CHAPTER I e\ /7
INTRODUCTION

4.5
11 Energy Band In Pure Semiconductors 4

In the study of the energy band in pure semiconduétors,
one starts by considering the behavior of a single electron among
an array of fixed atoms. All other electrons and atomic nuclei
may be assumed to produce static electrieal field. Thus one is
considering the behavior}df,an electron in apefibdidA.structure

as shown in Fig 1.1.
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Fig 1.1 Potential enegy function V(x) of an electron in a

one dimensional crystal

The electron may be considered as a wave propagating in a
periodic structure with diffraction and interference effects.
The Schrodinger equation describing the electron is written in

the form
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This equation gan bel solved with the aid of Bloch's theorem which

states that one-electron wave function may be written in the form
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where the wave vector k is in the first Brillouin-zome. U _(;) has
nk It
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the periordicity of the crystal and n=1,2,3... is the band indéx.

Thus all eigenfunctioms of (1.1.2) are extended. There have been a

number of attemptslto calculate the band structure of solid by

solving (1.1;1). As #n example we note on the work of kronig and

Penny which gives a relationshiﬁ'between energy E and wave vector i%

They replace the actual periodic crystal potential by the rectangular
& shape at each lattice site. With the aid of Bloch's theorem they

found that the corresponding energy to a particular value of X was

Ep = kahz/ Brgat’

Note that energy levels of an electron form bands separated
by ferbidden gaps. The formation of thenbands makes the solid
behaved as conductor, semiconductor and insuiator,_h
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Next we consider the energy bands in three dimensional

lattice pofential. We now face the problem which arires froﬁA;he

large numbers of bands involved. Consider the diamond structure

where there are two atoms per primitive cell and four valence



electrons for each atom. Thus there are eight electrons per primitive
cell occupying the bands. Fortunately it is not necessary to consider
all of those bands. We need to' consider the highest state in the
valence band and the lowest state in conduction band, ig, we cohsider
only the state which lies within an energy of order kBT of the band
edge where kB is the Boltzman 's constant and T is the absolute
temperature. There are a large numbers of theoretical calculation of
band structures of pure semiconductors,ig, Nearly Free Electron(N F E),
Tight Binding, Linear Combination of :Atomic orbital(L C A 0) etc.
As an example we consider the N.F.E. method. From(1.1.1) using

Bloch's theorem V(r) can be expanded as Fourier series

V(T) = /E N2 exp (ig.r) 1e1e3
g g
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where VE = 1 ‘ v(r) e BT 4r
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A and the solution is
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Substituting V(T) and *E(;) into (1.17.1) and multiplying by

one of the term in the expansion, we get a linear equation for the

coeffcient a :

a = 0 1.1.5
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In free electron approximation, (1.1.5, becomes

e(k) 72 1.1.6

In NFE method the periordic potential can be treated as a

perturbation on the free electron states. From (1.1.5), if o, =,
3 :

we have the approximate solution

Vo~ :
a_\. - = ——&—- b < 1.1.7
k -g o] 0
ed A eﬂ -
k k-g e
o =2 :
where €, = k ,ets.; 'and € can be expanded in second order
k
perturbation
2
€ ~ ¥ T
k + o 4+ g_os_. 1.1.0
Bt
k -8
But if ¢_ _e_ _, s this would break down. In one dimensional case
k k-g 3
this must occur where k iy E - E 5 ie, at zone boundary (% 5).

Here G describesa particular reciprocal lattice vector.Suppose that
the first term of (1.1.4) and (1.1.5) are considered . After
shifting the origin of energy by Vo s We obtain the determinants

with solution
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Thus the behavior of ¢ _ in NFE system
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bands as in Fig 1.2 ,
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Fig 1.2 Electron energy in one dimension

into

In order to describe in more details the dispersion relation

and the distribution of states in energy in terms of an effective

mass tensor, it is more convenient to write the group velocity of

an electron wave packeét in space as
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and the acceleration in an external field is

- 1 1
a = EYﬁiV-RE. %]é)

If the force on the electron resulting from an external field
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is f, then the time independent Schradinger equation requires

that
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Substituting (1.1.12) into (1.1.11), we obtain

