CHAPTER III

QUANTUM THEORETICAL -APPROACH

" 3,1 Introduction

As mentioned in.chapterII,the Kane's theory leads to an
overestimation of tail states. This failure arises from the use

of semiclassieal model which neglects the kinetic energy of

localization (zero p01qt"g§§rgy);f Quantum mechanical theory

yields several differsgi;é//

LR
Shrodinger (wave mec

aehes, ie., the method of

§he method of Feynman (Path Integral

/' ) Al
24
/ﬁ%ﬂ ng used " Wave Mechanice"

successfully in describj ngfth§~daep tail states in heavily doped

27
theory) etc. Halperln

semiconductor. Sa-ya aﬁ:gi; —gﬁed Feynman's method on this

problem and obtalned%he_same results. In this chapter we will

mention only the workﬁ&?\ﬁalpenln,and Dax. They have proposed

a new theory that is 'of a non perturbation nature and have

_ obtained a good estimation of states in the low energy tail
where the density of states is small. The method is based oﬁ
quantum mechanical theory. They have obtained their results for

a potential distribution obeying Gaussian statistics.

; 2,26
3,2 The Hamiltonian Model

Halperin and Lax consider a model in which the

Hamiltoniaﬁ is described by

N—h
H = HO + V ()
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where
-2 2
H ='§v
u 2m

- n
V(r) is the random fluctuating potential with mean <V'%_= EO . V(@)

is randomly spaced wells of random depths and shape This is shown in
Fig.3.1. 7(r)
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Fig 3.1 Random nature of /potential V(r) against r in an amorphous

material. ‘ \
¥ 2, i -
Let us write Vir) = VG;)‘glgé ¢ Then the Hamiltonian
= -y .
becomes H BT . ) P L
_}-12 2 "
= -V + B+ V(r) 36242
o
2m |

The kinetic energy term represents the energy of an electron in
pure crystal. V(T). is the random potential represents the
difference between the impurity pseudopotentials and pure host
péuedopotentials. Halperin and Lax assume that V(;) is;the sum

of individual impurity potentials

b, 2
% 35 The Low.Energy Ptail 2

Let E1 be the energy of the ground state of an impurity



by

If the eystem is dilute so that the overlap of the wave functions
is small, then there will be states close to E1. For the energy
belows E1, we will consider the cluster of two impuritics and

S0 on as shown in Fig 3,2,

i

>y

Fig 3.3 Schematic’ drawing of potential V(x) (solid curve)
' and low lying energy levels (broken lines)

Assumming that the low energy tail arises from the fluctuations of
many impurities within the range of wave function, the tail states

must depend on the shape of impurity potential wells.

4
3.4 The Kinetic Bnergy of Localization 2''22152

As is well known in the semiclassical approximation, the
ground state energy is located at the bottom of the wells. This
means that theory of Kane places the states which are too low.
Therefore it predicts the too lengthening tail. According to the

quantum model, if the size of well is large the zero point energy

.
Yy .

will lie near to . the bottom of the well. On the other hand, if

the well is small it will lie much above the bottom of the well.
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Thus tle zero point energy depends on the shape of the well as shown

in Fig 3.3.

e e

ground state

semiclassical model quantum model

Fig 3.3 (The dJifference of the. level of the kinetic

energy of localization between two models

24,2
3.5 The Eigen State ' 3

According to ‘the gquantum  theory -there’ is a
correspondence between the wave function and the eigen energy E for
each state. Halperin and Lax assume 2 one to one correspondence
between the wave function and energy in the tail. They also assume
that the width of wave function is large compared with the range of
an impurity potential. As mentiomed" in éec(}.h), the narrower of the
wave function . the larger of kinitic energy of localization will be.
So the problem is to find .an appropriate wave function which is not
too marrow and not top spread and assume that they have approximately
the same shape in the low energy tail. To - determine the shape of
wave functiézgwone looks that the statistics of the impufity potentials

introduce the most probable shape at energy E. Suppose we know thc

L= - <
wave function qﬁ\r/ s+ we can determine the eigen value Ei = E .



ke

-
But in fact we do not know the shape of . (r) . However in
i

quantum theory it can be assumed that wi(;) has the form of the
real, normalized function

-

- -
wi(r) = f(r ] yi) 3-5"1

with
f2(r.§r‘i)dF 2% g ' 35E2

; . S\
where the fixed functlonf(;-yi) is the corresponding wave function

of the well that logates at 3& which is differcnt for each eigen

states. One may assume that ‘each eigen energy Ei will correspond

- -
to each point Y;+ If one/treat f(ri§i) as a trial wave function of

the Hamiltonian of the system sy the Schrgdinger equation
will be
A - - . - _
. H f.' (r-yi) = E (yi)f (I‘-yi) Bosoﬁ
where E(;_) = .jrf(?-§;) H f(?-;;) ar 354

Substituting the value of H from (3.1.1) we get

B(y,) = ffG-?i)(-ﬁ_a V) £@-F)a + v
2m
+ (f(?-sfi) V() £(2-F)ar 3.5.5
o

]
=3

+ V4 vs<37i) 3.5.6
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where ' wgy); . represents the potential energy V(r) smoothed

by the square of the wave function.

