GROUP DIGRAPHS

This chapter deals with a characterization of group digraphs.

4.1 Point - Symmetric Digraphs

A digraph (V, E) is said to be a <u>point - symmetric digraph</u> if for every two vertices u, v of (V, E) there exists at least one digraph automorphism $\mathcal K$ of (V, E) such that $u \mathcal K = v$. As an example, consider the digraph (V, E) in Fig. 4.1.1.

Fig. 4.1.1

Let \checkmark_i : $V \longrightarrow V$, i = 0, 1, 2 be the following permutations

$$\mathcal{L}_{0} = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}$$

$$\mathcal{L}_{1} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix}$$

$$\mathcal{L}_{2} = \begin{pmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix}$$

Observe that \checkmark are digraph automorphisms of (V, E).

To check that for any vertices u, v of (V, E) there is a digraph automorphism $\mathcal L$ such that $u\mathcal L = v$, we must find a digraph automorphism $\mathcal L$ whose permutation representation is of the form

Observe that each of the columns $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$ is a column in $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ for

some i = 0, 1, 2. Hence for any u, v in V, there exists a digraph automorphism \mathcal{L} such that $\begin{pmatrix} u \\ v \end{pmatrix}$ is the column in \mathcal{L} .

That is, for any u, v in V there exists a digraph automorphism \mathcal{L} such that $u\mathcal{L} = v$. Hence (V, E) is a point - symmetric digraph.

4.1.1 Theorem Every group digraph is a point - symmetric digraph.

<u>Proof.</u> Let (V,E) be a group digraph. Hence there exists a group G and a subset A of G such that $(V,E) \cong (G,E_A)$.

Let $\psi: V \longrightarrow G$ be a digraph isomorphism from (V, E) onto (G, E_A) .

Let u, w be any two vertices of V.

Let $x = (w \psi)(u \psi)^{-1} \in G$.

Define a mapping $\mathcal{K}_{x}: V \longrightarrow V$ as follows.

For each $v \in V$, we put

$$vd_x = [x(v\varphi)]\varphi^{-1}$$
.

For every $v_1, v_2 \in V$ such that $v_1 \cdot x_1 = v_2 \cdot x_2$, we have $\begin{bmatrix} x & (v_1 \cdot \varphi) \end{bmatrix} \varphi^{-1} = \begin{bmatrix} x & (v_2 \cdot \varphi) \end{bmatrix} \varphi^{-1}. \text{ Since } \varphi^{-1} \text{ is one - to- one,} \\ \text{hence } x & (v_1 \cdot \varphi) = x & (v_2 \cdot \varphi). \text{ Therefore } v_1 \cdot \varphi = v_2 \cdot \varphi. \text{ Since } \varphi \\ \text{is one - to- one, } \text{ Hence } v_1 = v_2. \text{ Therefore } x_1 \text{ is one - to- one.} \\ \text{Let } v \text{ be any element of } V. \text{ Hence } v \cdot \varphi = y \text{ for some } y \in G. \text{ Let } \\ v' = (x^{-1}y) \varphi^{-1}. \text{ Then } v' \in V, \text{ and we have} \\ v' \cdot x_1 = \begin{bmatrix} x & (v' \cdot \varphi) \end{bmatrix} \varphi^{-1} = \begin{bmatrix} x & (x^{-1}y) \end{bmatrix} \varphi^{-1} = \begin{bmatrix} x & (x^{-1}y) \end{bmatrix} \varphi^{-1}$

 $v' \mathcal{L}_{x} = [x(v' \varphi)] \varphi^{-1} = [x((x^{-1}y) \varphi^{-1} \varphi)] \varphi^{-1} = [x((x^{-1}y)] \varphi^{-1}] \varphi^{-1}$ $= y \varphi^{-1} = v.$

Hence $\mathcal{L}_{\mathbf{x}}$ is onto .

Next we shall show that \checkmark_{x} is a digraph automorphism of (V, E). For every v, v' \in V we have

$$(v, v') \in E \iff (v \varphi, v' \varphi) \in E_A$$

$$\iff (v \varphi)^{-1} v' \varphi \in A$$

$$\iff (v \varphi)^{-1} (x^{-1}x) (v' \varphi) \in A$$

$$\iff [x(v \varphi)]^{-1} [x(v' \varphi)] \in A$$

$$\iff (x(v \varphi), x(v' \varphi)) \in E_A.$$

Since Ψ^{-1} is a digraph isomorphism from (G, E_A) onto (V, E), hence

 $(x(v \varphi), x(v' \varphi)) \in E_{\Lambda} \iff ([x (v \varphi)] \varphi^{-1}, [x(v' \varphi)] \varphi^{-1}) \in E$. Therefore,

 $(v, v) \in E \iff ([x(v\varphi)] \varphi^{-1}, [x(v'\varphi)] \varphi^{-1}) \in E$ $\iff (v \&_x , v'\&_x) \in E.$

Hence \mathcal{A}_{x} is a digraph automorphism of (V, E).

