CHAPTER II

SEMICLASSICAL APPROACH

2.1 Introduction

As mentioned in chapter I, we consider the random
effect és perturbation on the system which can be treated by
perturbative technique. We found however that this method
cannot explain the band tailing effect. Since this effect
arises from the spatial fiuctuations in the impurity density

which correspond to negaéive fluctuationg in the eletronic

. Hod
potential, it does nofrappéar:that random effect can be
LCOM

treated as perturbatioh; The density of states can also be
determined from the probability distribution of fluctuation.

For non-perturbative technique,  a semi-classical or Thomas

Fermi method have been used HY’Kane.19

2.2 The Model Hamiltoniaﬁ

19 |
Kane assumed the following model Hamiltonian
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Here - m is an effective mass of pure semiconductor, € is



32

dielectric constant and V{(r) is assumed to be the screened

Coulomb potential. Vois a constant chosen so that the average

perturbing potential is zero.

1,3
2.3 Thomas = Fermi Assumption i

Thomas suggested that when charges are introduced into
the background while the net charge is zero,thé energy of system
would change by the amount given by Poisson's equation
vV = =-b4xos -hﬁe(no(r) - n(r)) 2.3,1
where n(r) is the number density of electrons and no(r) is the

number density of background, 'We have
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no(r)
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n(r)

Substituting(2.3.2) and (2.3.3) into (2:3:1), one obtains

v 2 S CWE ( P— 3V§ - 1) 2.3.4

. 1/2
From (2.3.4), % - g!}

can be expanded in Taylor . series ,

Keeping only the first two terms, one obtains

V(r) — -e -rQ e,

where Q is the reciprocal screening length.
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Kane used the assumptions in the semiclassical method.
The first one is that an electron- impurity potential is slowly
varying, ie., or the potential is smoothed.. The other is the
local density of states at point T is given by the free electron
density of states where the potential is given at the local value
throughout the system. These assumptions are valid for states that
are high " in the bands but may not be true for localized states

(ground states).

10
2.4 Semiclassical Approximation1”21
The free electron density of states is given by (1x1523)
) s
Jam
as o(E) = ———— JE H(E) =g e
B2

Kane made the approximation that the number of states per unit

energy range in A which is a small volume is given by

1/2

3/
p(E-V) = (W2 m 2/nZEB) (B=V) H(E-V) 2.k.2

where H(E-V) is defined by

H(E-V)

1

=9
=
v
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The density of states of the random system are obtained by taking
an average over all configurations . Thus the density of states

is obtained by using the probability densities P(V) as

P (E) = <p(E-V) >V 2.4e3
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By using (2.4.2), p(E) can be rewritten as

©o

i 3/2 ( -
p(E) = N2 m |dV P(V) AE - V H(E - V)
- L
i 74 E ) )
= 2w % ( AWP(WE -V 2.4k
nzfl} ' 'L

r 1 19,20
2.5 The Potential Distribution Function

The impurity potentials are defined by

N
vV = WD) = A/A -
' i

el §

2.5.1

. -> .
where V(¥-R) is the potential due to a donor or “an :acceptor at_position-ii

which is assumed to be random. Thus the probability distribution

-— S "
R is in

of'ﬁi, which is the probability that ﬁi is in d§1, 5

10 RZ is in d§2 coe b 1s d§1/a g dﬁa/sz..., dﬁN/sz where Q

is volume of system, 1is given by
dR1°‘°dRN

P(R,]eoo RN) .. ";‘.‘5‘"""‘ 205.2

I

where N is the number of impurities. We note that (2.5.2) is
suitable for describing the statistical properties of the
impurities in a heavily doped semiconductor where N is large.
Assuming that even with the highest concentrations the
impurities are far enough apart for the probability of overlap

to be neglegible, the probability distribution can be treated
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as statistically independent. The Fourier transform of
Gaussian distribution of P(V) for potential fluctuation of

magnitude V is defined by

v

P(9) = ‘, exp(iaVv) P(V) dv 2,543
- P(V) = . exp(-iaV)P(a) da 2.5.4
} » n

Then from (2.5.3)

3 i dR1...dRN

N Al E exp §ia T V(r- ﬁi)} o~
¥ ’,' H i ) 9‘

P(a)

Since the probability distribution is statistically independent .

{2.5.5) can be written as

n &
£ = |
Pa) = i expCinv(zr ~ R & | 2.5.6
e \
where g = n is defined as donor or acceptor concentrations.
" . -':—.a o ( ST .'.—_‘
since | JHPHHRELE Jh, \¢ PR o 2.5.7
ﬂ ——
9] Q Q
one notes that W' L1 LR ST TR 2548
N—» @ b Q
By using (2.%.7) and (2.5.8) ,(2.5.6) becomes
L : 3 R ng
P(a) =)n \(exp(iaV(r- R)) = 1) dR + 1 { 2.5.9
/ Q _\.
= exp §n i(exp iaV(r-= R) - 1)dR % 2.5.10

114EﬁSbAqg¥>
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" 2
Since the expansion of e* is equal to 1 + x + -
2!
Equation (2.5.10) becomes
( { - — - "
P(a) = ‘exp Zn X(iaV(r— R) - %aavz(r- R) + ...)dR{
)