Here T; and Vs are defined from

- s - a2 o
i - PITRE = f(r-y)T f(r-yi)dr 305.7
and the smoothed potential is defined

Vg(T3) = <f) WT)ig>, = §f2(:-§>v<?> ar 3.5.8

One notes thatAthe kinetic energy term is translational invariant.
Vs(ﬁi) is the average of “the pbtential V(T) in a region about

T ='§i «As ¥ is varied throughout the system, Vs(;) will fluctuate
about an average value of <V(;)$, and at some places VS(§3 will

show large negative fluctuations. Since these places correspond to
regions of very low V(;) one expects to find z low-energy eigen
state wi(;). One knows that a variational estimate of the ground
state energy of a systenm always overestimates this energy. Hence,
one expects that E(;;) which is in a region of negative fluctuations

will often be larger than the true energy Ei of the local low

energy eigenstate. The best estimate of the energy Ei is thus
obtained by choosing ¥ so that E(Y) is as small as possible that
means E(?i) is a local minimum and equivalents to the point where

s

v E(Y)

1]
o

3.5.9
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Since u(y) is only depend on potential term, one can consider

Ws(y) = 0 3.5.10

3.6 The minimun counting method

In the low-energy tail, where the density of states is

very small, energy eigenstates are few angd for betwaen and the

possibility of overlap between f(r-y ) and two glfferent

.

— N = —

elgengtgtes is negllglble.v Therefore, there is a cloééﬁbne to

one correspondence between 190@1 m;nlma in E(y) and the energy of
eigenstates in the v101n1ty/of E. (Then the number of eigenstates
with Energy E is approxlmately equai to the number of local minima

in E(y) with value E. Thus qna has(the follow1ng approximation to

the density of states

] - - -
%KE) . <(numbsr of local minima in E(y) in the
Q4B
interval (E, E+dE) > 3.6,

where one notes that at the minimum E < E(y) < E + dE

and Q = the volume of the crystal.

Let us now consider the problem of finding the best trial
function f . One knows that regardless of the choice of fy the
variational estimates of the energies of the eigenstates will be
high. 1Im the low-energy tail where the density of states decreesed
rapidﬁy, this overestimate of a1l the eigenstates gives an

undevéstimation of the density of states, Thus the best choice of h i
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for any given energy E is that which maximizes o (E), so that
one has
P (B) = max; (p.(E)) 3.622

24 2
3.7 The Density of States. 125437

© .To . evaluate p1(E) s/ /we begin with the definition

of density of states of the random system as given in chapter II,

i.e, o(E)

1.
5 <25(E~E1(V))>,V j N

We note that the above formula has already been average since Ei

depends on V which is random.  Next we substitute (3.5.6) into

(3.7¢1) and obtain = , =

1

pf(E) 2

< T&E - [_TS+ vs(:'y‘i)])>v -

By using the property that [f(§)6(§-§})dy = f(?&) the above
J

equation may be written as

1 - o : A 3
pf(E) ;z fdy < gc (y - yi)G(E - [Ts+ Vs(y)] )>_V 2?63

where § is any-point in crystal and f'?i( is the set of points
. ) j

satisfying VVS(EQ) =¥ Oy
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having the value A when one conditions Vs(§) = 2. XxX(A,A) is the

conditional expectation value of det Vst(i) when one requires

e - 5
= A = ©
Vs(y) and VVs(y) A

" To: calculate pf(E) one needs to know the statistical

properties of the random potential V.If the system is statistically

homogeneous then

a
<y(r)> = ¥

(3:7-9)

where V is a constant indépéndent of ; and the two points auto

correlation function of the original function of V(f) is given by

V(E)V(FN> = naﬁ ‘(;(;Qﬁ)v(;iﬁ)dﬁ'

From the relation between Vs(y) and V() (3.5.8), the
184
autocorreclation function <Vs(§) vs(y) > can be written as
& 0 O N - Y ’
<Vo(§)VS(y)> = (; (r-y)f (rty)<V(r)V(?)>d?d;