Also $u \mathcal{A}_{x} = [x(u \varphi)] \varphi^{-1} = [(w \varphi)(u \varphi)^{-1}(u \varphi)] \varphi^{-1}$ $= (w \varphi) \varphi^{-1} = w.$

Hence $\mathcal{L}_{\mathbf{x}}$ is a digraph automorphism of (V, E) such that $\mathbf{u} \mathcal{L}_{\mathbf{x}} = \mathbf{w}$. Therefore (V, E) is a point - symmetric digraph.

Q.E.D.

4.2 G - Group Digraphs

Let (V, E) be a digraph and G be a group. Then (V, E) is said to be a G - group digraph if there is a subset A of the group G such that $(V, E) \cong (G, E_A)$. By definition of a group digraph in section 3.4, we see that (V, E) is a group digraph if it is a G - group digraph for some group G.

4.3 Characterization of a G - Group Digraph

To prove our theorem which give a characterization of a G - group digraph, we need the following lemmas.

4.3.1 Lemma Let (V, E) be a digraph of n vertices. Let Δ be a subgroup of the digraph automorphism group Π (V, E) such that for each pair v, $v' \in V$, there exists $\delta \in \Delta$ such that $v \delta = v'$. If $u \in V$ and $\Delta_u = \{\emptyset \in \Delta \mid u \emptyset = u\}$, then Δ_u is a subgroup of Δ and the index of Δ_u in Δ is n, i.e. $[\Delta : \Delta_u] = n$.

Let γ_1 , $\gamma_2 \in \Delta_u$, hence $u \gamma_1 = u$ and $u \gamma_2 = u$.

Therefore $u (\gamma_1 \gamma_2^{-1}) = (u \gamma_1) \gamma_2^{-1} = u \gamma_2^{-1} = (u \gamma_2) \gamma_2^{-1} = u$.

Thus $\gamma_1 \gamma_2^{-1} \in \Delta_u$. Hence Δ_u is a subgroup of Δ .

Let $\Delta = \Delta_u \, \mathcal{L}_1 \, U \, \Delta_u \, \mathcal{L}_2 \, U \ldots \, U \, \Delta_u \, \mathcal{L}_r$ be a decomposition of Δ into cosets relative to Δ_u , i.e. for i \neq j we have $\Delta_u \, \mathcal{L}_1 \, \Delta_u \, \mathcal{L}_j = \emptyset$.

Suppose that $u \, \mathcal{L}_i = u \, \mathcal{L}_j$ for $i \not\equiv j$. Then $u(\mathcal{L}_i \, \mathcal{L}_j) = u$, which implies that $\mathcal{L}_i \, \mathcal{L}_j^{-1} \in \triangle_u$, or equivalently $\triangle_u \, \mathcal{L}_i = \triangle_u \, \mathcal{L}_j$. Hence $\triangle_u \, \mathcal{L}_i \, \bigcap_u \, \mathcal{L}_j = \triangle_u \, \mathcal{L}_i \not\equiv \emptyset$, which is a contradiction. Hence $u \, \mathcal{L}_i \not\equiv u \, \mathcal{L}_j$ when $i \not\equiv j$. Therefore the vertices

 ud_1 , ud_2 , ..., ud_r are distinct.

Let v be any element of V. Hence there exists $\beta \in \Delta$ such that $u\beta = v$. Since $\beta \in \Delta$, hence $\beta \in \Delta_u$ \mathcal{L}_i for some i, $1 \le i \le r$, i.e. $\beta = \mathcal{L}_i$ for some $\mathcal{L} \in \Delta_u$. Therefore $u\beta = u \mathcal{L}_i = u \mathcal{L}_i$. Hence $v = u \mathcal{L}_i$ for some i, $1 \le i \le r$. Hence $u \mathcal{L}_i$ include all vertices of V. Thus r = n, i.e. $\left[\Delta : \Delta_u \right] = n$.

Q.E.D.