- -1 Y -

Eqe (1.1.13) has the component
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The tensor quantity h° }J3°E { is known as the tensor of
0K, s ak.?
1 Ji
the effective mass with i/and j =~ assuming the value of x,y,2z

For a coordinate system along theprihcipal axes of the effective

mass t-nsor, the off diagonal termsvanish. If we let m_ s my, m,
to be the effective mass along the three principal axes then we
obtain 1 = 1 2°E 1)1 1 3°g s i 1 1 3°E If we
— e S = e ;o = — (e °
. ﬁa aki my 52 aki My hZ aki

consider a sphericgl constant energy surface in which m = m.=m , we
zZ

obtain a scalar effective mass

)
We note that d"E/dk2 is positive at the bottom of each band and
negative at the top of the band. According to this method, the
L .
dependence of E on k just above the bottom of the band is to first

order of a form
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E = Ec + = (k-
2m
C

= 2
kc)

1.1.14

where Ec is the energy of the bottom of the band. Similarly

near the top of the band

2
E = 58 B . @B )2 1.1.15
v v
2mv

To go further we must know the density of statese. first
we consider the total volume “in ﬁ-space lying between two surfaces
6f constant energyswhich;age dE apart.This quantity' can be expressed
as a. surface integral‘{ st/bLEEdE and the volume per.one election
state is 4(M/L)? Thus from thegdefinition we ' get

% 5. . 2

aNCEFT o dsS | 1
D(E) = -(if = SVEE LHIB 1.1."6

where N(E) is the number of electronic states per unit volume,

Eq. (1.1.14) can be differentiated with respect to k and set

-
kcz.O, to get

dE '_ 2 2 *
ﬁ = ﬁ k /mc 101017

Eq. (1.1.17) can be substituted into (1.1.16) and since Sds = lak®

then we obtain

34 1/
hn(ZmL/ﬁa) 4 (8-E,) .

3/2 1/
4n(2m:/52) (E-E_) _ 1.1.19

%(E)

Similarly pv(E)



On the other hand we can obtain the density of states from

the definition
i

§(E -
o (E) = Ql i (E - B 1.1.20
5
§iwasd bnk“dk 8(E-E, ) 1.1421
# (27:)3 o
where p = 8 \dﬁ . Substituting (1.1.14) into (1.1.21),
“ Pt g i
we get
R~
2w . B e
e(E) = '-—2-——3- e ¥l
h
o/ (E< 0
where H(E) 4
1R 0

At T = 0°k electrons £ill the lowest available“energy levels
according to Pauli exclusion principlé. Since other bands are
empty, at T > 0°k some electrons from the highest filled
band (valence band) will be thermally—excited into the lowest

empty band (conduction band) as shown in Fig. 1.3 .

Dk

Fig 1.3 The highest fully occupy band and the upper

band partially occupied.



In pure semiconductors some electrons in valence band
can be thermally excited into the conduction band. Thus they
leave behind vacant (empty) states. These electrons occupy
the states near the bottom of the conduction band. The vacant
states are found in the band maximum. We can describe the
electrons in the conduction band as negative charges and the
vacant states or holes as positive charges. For many purposes
we will not be interested in the shape of energy bands as a
function of k so we represent the energy bands in a semiconductor

by diagramn as shown in Fig 1.4
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Fig. 1.4 Energy band diagramn in pure semiconductor

where Eg is the energy gap or energetic distance between the two
bands. The energy distribution of states in crystalline solid

is shown in Fig. 1.7.
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Fig 1.5. Density of states of pure semiconductor (schematically)

9,10
1.2 The Shift of Band edge9’1

When we introduce impurities in perfect crystal, they
break the periodic structure and changes the properties of e
materials. An impurity atom may be replaced one of the host atom.

It is then called substitutional impurity as shown in Fig. 1.6.

Alternatively it may ‘occupy an interstitial site as shown 'in Fig 1.7.
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Fig 1.6 Substitutional impurity TFig 1.7 Interstitial impurity

alloy structure alloy structure.

As mentioned in Sec. 1.1 the wave functions of all
states in perfect crystal are the so called extended states.