*

Halperin and Lax define

Then the above expression may be written as

<V (;?V(;‘I) > EW(;—;l )

where W(; -r')

( V@ —RVE-R)aR

&

(3.7.100

(3.7.11)

(3.7.12)
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and similarly

<V_(FIV_(3)> £G(F-Y ) (3.7.13)

where G(?-?l)

ffa(i«‘-'i)fa(?-‘gr’)w('f-%’)d? ar/ (3.7.14)

In the case of heavily doped semiconductors the impurity concentrations
N is very high and so the distribution of impurity obeys Gaussian
statistics- If Gaussian statistics are assumed, then P(1) can be

written as

-1/
2 :
P(N = P(VS(S?) # E-TS) 5 (20 505) exp(—lz/g go2)  (3.7.75)
. o
5% 2 o
where the variance &0 = Vg (y) > = &G(o) (3.7+16)
To determine P(AIX). = P(VVS(§) =0} Vs(§) = E-Ts) one

considers the covariance Vs(?) with Vvs(ﬁ) by differentiate(3.7.13)

-/

with respect to. 5 and set ¥ =3 , one gets

- - . - ] AN\
-y - - = AG O ol « V{4
U DWF) > = gue 6FF g ar=  E%G0) (3.7.47

=Y

The above property follows because VVS(§) and Vs(§) are statistically

-
independent ., Next we consider the covariance of VV_(y) with itself

s
Laa ey

by differentiate (3.7.13) twice and set ¥ =5 , one gets
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53

- gvvG(eo) (3-5;18)

If we let i,j represent the perpendicular axes1,2,and3the value of the

variance - 5vﬁ;(o) in each components may be written as
2 2
2 ) A T 3 G(o). -
o3 = i? ‘ gsgy) SR Tm . (3.7.19)
J a¥; Yf aJiayj
The axes are chosen so that the matrix is diagonal with

the form

vvG(0)

The product

(07 o)
jo of /9 (3.7.20)
o o/

3

of three Gaussian conditional probability may be

written in the form -

PB(AlA)

Since A='04(3.7.2

PBQOTA)

-521/2503 -A22/Zgo§ " /2£o§

58 ] 2
3 1/ . 1/ = /5

(erg) "2 ene) o, (2ne) Coy
= (2ng) exp(-——z- — 2-_@ )01%03

2g01 2E_,03 20
1) becomes
: _3/2 -1

= (21115) (010'203)

(3.7+21)

(3.7.22)



L
Next we consider X(X,A). ‘ihe term vaS('j;) can be written in
> -
the form V‘TVS(§) = ~Vs(y)M + X (3.7.23)
where M is a constant matrix, X is variable matrix uncorrelated
with V_(¥). Multiplying (3.7.23) by vs(Sr’), we obtain
2 —h
Vv (Pewr P = V(DM o+ xv () (3.7.24)
s s s s
R
To* determine x(A;A) 5 (3.7:2k) will be averaged
1] 24
. vl - o / ~ by <
<Vs(y) «VVS(y)> = /41, 0yIM > + <AVS($")>
Since VS(?) and X are statistically independent, ig, one is deep in
the tail, <xvs(3r')> = 0
v (D vw (D>
- Therefore M = UNe—m——————— (3s7e25)
4 éifsfz(‘jr‘) >
Considering vas(?) in ' each component one may write
z - Vs
i —33’- ~— and diagonalize this matrix, one get determinant
Y YA
3
2
!
01 .0 0
2
% vvvs(ir) =10 o, 0 (3.7.26) -
' 2
0] 0 o, !
3
By using the condition Vs(?;) = E-T_ and variance
2

I

< VS(?) >

€0,
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One obtain
3
(E-T.)
o b2
M s '—3_5— 01 02 0'32 = X(}\,A) (3-7-27)
g0,
When (3.7.15), (3.7.22), and (3.7.27) are substituted into (3.7.8),
we get
i 1010203(T;-E)3 i, 5 51 .
P (E) = exp |[=(T ~E) /2¢&0 (3.7.2
¢ PRI 7% o
2 2 ;
Let B(E) = (T -E)"/q, , (3.7.29)
and A(B) = oo0(r )72 /] (3.7.30)
then
Pe(E) = Aég) exp( ~BEY/2.8) (3.7.3)
il
Since °o(E) = max pf(E), Halperin and Lax maximize pf(E) by
minimizing B(E), _
2
(81 )° ( B fﬁf)m(?) &)
Considering ' (E,f) = 28 = 5 5 . (3.7.32)
a, () £ () w(p-N ar dr!
. £ 20
with J f7(r)dr = 1
i 2
( |E fz(‘f)d'f‘ - Jf(f“)Tf('f)df‘)
then I'E,f) = - (3.7.33)

)( £2(2) £2 (WP~ aF aF
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2

s N = Jfa(f)w(f-iz)a%df«fz(?)