4.3.2 Lemma Let (V, E) be a digraph of n vertices. Let \triangle be a subgroup of $\bigcap (V, E)$ of order n such that for each pair $v, v' \in V$, there exists $b \in \triangle$ such that v b = v'. If $b \in \triangle$ is such that $b \in \triangle$ such that $b \in A$ is such that $b \in A$ such that $b \in A$ such that $b \in A$ is such that $b \in A$ such that

Proof: Let $\forall_{o} \in \Delta$, $u \in V$ be such that $u \forall_{o} = u$.

Let $\Delta_{u} = \left\{ \forall \in \Delta \middle u \forall = u \right\}$. Hence $\forall_{o} \in \Delta_{u}$.

By lemma 4.3.1, Δ_{u} is a subgroup of Δ and $\left[\Delta : \Delta_{u}\right] = n$.

Since $|\Delta| = n$, therefore $|\Delta_{u}| = 1$. Hence $\Delta_{u} = \{1\}$.

Therefore $\forall_{o} = 1$.

Q.E.D.

4.3.3 Theorem. Let G be a group. A digraph (V, E) of n vertices is a G - group digraph if and only if (1) G is of order n and (2) the digraph automorphism group (V, E) of (V, E) contains a subgroup $\triangle \cong G$ such that for each pair $V, V' \in V$ there exists $\bullet \in \triangle$ such that $V \bullet = V'$.

<u>Proof</u>: Let (V, E) be a G - group digraph of n vertices. Hence there exists a subset A of the group G such that $(V, E) \cong (G, E_A)$. By remark 2.4.1, we have |G| = |V| = n. Therefore G is a group of order n, i.e. we have (1).

Let $\psi: V \to G$ be a digraph isomorphism from (V, E) onto (G, E_A) . For each $x \in G$, define a mapping $\mathbf{A}_x: V \to V$ as follows.

$$v \mathcal{L}_{x} = \left[x \left(v \varphi\right)\right] \varphi^{-1}$$
.

By the same argument as given in the proof of theorem 4.1.1, we see that 4x is a digraph automorphism of (V, E).

Let
$$\Delta = \{ x \mid x \in G \}$$
.

Clearly Δ is not empty.

Let
$$\mathcal{L}_{x_1}$$
, $\mathcal{L}_{x_2} \in \Delta$ and $v \in V$. Hence
$$v(\mathcal{L}_{x_1} \mathcal{L}_{x_2}^{-1}) = (v \mathcal{L}_{x_1}) \mathcal{L}_{x_2}^{-1} = [(x_1(v \Psi) \Psi^{-1}] \mathcal{L}_{x_2}^{-1}.$$

Let $[(x_1(v \psi)) \psi^{-1}] \chi_{x_2}^{-1} = w$. Hence

 $(x_1(v, v)) = w x_2 = (x_2(w, v))$ Hence

 $x_1(v \varphi) = x_2(w\varphi)$. Therefore $x_2 x_1(v \varphi) = w \varphi$.

Hence $\left[x_2 x_1 (v \varphi)\right] \varphi^{-1} = w$. Therefore

 $v(d_{x_1}d_{x_2}^{-1}) = [x_2 x_1 (v \varphi)] \Psi^{-1} = v d_{x_2}^{-1} x_1$

Hence $\mathcal{A}_{x_1} \mathcal{A}_{x_2}^{-1} = \mathcal{A}_{x_2}^{-1} \mathcal{A}_{x_2} \in \Delta$. Therefore Δ is a

subgroup of \((V, E).

Claim that $\triangle \cong G$.

Define a mapping $\Theta: G \to \Lambda$ as follows.

For each $x \in G$, we put $xO = \mathcal{L}_{x}^{-1}$.

Let $x_1, x_2 \in G$ be such that $x_1 = x_2$. Hence $\mathcal{L}_{x_1} = \mathcal{L}_{x_2} = 1$.

Therefore $v \mathcal{L}_{x_1}^{-1} = v \mathcal{L}_{x_2}^{-1}$ for all $v \in V$. Thus

 $\left[\begin{array}{c} x_1^{-1} \left(v \varphi \right) \right] \varphi^{-1} = \left[\begin{array}{c} x_2^{-1} \left(v \varphi \right) \right] \varphi^{-1} \, . \end{array}$

Hence x_1 ($v \varphi$) = x_2 ($v \varphi$). It follows that $x_1 = x_2$. Hence Θ is one - to - one.

Note that for each $\mathcal{L}_{x} \in \Delta$, we have $x = 0 = \mathcal{L}_{x}$. Hence 0 is onto.