On the other hand when periodicity is broken, 1localized states

~
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are allowed and in most cases they appear in the gap. 1In Wilson's5
extreme tight binding model the solid is assumea to be a collection

of atoms on periadic 1lattice and impurity atoms which has a

different set of energy levels lie within the energy gap. The

model is valid for deep level (the level which EI<<Eg where EI

is the ionizatiom energy). For shallow level (EIN Eg) the

hydrogenic model is appropriate. The latter model can be explained
as fo;lows. If we replace one of thé host atom by an atom from the
column of the periodic table next to the column of the host atom,
the impurity atom then has éne extra valence electrom. If we hold

the electron and do not let it enter the crystal, the crystal
then has the same valence 'as it had before i.e., it still has a

completely filled valence band and emp£y conduction band. Since the

impurity atom has a positive charge and it contributes an addition
coulomb term u(r) = ~ 3? where € is the dielectric constant of the
medium to the crystaleiield. Now we let the extra electron go into
the system a free electron with mass m* which is acted on by

Coulomb field e/er® Like the hydrogen atom, this extra electron

has the energy EiH) = - ehm* / Bﬁzeanz

We conclude that using the hydrogenic model, the bound
states for the electron are below the band edge. As we introduce
more impurities to the crystal and assume that the impurities
interaction is weak , the electron wave function of neighboufing
impurity atoﬁs overlap until they form the impurity band separated

- from the parent band and the degree of doping is called moderate
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doped. When the dcgree of doping is increased the interaction
between impurity atoms increase§. The impurity band then merges
with the parent band. The degree of doping is now called
heavily doped. The influence of heavy doping has been
investigated. It is seen that an increase of the imparity
concentration, causes a narrowing of the forbidden band.

There are also shifts of band edge. Bernstein showed that this
phenomena was related to the fact/ that in heavily doped
semiconductor the Fermi level lies above the bottom of the
conduction band. This property is similar to metallic hydrogen
such as Na etc. Baltenbergersghas used hydrogenic model on
semiconductor and Stern1gas extendéd the ordinary hydrogenic
model of impurities into the range of large impurity
concentration by considering-in thg'case of smaller lattice
constants. Tor calculgtion Bgltengergers set SchrBdinger
equation of one electron in poteﬁtial;ea/br and kept periodie
interaction m term of effective mass. He assumed that the
impurities were arranged in closed pack lattice. The

Schrgdinger equation is then

=2 2
-13*\7211: 5 .33
2m : eET

Following Wigner-Seitz method, atomic polyhedra are
set up around the impurities. As is clearly seen (1.2.1) is the
Scthdinger equation for central force problem. The spherical

symmetry of potential energy therefore suggests that one should
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work in the spherical co-ordinate system. The solution can be
separated in the radial function R(r) and the angular function

—

(e, 9) js,

¥ = R(r)y(e, @) 22

Changing (1.2.1) to spherical co-ordinate and substituting
(1.2.2) into (1.2.1), we obtain two equations ,ie, radial part

and angular part. The radial equatibn has the form

2 : ' A 2 _
L8 Ty G 2n (Pat & (P, =0
r2 dr dr <= 2 /18 e ( er )
. 7/ /" i
)
1.243

o/

where n and 2 are principa1~qua§$umfﬂumber and angular quantum
number respectively. We now define

Pnz(r) =" jair Rng§?) 124

Substituting (1.2.4) into (1.2.2) and we get

52 d2 P - Ez k1) = e2 -E| P = 0 o P
Rt R
2m” dr 2m* r eEr
*
G em m .
Stern put r= (=)x and E = (= 2)E into  (1.2.5)
m me
and he obtained for ecase of n = 1,
2
a“ p, o+ $2+E-2(z+1)§ P(x) = O 1.2.6
- | I <4 - RI
2 Lx 2

dx x



14

‘
He obtained solutions of (1.2.6) in three cases.