)
Let 3~ 4 ; (E Fidar - jf(F)Tf(F)d?i
J

Let us vary the function £(r¥)., This will induce changes oI , &,

8N such that

R € 1Y s o 3% 2083 + 692 _ 3°
N + 6N N N + 8N N
- NIZ+ 2IN8J + N(aJ)er?N,- 328N
= SNNAVEEEEN
N(N *‘ﬁ}( ) //f—/
r:;::7; S—
For some particularf he|value.of-T is stationary.
Then ﬁﬁ?ﬁ”; -
R
/6%
ST = 2JN&J + N(GQX?AfJ%&Qﬁr% 0
| SIRAAL -
/ e
since (GJ)2 is small , we obtaim = .
y )y
J 3 %i\\\‘“‘-———~"”/%h
§d =57 SN =
One can replacezJ/N by -, and the condition of extremum
becomes §J + [ §N = 0O . . Since
2
o e '(E £(2)af - lre(Hyar; N - 2 (£($)£2(#)aF a¥, we obtain
§f J §f
gdz—:(Ef('f) - TEGE) 4 pt(P) ffa(?)d'r'» S |
ik e } o ( 2 - | =N
Ef(Y) - Tf(¥) + pf(¥)| £ (¥)dr = 0 (3.7.34)

J
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This equation looks similar to the Hatree type equation and can be
solved by iteration technique. One assumes a potential and obtains
the wave function. Then one uses this wave function to obtain a
better potential and repeats the procedure to obtain the appropriate

wave functione.

3,8 Screened Coulomb Potentialah )
{ '// /‘

N\
Halperin and Lax assume adliﬁéég;screening model to describe
3%

ich is'iﬁ>}he form

L xb(-05-R1) (3.8.1)

and v(T)

\;:-?QJ{;‘-E&I ) (3.8.2)

0 Z)

Substituting (3.8.2) inﬂ§\T372.11)—~and/§§rking with Fourier

—
transform , the random position R can be integrated out and, (3.7.11)

becomes
<VFIV(R)> = gexp(-Q B3 ) = EW(E-% (3.8.3)
2 4 2
where &£ « FEE R Ry (3.8.4)
q 22
: |

-
Since f(¥) is assumed to be in the form of spherical - symmetric

function

£(r): =3 (4n) (3.8.5)

. ——
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where 1r = |TI and S(r) =0 whesi - r =0 and r = « 4, that is
the localized wave function,Eqs{3.2.1, 3.8.2%and 3.8.5)are substituted

- into (3.7.34), one obtains the Hatree-type equation

52 dZ
(-= =, - wi(r)) s(r) = (E-E)S(r) (3.8.6)
o
. 2m dr
where U(r) = ( K(r;r?SZ(rbdr' (3.8.7)
‘0
Qith r = |7 and K(r,r5 = <W(F-T) > which is the average

of the function exp(-Q T<T|)  'with respect to the angular
co-ordinates of the varigble “» ' ‘One finds

1 1

<W(r-7)> § b2 (- exp.. -Q(r2+,fa+2rrlu)2 du = K(rr' )
25
21
For evaluating the above integral we 1et R = ‘r + r' "+ 2rr'y)
r+r
then K(rr ) = 1 | dR exp(=QR).R
Sppi-Vivg
r-r
: ( _ax ane ;X 1
By using the formula I'xe” dx = e (5 = =5
) p 4

the above integral becomes
K(ry' ¥ =

where r_° = the smaller of the length r and r
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The function S(r) is required to vanish at r=0 and r =& .
Eqs.(3.8.6) and (3.8.7) can be solved iteratively for a range of

values of the parameter E-Eo. For each value of~(E-EO), a trial

function was first used for S(r) in eq.(3.8.7), then the values
of V(r) so obtained were substituted in (3.8.6). The value of p
is varied until the solution S(r) of (3.8.6) satisfies the
boundary conditions and the function S(r) thus obtained is used as

a new trial function in (3385?)1”Zéiga11y S(r) is known, A(E) and

— d

B(E) can be CQIculated.:;§§£3coﬁveﬁient/Halperin and Lax introduce

7 =2.2 (E_-E)
the dimensionless quant;t&/ia/ 29 and V = Eo
/ / )’ !‘. 2‘; Q
2.7+31 becomes ////".fggJ(;
o) = <E3 3’/;, _J,a,(w@, (- 3 /2000 (3.8.8)
hz ‘2.; 3, <\‘/ AN /_
Let G = - = Y4, then (3. 8 6) becomes
o 7
-= 5 - wUr) § S(x) = -v8(r) (3.8.9)
dr J
vhere a(v) = A(E) and b(v) = B(E) (3.8.9.%;%