Let $v \in V$ and $x_1, x_2 \in G$. Then we have

$$v((x_{1}x_{2})^{0}) = v \mathcal{L}_{(x_{1}x_{2})^{-1}}$$

$$= \left[(x_{1}x_{2})^{-1} (v \psi) \right] \psi^{-1}$$

$$= \left[x_{2}^{-1} x_{1}^{-1} (v \psi) \right] \psi^{-1}$$

$$= \left[x_{2}^{-1} ((x_{1}^{-1} (v \psi)) \psi^{-1} \psi) \right] \psi^{-1}$$

$$= \left[x_{2}^{-1} ((v \mathcal{L}_{x_{1}}^{-1}) \psi) \right] \psi^{-1}$$

$$= (v \mathcal{L}_{x_{1}}^{-1}) \mathcal{L}_{x_{2}}^{-1}$$

$$= v(\mathcal{L}_{x_{1}}^{-1}) \mathcal{L}_{x_{2}}^{-1}$$

$$= v(x_{1}^{0} x_{2}^{0}).$$

Therefore $(x_1x_2) = x_1 = x_2 = .$ Hence θ is an isomorphism from G onto Δ , i.e. $\Delta \cong G$.

Let v, v' be any two elements of V. Let $x = (v'\psi)(v\psi)^{-1}$. Hence $x \in G$ and we have

 $v \mathcal{L}_{x} = [x(v \varphi)] \varphi^{-1} = [(v' \varphi)(v \varphi)^{-1}(v \varphi)] \varphi^{-1} = (v' \varphi) \varphi^{-1} = v'$

Hence there exists $\mathcal{L}_{x} \in \Delta$ such that $v \mathcal{L}_{x} = v'$.

Therefore $\Lambda(V, E)$ has a subgroup Δ such that $\Delta \cong G$ and for each pair $v, v' \in V$ there exists $b \in \Delta$ such that $b' \in V$. Hence we have (2).

Conversely, let (V, E) be a digraph of n vertices. Let G be a group such that (1) G is of order n and (2) the digraph automorphism group (V, E) of (V, E) contains a subgroup $\triangle \cong G$ such that for each pair $v, v' \in V$ there exists $b \in \triangle$ such that $v \mid b = v'$.

Case 1 Suppose $E = \emptyset$

Let
$$V = \{v_1, v_2, ..., v_n\}$$
 and $G = \{x_1, x_2, ..., x_n\}$.

Let $A = \emptyset$. Hence

$$E_{A} = \left\{ (x, y) \in G \times G \middle| x, y \in G, x^{-1} \in A \right\} = \emptyset.$$

Define $\psi: V \longrightarrow G$ by putting $v_i \psi = x_i$ for $1 \le i \le n$.

Clearly ψ is a digraph isomorphism from (V, E) onto (G, E_A) .

Therefore $(V, E) \cong (G, E_A)$. Hence (V, E) is a G - group digraph.

Case 2 Suppose $E \neq \emptyset$. Hence there exists at least one arc in E. Let (w, u) be an are in E.

Let $A^* = \{ b \in \Delta \mid (ub, u) \in E \}$.

Since w, $u \in V$, hence there exists $b_o \in \Delta$ such that $u \cdot b_o = w$. Therefore $(u \cdot b_o, u) = (w, u) \in E$. Hence $A^* \neq \emptyset$. Let (Δ, E_A^*) be the digraph induced by the group Δ and the subset A^* .

We shall show that $(\triangle, E_A^*) \cong (V, E)$.

Define a mapping $Y^* : \triangle \longrightarrow V$ as follows.

For each $6 \in \Delta$, we put $6 \circ \varphi^* = ub^{-1}$. Let $6_1, 6_2$ be any element of Δ such that $6_1 \circ \varphi^* = 6_2 \circ \varphi^*$. Then $ub_1 = ub_2 = 0$. Hence $ub_1 b_2 = 0$. Since $b_1, b_2 \in \Delta$, hence $b_1 b_2 \in \Delta$ which fixes an element $a_1 b_2 \in \Delta$ which fixes an element $a_1 b_2 \in \Delta$. Hence $a_1 b_2 \in \Delta$ where $a_1 b_2 = 0$. Therefore $a_1 b_2 \in \Delta$. Hence $a_1 b_2 \in \Delta$ is one - to - one.

Let v be any element of V. Hence there exists some $b \in \Delta$ such that vb' = u. That is $v = u(b')^{-1} = b' + V$. Hence vb' = u is onto.

Finally we shall show that ψ^* is a digraph isomorphism from (Δ , $\mathrm{E_A}^*$) onto (V, E) .

Let 6_1 , 6_2 be any element of Δ .