In case (1) when E < O the solution is in the form

2+1 -x/n ( s )
P, (x) v x = 11 + T (£+1-n)(2+%-n)...(i+i-n) ! 1.2.7
R AN 2R 243 ) e . (204+147) ) T
_1/2
where n = (=E) « In case (2) E = 0, he obtained
1/2 8.1/2
F&(x) N (8x) J2£+1(G x) ? 1e2.8
where J2"+1 is a Besselifuhction of order 2%+1. 1In case (3)
~ " " /
when E >> O he obtained . ; -
1/é / A S “'A
P(x) ~ (x/E) P91 (x E) 14249
2 +2 .‘.;FA:,
The energy at the bottom of 1Efﬁ§i§ﬂEB can be determined from
the Wigner Seitz boundafy %ondf&i&n"i :
a,x1 p RN
=5 o' X)) = 0 1.2.10
x
x
8

where X is an average distance between impurities. He assumed

that in the lower part of the band the energy was approximately

given by

E(k) = E_+ k Te2.11

where o is an effective mass. He also obtained the

density of statefin the form
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-3/ v, \a\E@h /A
P(E) = a 2 (E - EB) . / 2%%?‘_;_ &S 1.2512

He found for the width of the 1s band by considering at k = O

and kx = B s ie, the center and the corner of Brillouin:' zone,
2a ‘

He obtained

w = (gﬁ) “Bx ' Ta2%>

To calculate-a the following equation was used

d;x_1P1(x){ /d..X!x

{
3
s ipo(xs

s 142. 74

3B, (% /Y 3l C0E () 2 ax

004040

Stern chose EB< -2+ Then he determined the value of xs by_using

(1.2.10). Substituting the chosen value E; and the computed
value x _ into (1.2.7) and letting % = O, he obtained the
value of Po(x). To solve the value of © he replaéed the
previous value of Po(x) and x_ in (1.2.14). By substituting tthe
computed value a into (1.2.13) , the value of w can be obtained.
The above procedure was repeated and he collected the values of

E & and f where f was the position of the fermi level at

B’
absolute zero temperature and which is given by f = EB+m -
From these values, he noticed that as the lattice constant

decreased, fthe'Fermi level rose much more rapidly than the
. L wx:3 1
bottom of the band fell. Here he used the rglatlon 3 s = N
D



16

where ND is donor concentrgtions and transformed EB and f

in suitable unit. He plotted the graph for the energy versus
N, as shown in Fig 1.8 which showned that the more doping

concentration the more separation between f and EE.
E

.

Fig 1.€ The theoretical Fermi level(the tOpAchrve)'

and the energy of the bottom of 1s impurity
band (the bottom curve)

The hydrogenmnic modecl shows that in heavily doped limit

the impurity band merges with the parent band.

In conclusion Stern suggested that the most seri
objection to'the calculation is that the neglect of randomness.
' 10
The work of James and Ginzberg and of Aigrain and Jancovici has

shown that when impurities:are randomly distributed there will .be

a tail in the density of states at both edges . .of the band.

12
1.3 The Virtual Crystal Approximation.

‘When a semiconductor is heavily doped, the main

effects are (i) a shift of band edge and (ii) band tailing.
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¥olff - showed that the shift of band edge is due to the

exchange energy while the band tailing arises from random-
nature of impurity sites -. We have considened less than ideal
crystal since the lattice sites are occupied by the impurity

in a random nature.

An example is the disordered semiconductor alloy

A B

« The one-electron Hamiltonian is
X 1=x )
=D &
" -h“v S v(r) 1531
2m
where V(;) = T 1 ,{-VA(;-R ) VB(-- 1-2 ) a(ﬁ )

12 l £ + r g + )

A = B - - “)
(¥ (#=R;) - V (r-R,)); 1e3.2
5 4 L 3

Here VA and VB are the potential of atoms oftype A and type B.

a(Ry) - is the random number and §£ is the center of the

atom. In disordered system we cannot use Bloch's theorem. The
problem becomes a statistical one which gives some kind of
configuration averaging . The problem can only be solved
approximately. In this section we mention about the earliest
model which considers the effect of randomness as perturbation
of periodic - system : the virtual crystal approximation. This
method consists of replacing the real potential centered on
each lattice site by an averagedcrystal potential,the potential

is formed by averaging potential VA and'VB, so that we have
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\

£ A
ve(r - Ry =0 s 2 XV 4 (1-X) VB 1.3.3

where < > denotes the average, X is :fraction . of atomgof
type A. The above is a good approximation only if VA and VB do

" not differ too much the corresponding Hamiltonian becomes

3 = B v?