For determining a(v) and b(v), one considers (3.7.16) Upon using

o

eq.(3.7.14) one gets CBZ = Qo) = ] fa(r)U(r)dr (3.8.10)
o
Further using eq.(3.7.19), we obtain
2 ] m,_ 2
%9 = -236G(0) = - ( z fz(r) U(r)dr
ok 2 )

n 2
3y1 (o] °y1
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T T N T R w.—w.‘?ﬁwm—,ww‘v-nvw- ——

1]
}
]

co ‘ 2 /
L Jf Va ,f(r)l U(r)dr (=

o N st
, KT A
R (“ V !S (r)} rU(r)dr

We note that (3.7.34) has

(3.8.11)

gdr f(r)Tf(r) - (uf (r) (f(r) w(r-r) dar dr = g f(r)E f(r) dr

) S h///

= (3.8.12)
f (r) vU(r) ar  (3.8.13)
1 |
By using (3.8.13), (3.8!&1) may be writtJ%nas
: © 2 2
2 B 1 §°(r) 4% rU(r) dr (3.8.14)
01 BE ; g arz
°
2 2
Since f(r) is spherical symmetric, G = 0y = oy (3.8.15)
Note that T - E = - potential energy
‘ 2
Eq(3.8.12) may be written as T - E = gf,Uf = u('f(r)U(r)dr
)

(2.8.16)




61

- From the relation between (3.8.10) and (3.8.16), we get

T « E = po‘i
| E-E 52
Noting that ys= & and = = Q = 1, (3.8.17) becomes
: . Q 2m
j ’ A T + v (3.8018)
i) . \\Q\\\) ///“

By using (3.7.29), (3. 8.§§3§=a-r (55%5&3) we obtain

(3.8.19)

From (3.8.30) , (3. en.aqumﬁma.mmw 18), we get

cHULALONGKORN UNWERSlTY
a(v) B {7 +V)3013/(21t)2007

3 6 3
_ v 00 0'1
(2m)% 7

u30 3
= ——7 . (3.8.20)

o i TN B = Py,
3 2 (% b

One can determine .the function f(r) and p by using (3.8.9) and

?‘ . (3.8.7). These functions can be solved self consistently by a.
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computer. Then the values from (3.8.14), , from (3.8.10) can be

calculated. As a2 result the value a( V), b(v) can be obtained and
the results is shown in Table 3%.1. In order to study the behavior

of the exponent of P(Vv), one considers

n(v)

dlogb(v)/dlog Vv

2 ab(¥)
b dv

(308;21)

-

By using the dimensionless guantity £ = ‘VEZ s they plot the value
?

of n(v) versus § & b(")/10 as 'shown in Fig 3.1 where

4 2=
g = ome/(m )N (3.8.22)

This curves shows that n(v) varies smoothly from 1 to 2 as V
g

increases which is.in agreement with the experimental valuc of the
absorbtion spectrum at the band tail states. (Halperin and Lax
consider the validity region of p(v) for screened Coulomb. case and
they conclude that when consider the states deep in the tail where
the excited states at v is quite small. The use of minimum counting
method should valid). The limiting values of a( v, b(v), and n(V)
are shown in ﬂable,3.1. The plotting of p(v) and Vis shown in Fig,
3.2 when g “ﬁas some values. The dimensionléss b( v) is shown in

Fig 3.3
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V<< ( v>>1
a(v) A O.4v v 10 VY
1/ : 5
b(v) a3V g Ny
al W a ; ‘ N2
J

Table 3.1 The limiting values of a(v), b(v) and n(v). .

Tolt

N2
1.0 =
0.8

0.6
O.L+ L} i 1 .‘> v

Fig 3.4 The logarithmic derivative n(v) = dlogb(v)/d log vV of the

b(v) in the density of states.
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Fig 3.5 The density of states p in dimensionless :form.

\

10~ P —
4 o g 3 b
10™2 1072 10

11510 102 107 10
Fig 3.6 The function b(y) obtained from the tabulated values of

Helperin and Lax .
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