By definitions of E_A^{*} and A^* we see that

$$(b_1, b_2) \in \mathbb{E}_{A}^* \iff b_1 b_2 \in A^*$$

$$\iff (u b_1 b_2, u) \in \mathbb{E}.$$

Since $b_2 \in \Pi(V, E)$, hence $(ub_1 b_2, u) \in E \iff (ub_1, ub_2) \in E$

Therefore $(b_1, b_2) \in E_A^* \longleftrightarrow (b_1 \varphi, b_2 \varphi^*) \in E$.

Hence Ψ^* is a digraph isomorphism from (Δ , E_A^*) onto (V, E). Therefore (V, E) \cong (Δ , E_A^*).

By (2) we have $\triangle \cong G$. Hence there exists an isomorphism Θ from \triangle onto G.

Let $A = A^*Q$ where $A^*Q = \{ 6Q \mid 6 \in A^* \}$.

By theorem 3.3.3, we have $(\Delta, E_A^*) \cong (G, E_A)$. Hence by remark 2.4.2, we have $(V, E) \cong (G, E_A)$.

Therefore (V, E) is a G - group digraph.

Q.E.D.

4.3.4 Corollary A digraph (V, E) with n vertices is a group digraph if and only if its digraph automorphism group (V, E) contains a subgroup Δ of order n such for each pair v, v' \in V there exists $\delta \in \Delta$ such that $v \in V$.

Proof. Let (V, E) be a group digraph of n vertices. Hence (V, E) is a G-group digraph for some group G. Hence by theorem 4.3.3, the digraph automorphism group $\bigcap (V, E)$ of (V, E) contains a subgroup $\bigcap (V, E)$ of order n such that for each pair $V, V' \in V$ there exists $O \in \bigcap (V, E)$ such that $V \cap (V, E)$ be a digraph of n vertices and the digraph automorphism group $\bigcap (V, E)$ of (V, E) contains a subgroup $\bigcap (V, E)$ of order n such that for each $V, V' \in V$ there exists $O \in \bigcap (V, E)$ such that $V \cap (V, E)$ is a group digraph. Hence (V, E) is a group digraph

4.3.5 Corollary Let (V, E) be a digraph of p vertices, p a prime. Then (V, E) is a cyclic group digraph if and only if (V, E) is a point-symmetric digraph.

Proof: Let (V, E) be a cyclic group digraph of p vertices.

Hence, by theorem 4.1.1, (V, E) is point - symmetric.

Conversely, let (V, E) be a point - symmetric digraph of p vertices.

Let $\Pi(V, E)$ be the group of all digraph automorphisms of (V, E). Hence for every $v, v' \in V$, there exists $b \in \Pi(V, E)$ such that vb = v'.

Let $u \in V$ and $\Delta_u = \left\{ \chi \in \Pi(V, E) \mid u \chi = u \right\}$. By lemma 4.3.1, we have $\left[\Pi(V, E) : \Delta_u \right] = p$. Hence p is a divisor of the order of $\Pi(V, E)$. By the first Sylow theorem, $\Pi(V, E)$ contains a subgroup of order p which is cyclic. Let

 $\Delta = \{1, 6, 6^2, \dots, 6^{p-1}\}$ be this subgroup. Since $b \in \Lambda(V, E)$ we may regard it as a permutation of the vertices of (V, E). Hence b has a unique representation as a product of disjoint cycles. Since b has order p, hence p is the least common multiple of the orders of its component cycles. Hence each component cycle must have order 1 or p, i.e. each component cycle must have length 1 or p. If some component cycles have length 1, then all cycles must have length 1. In such a case b must be the identity. Hence the decomposition of b into cycles must give exactly one cycle of length p. Relabel

the vertices so that b may be represented as the cycle $(v_0 \ v_1 \cdots v_{p-1})$. Then for any i, $j=0,1,\ldots,p-1$ we have

where i + j is reduced modulo p.

Let v_i , v_k be any pair of vertices of (V, E). Since $\mathbb{Z}_p = \{0, 1, ..., p-1\}$ forms group under addition, we can find $j \in \mathbb{Z}_p$ such that i+j=k. For this choice of j we have $b^j \in \Delta$ and $v_i b^j = v_k$.

Hence \upbeta (V, E) has a subgroup \upDelta of order p such that for every \upbeta_i , $\upbeta_k \in \upbeta$ there exists $\upbeta^j \in \upDelta$ such that $\upbeta_i \upbeta^j = \upbeta_k$. Hence by theorem 4.3.3, (V, E) \cong (\upDelta , E_A*). Since \upDelta is cyclic. Hence (V, E) is a cyclic group digraph.

Q.E.D.