*

2m

+ < | 1.3.4

3

With the above equation V .C.A may be considered as a starting

approximation. We note that Ho is periodic . with the period of

crystal lattice. So (1.3:4) can be calculated as the same way

as the case of perfect crystal. This apprcximation yields a
solution which looks like that of a perfect crystal with a simple
shift <V > . The solution beéomes exact for small perturbation

V. For this case the perturbed wave function are quite extended

in space and each particle therefore sees the average perturbation.

From (1.3.4) we can rewrite (1.3.1) in the following form
o= B & 2(8) = <V>

= HO + U 1-305

To: solve . (1.3.5), we treat U as a perturbation potential.
The solution shows that the lack of periodic causes a tailing
of the density of states in the neighborhond of the band edges

into the forbidden gap. We note that the VCA approximation is
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the lowest order term in a perturbation series and may be extended
by including more terms.

1
1.4 The Effect of Second Order PerturbationB’ 3

Parmenter applied the perturbation method to the alloy
problem. He used the VGA by choosing virtual crystal potential

to be unperturbed potential . The corresponding Hamiltonian is

H = H + SV (229 1okt
= i

i I - 2
where Ho is unperturbe@xHém;lbongan, Vir - Ri) represents the

/

(1.4.1) over all configufakid§§$ "By assuming coherent scattering,

potential of a single ihpﬁrityggé'position ﬁi . He averaged

the Schrodinger equation 5é¢§@g§é;'

7Y (k, ﬁﬁf

= AW Dk, B 1k
{ i 4
where Ho satisfy the relation
H (k,7) (F)v (k,7) C O 1.b
Owo ,r - EO o ,I‘ ° 03

If we assume the solution to be normalized plane wave

3 . r1/2 (B2 3 5
- - -
<r k> = ‘p (kq r) = Y/ el (o] o 1.404
0
0
we get
B (R). = & 4 BF Tk - k0>2 Tohe5
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Vi(;) is now taken to be the form of screened coulomb potential

Vi(r) = Zie 5..' lr =R!) 9 b

g | |

oL

—
r -

and letting it be the perturbing potential whereQ is a reciprocal

screening length, z;e is the electronic charge of impurity center

at R , and €3 is the dielectric constant. By using

perturbation technique we\gxpand”%ﬁgﬁge) to second order and

— 4

obtain 3 'j
E(k) y%/ BNk ik s + PN T <kt NG o>
&y 5 G k;{k - NS
/_/ / ,\ -
721 i B_(K)-E_(K)
/ ;
i\';\‘ \\ 1 0407
We consider »7é f’”f“i
Ak _1_*___ o
<klV. k> =—"9=V¥. § = dr
>\\ g i e L A k
{ & -
= ;-‘2 3 V(I‘)d;
o]
= lbLn ,-ze
= (=
Q €q
Therefore
< > = - =
T N<k!V,k gg_le(ze) = E, 1.4.8
1 2 i -
Q o
We can define n, = N. as the concentration per unit volume.
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We now consider

1}

o £y - L - -
<k! Vi(r)lk > Swﬁ.vi(r)w £ dr

= Vi(k)
2
= &g 5. gﬂ 1.4.9
(7 + (k-k_)7) d
e £ (B) - E_(K) T B2 2 2
0 0 2 (k)= (k-k )
2m
Let E—Eo = E; and k - Eo = £5 Since k is a dummy variable,
thus we can substitute Ej by gi—ﬁj So
E (§) - E_(¥) EUN Rk, K, ~k°) 1.4.10
o o ™ N

2m

Substituting (1.4.8), (1.4.9),and (1.4.10) into- -(1.4.7) and

changing to ,S dk , (1.4.7) can be integrated over

~ind

&
o

T

all space. By changing kj-to O and using the residue

theorem, we have

(
)

2 zg b2

-1
25 8 o .(2k - O)E ¢, = -(gr_f)(Q2+4k2)'1

Q

PRSI

Thus
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E.(R) =N, =T '<i'v'(;)'ﬁ>‘2 g w Vs o a0 8 REL B >
g s Al = = 1 U M R ARk )

