ -
. fD f £°
X : - — 0 01X -
1 2H 2H ye 2H
X, O == 2 0 gl |0 0

Tp Tp
= +
. T+
X3 = i 0 = _1 _1_ XB 0 0
ToR T Ts
. 1 1
L * 3 < o Y T R
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Thus, the state model of the system is

X - AX +BU+ TAP (3.9)
where ’— . 1 - -
X %
4 = 3 E -
X b.d
3 3 X
0N L %)
= H _f.‘_.._ 0 O
2H 2H
0 L Ti- 0
T
T
A - T
T 1
=T " "I, T
G G G
0 0 0 _ L
T
Ea
. T 2H
0 0
B = s and = *
0 0
Zz 0
- TK-— —_ -
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The 7' matrix is called the disturbance ratrix. AP, the
incrementel load disturbance is a known constant, It 1s necessary
to change the state model into. suitable form by eliminating the
disturbance matrix / . This can be done by introducing new variables.9
The procedure is shown as follows, The terminal conditions to be

satigfied are

Af(or) = 0, AP (e0) - AP, = 0, Ax(e0) - AP, = 0

and APS(oo) - APL =0 . (3410)

Note CSXE is the incremental change in the governor valve position in

pu Mi,

A change of variables is introduced :

S —— — VYN (3.11)
where __0.
1
/D —;
B
1
1] Ir R B 7
That is, X{ Xy -0 Af - 0
1
5 x, X, - AP AP, - AP
X = = = *
1
Xy Xy - AP AL, - APL
1
i x‘,+ 1 ] X, - APy Ay - AP
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Or, ¥=X- iSS; where ESS = gteady state values of £
From the conditions in eq. (3.10) it is seen that f'(oo) = 0, which

is the desired terminal conditions. Substituting eg. (3.11) into

€. (3.9);

2t -
X = A(x' + OAP) +BU + T AP ;
¥ = AX +BU+ (AR +D) AP . (3.12)
£ N 0
2H 2H
0 0 0
Since AL+ T > + = =B,
0 0 0
o % 0 -1
| Tk . | Tk
Therefore from eq. (3.12) ;
4 B AT +BU-B AP
= -1 t
or %' = AX +BU (3412q)
vhere y' 5 U- AP (3.121)
and .}-('(O) = - ESS .

Equation (3.12a) is a suitable form for the application of the
optimal control theory. The state model has been changed from
X

X

i

AX +BU+ AP to

AX + BU
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by the introduction of the new variables

- - -

X = X = XSS .

Redefining the states in terms of their steady state valueg ig
equivalent to shifting the reference position of the system. It is
important to note that matrices A and B remain unchanged. In the
further analysis the superscript " ' " will be neglected for

gimplicity.

Optimum Control Strategy

The next step is to find the optimum control strategy for the
system model, TFirst, the system cost functional to be minimized by
the optimal controller must be defined. Then, the optimal control
theory known as the state regulator or linear regulator problenm is
employed to develop the optimal con'l:rol.l

Problem statement. Given a linear time - invariant system

represcented by the state variable differential equations

% = AX + BU (3.13)
Y = o ¥
where x = n X1l state vector
lij = r X1 control vector
A = nAn A matrix
B = nXr B matrix

C = mXn C matrix, and
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Y = m X1 output vector,

Find the control U which minimizes Egle cost functional

.o - -
J - %/[ qux+ﬁTRU] dt (3.14)
0
where Q = n X n positive semidefinite matrix
R = r x r positive definite matrix, and
U = r X 1 unconstrained control vector.

The performance of the system is specified in term of a cost
functional J that is to be minimized by the controller., In order that
the minimum cost functional J is finite the system must be completely
controllable.l It is quite conceivable that if the system were
uncontrollable and unstable then the cost would be infinite for all
controls since the control interval is infinite., The check for
controllability is shown in Appendix A. The elements of Q and R
matrices are to be chosen according to what one wishes the system
to perf‘orm.7 For example, if R = 0 but Q is nonzero, that is no
charge for the control effort used. Hence the best control strategy
would be in the form of infinite impulse, This control would drive
the state to zero in the shortest possible time with the greatest
efforts Once J is chosen, the results of the optimal system are unique.
The purpose of minimizing J is to minimize the error response and the
control effort of the system after a disturbance,

The system requirement is that the static frequency error
following a step load change must be zero., Thus the cost functional J

to be minimized must contain the A f2 term., In transformation of the
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system into the state model, the state Xl represented for Af, SoQ

matrix is chosen as follous :

1 0 0 0

0 0 0 ol .
Q =)

0 0 0 0

0 0 0 0

2
To pendlize the control effort by adding the term U requires

R

]
=
l—l
, o
L]

ne

For  Q 60 5 ot/ /8 1 o o o],

which gives A f as the output response of the system.

Optimal Controller
The optimal controller that minimizes the cost functional J is

a function of the system states, i.e.,

=)l
"
1
= o
1
(=
o
-3
=
b1
L]

(3.15)

See Appendix A for more detalls,
The K motrix is the unique solution of the nonlinear time

invariant matrix algebraic equation called the Riccati equation :

-ATK = KA +kBR-1BTK = Q@ = O, (3.16)
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