2.5.11

: : s = N
We now consider in the limit when V—%o0 , n— ® so nV is

2 2 y

finite and nV'<< nV %

Substituting P(@) into (2.5.4) one obtains

o PLiey /L midev(e-R)- 1 o °vE(3-R)dR
P(V) = e/ do//e 7 2 2.5.12
o des ;

In case of heavily doped semicbnduétor, the appropriate
potential are assumed to bé*%ﬁe séféened Coulomb potential

== 3 J&- R

V(E- B) = fpll i 2. 8kas

-1, .
where € is the static dielectric constant and Q is the screening
length which is independent of impurity position. Performing

the integration, we get

o 1 2
Baf A B ke
) EQZ
&
and EdRVZ(; = 8 = ézg_ 2.5.14
& EQ
4nea
Letting Vo — -t 2.5.15
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. bgnn 1/2 e2
Replacing (2.5.15) and (2.5.16) into (2.5.12), we obtain '
i : 1oV V- 1/,0%°
i i e e d(! 2.5.17
2n <)
o 2 2ad
;3 1 “ e-la(v i Vo) - 1/1"’ad€ 2-5018
2n _; x
22
We have standard formula.
. oy 2
‘ (ax2+bx) LA
& ax/ = P—re
Ji Ma

-0

Thus the distribution P(V) for the potential of (2.5.13) in the

high density limit given by Kane is

el (3
P(V) = X

al =

L
Jn €
2.6 Density of States

The density of states which is obtained by substituting

P(V) into (2.4.4) . may then be rewritten as
A eE ~(v-v_)%/E°
o p. - S
o (E) ¥ “2223- < S E-V av
: ) T h AT
- 00 £
6 4 (V-v )°/6° =
R gala ’\ S R BT v 2.6.1
2 Y,
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For E-— ® (2.6.1) can be written as

Y A
2y
N (AL
o (E) = }e NE Qv 2.6.2
R E -
Using the standard formula
¢ R
-ax T
Se dx = NE
11/,
Then (2.6.2) may be writtegf§§
1/?% 3
p (E) = 2-2-23‘”//& 2.6.3
E 1A h 7 ’,// / ‘-‘.A ¢

and (2.6.3) is the density/of) states of an unperturbed band

From (2.6.1) if one changes‘ghe vg?iable E-V=yY, then
pussm———— '

dy = ~dORC
T —

and the limit of integration (E, - «) must be changed to (o, «).
One then gets

: 2
. -21/2m3/2 f ‘A —(E-yuvo) /ga
E - . dy‘;ye
2p3 n1:2 3
ETE h + ®©
Iy
_21/2m3/2 _(E_vo)z/ga 0 B %(E_VO)/ga Y42
- o 1/ e e dy\ly e
2=3 2
En h T )
21/2mB/2 _(E_vo)a/gz ‘ @ 2(E-Vo)/52-y2/£2 2.6k
P(E) = S--Z 0 e t &5 -
2=3
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22
By using the formula
o AV} .
2 il 2
ixv_q PR e = S 2p) (v exp(~ )D_V(-é)
/ 8B 2B

(o}

(2.6.4) may be written in the form of parabolic cylinder

function as

2
ve Bl &y -T2 ) T /2€
p(E) = & A2 m o8 ‘D s
2_3 "3/2 g
m h 2.6.5
Writing
baw

g ’

BB o 1N &
p(B) = i2m 2 -k exp(-x /,) D_z, (32 x.) 2.6.6

P CANTR 2
T h

Kane coansidered function'l o

-7/

y(x) = 2 hexp(—xZ/E)D_ (=2 %) v

3/

This function is plotted in Fig 2.1 and Fig 2.2,For E-—» «, one

23

uses the asymptotic properties of parabolic cylinder function, ige,

D,(X) ¥ exp(-X/®)x’ % > vl

23

and obtaing y(x) ~Jx . For E—-> - ®, the asymptoficﬂ properties

of parabolic cylinder, igy
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v2/
D, (-X) vlon e b 4 oA ' X > lvl

rxz/

we obtain y(x) = ‘e 3

It is noticed that because of the Gaussian statistics
of the potential, the density of states in the low energy
forms a band tail of Gaussian forme. Thus the semiclassical

/

method gives energy statesfﬂhichogie too low. As a result

it overestimates tail 1eﬁé¥h. kane—concluded that this is
due to neglect the effect of the kinetic energy of localization
in deriving (2.5.19). However the method has proved to be

useful on descrlptlon of the band §hape in heav1ly doped

semiconductore.
- -

Kane's method aIWax§ glves the . deep tail states which
is in the form of exp(-EZ)wN¥But gxperlments show that deep
tail states in the form 0 ™ exp(-E") with n vary from % to 2

. 2L T
Halperin and Lax and Sayakanit proposed the

theory that can: correct this failure.
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Fig 2.1 Thémas - Fermi density of states versus energy

in dimensionless wvariables

Fig 2.2 Density of states versus energy‘in dimensionless

variables(Tail states)



	Chapter II Semiclassical Approach
	2.1 Introduction
	2.2 The Model Hamiltonian
	2.3 Thomas - Fermi Assumption
	2.4 Semiclassical Approximation
	2.5 The Potential Distribution Function
	2.6 Density of States