E (R)-E (&) ? Q" e " on
(o] (o]

L B

Using (1.4.5), (1.4.7), (1.4.8) and (1.4.11) we can find k in terms

of E 7ig.,
: 1/
2 ' e IR
- i —E- —-— 5
2(k - k_) (E -E, % EQ) + (B - B + 1/ EQ) +£(
1.4.12
2
where EC =, rE-y Eo y £/ 21 ? ni<1ﬁg )2 and JEL R EZQZ
Ql Ed Q *
2m
B g A ! X i
From the definition p(E) ' _ dn dn d(k'ko) 1.4.13

=Ty ETk-ko) *aE

where n’is the total number - of states per unit volume having an

energy less than E(k) and

n .l e (k- ko)3/6n2 Tolo1l
Q

We obtain

ot o 4 (kk )2 d (kek )
P -;t2 (o] “aE (]
' : | X 1(
3 2 A
= 1 (E-E )=1E + [ NE-E )+ 1/,EN" + &
202 ? 35 i & ol e e 5
(EEQ)
( ) ' -1/ .
.[1 * i(E—Ec) + 1/4EQ% § (E-Ec)+1/uEQ£2 e ot ] 1.4.15

AV] I
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P (E) shows the sharp cut off in the tail state. Parmenter
¥ :

expanded (1.4.7) to higher order but still found the cut off to be

sharp.

. I A

1n p(E) /

D E

Fig 1.9 The density of states calculated from second order

perturbation ‘method (schematically)

: 841241441
1.5 Coherent Potential Approximation (cpa ) ' ' 2
I

The method was introduced by Soven Hr the study of
electrons in substitutiohal’&tloy.It arises from a self
consistent solution of multiple scattering expansion of the
Schrodinger  : equation within a single site approximation in
which the properties of all sites but one are averaged over.
The remaining one is treated exactly. It is useful in
description of short range scattering in the alloy. It can
be extended by extrapolating away from the limits of low
concentration and weak scattering. The CPA is based on a
non degenerate tight binding band. The effective Hamiltonian
deescribes an averaged system which contaims a scattering

contribution of two components

¥ i B 14541

o]
1}
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where W is a periodic part and D is the sum of “random contribution.

The one electron properties of the alloy are given as an ensemble

averaged overall possible arrangementss of the Green's function

<G(2)> < (z-D-w)" ">

(2-4-5)"" 1.5.2

where z is complex energy,

If the T matrix for a given configuration is defined .by

<G>

1

JdERSRL < GN\ST< G > 1555

then

4 = Nemspeeetet (; > T

To determine £ , we use a self consistent = condition for the

choice ‘of-Z J T.a;

<T> ) - O 1050""
We can define
D -Z = b (Dn- ) = zvn 0:5éD
n n

where z Vp is the perturbing random potential. The . T
y N

matrix for the site n is defined by



-1
2 -
<Tn > Vn(1 G>Vn) 1.5.6
where
T -~ T
n
Eq(1.5.4) . describes the effect of replacing the effective

medium which is characterized by £ by the true atom at the
given site n as shown in Fig 1.10, ,The C P A. replaces the
general self-consistently popdition {(1<5.%) by

< > =@ 1e5.7
which means that the avepége_efggct of substituting true atom

at a given site in the eﬁéectiyé;crystal is zero. TFrom (1.5.2)
we can write | |

<G> =056 = =) 1.5.8

where a°(z) ¥ '¢2'L W)-1 is the unperturbed Green? s

function. Next one can write

v, = & - 82) 1549
If we define

F(Z) = <n |<G@ > n> = 1Tr<G> 1.5:10
and !

FO(z) = <n16°(2Z)) n> = 1 TrG°(2) 1.5 .44

=
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We can write
F(z) = F°(z - %) 145412
Substituting (1.5.9) into (1.5.6) and use (1.5.10), we get
{ f : )
T, = (g - E@) - fe - (@) . F(2)} 105413

Using (1.5.7) and (1.5.13) we can solve £ . As an example we

consider in the case of blnary alloy/AxB « There we obtain
/ -~

(7)) = Ej;c‘;” e ) —(Z)(Z —e ) 1.5.14

//
A é~ B
where € is an energy//ﬁ// mfh jsite A and € is an energy
m'

of atom at site B. Sln/d

€ = <<O/lﬁﬁ,;;x.e +ye = xeA+ (’l--x)s;B 16515

S \E))

Y

(1.5.11) can be ﬂéﬁfszif*fik_;////’J
i fm

o
FH(z) % J.d_E_ O(p
7 P (E) 1.5.16

where DO(E) is the density of states of an unperturbed crystal.

In tight binding approximation-DO(E) can be written in the form

p°(E) = -1ImF%2) = 131 145417
T N k z-S(k)
and .
P(E) = =1 1Ip F(Z) = -1 Im F(E + 10) 1.5.18

T T

Ri b o Ll
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By iteration techniques, the value of £ can be solved
from (1.5.14). Then by solving (1.5.14) and (1.5.12) self
consistently by computer, and using (1.5.18) we obtain the

value of P(E). The graph of p(E) versus E is shown in Fig
1.11 . The density of states lacks the tail corresponding to

localized states.

® © & .5
 Latle.s
& o © )

D>
E E
Fig 1.10 Model of CPA Fig 1.11 The density of states

calculated form CPA
method (schematically)

8,16,17

1.6 Edwards! Formalism

Edwards has developed a method for calculating the
density of electron states in a liquid in which the core potential
is weak. He worked with a 1 - dimensional and completly
disordered system. The corresponding Schrodinger  equation

can be written as

(B + v +Z v(r - R ) + ie) G(x,xl) = 6(x-x3 b
o o

3

where v(r - Ru) is the weak scattering potential at R . Edwards
o

expressed G which is in momentum representation in terms of its
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Dyson's equation

G(k)

= Go(k) - Go(k) VG(k) .62
where
glk}: = 15 { o1k (x-x) G(x,x)dxdx’ 1.643
o1/

and V is the deviation of potential from its mean. Then
G can be averaged by considering its expansion in terms of

V . Therefore we obtain

<G > = Go(k) = Go(k)<V><G >
= /6 (k) = G (k)<V> G_(k)
+G (k)<V>G (k)<V >G (k) + ... 1.6.4
where Go(k) = T(B » k2+ <U> ie)-1 is the unperturbed Green'sg
function and <V> is an average potential, - which is
defined by <V> = <V -<V>> with V being the atomic potential.

Edwards considered the case of a delta function potential. For

this case V(k) can be written in the form

1/
£ Be P
v.® A(ﬁ) 1.6.5

where N is the number of scattering center and L is the total
volume. He ‘kept only the terms involving VV , VVV ...

In the completely disordered case he found
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<G > = (K- K%y iT)—1 1.6.6

where T = nN 2/ 2 \E

By definition the spectral density of state is

p(k,E) = =Im<G(k)> 1.6.7 -
kY
If we substitute (1.6.6) into (1.6.7), we obtain
S o/

p(kyE) = P((E-kT)73T") 1.648

Using (1.6.8) the density o6f states is obtained
(
p (E) = 'Xp(k,E)dk
yo)) n2 '\'-I‘—:—.E 1.6.9

The 1-dimensional density of states shows the tail that cut-
off sharply as is shown in Fig.1.12

p ()

&

°4

4 .

o P

Fig 1.12 Density of states calculated from Edwards:’ formalism

(schematically) .
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The theory of impurity band density of states in the
heavily doped semiconductorghas passed through several stages :
section 1.2 - 1.6. It does not agree with some experiments on
tunneling, oOptical absorbtion and luminescence which give
evidence for an exponential tail. This failure shows the
inadequency of perturbative methods in predicting the behavior

of the tails Lirshides W

proposed that the tail of energy
band arose from fluctuétion§~of potential energy. The successive
nonperturbative techniques will‘be shown in the next. chapters.

In chapter II,III and IV thé se@iclassical method and quantum
method will be shown respegéivelé; In chapter V the Lloyd

and Best variational principlé will be introduced and used to

find the best choice of the%density of states.
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