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CHAPTER III
DIGRAPHS DEFINED FROM ALGEBRAIC SYSTEMS

In this chapter we associate digraphs to algebraic systems

in a certain ways, and try to characterize these digraphs.

3¢1 Groupoids, Qﬁasi-groups, Loops and Groups

By a groupoid we mean an ordecred pair (G,0 ), where G is a
nonempty set and o is a binary opecration on G. If for each
ay b of G, there exists unique elements x and y such that

aex = b and yea = b, Then (G, 9) is called a quasi = group.

By a loop we mean a quasi - group (G, ) in which there exists
an element 1 in G such that for each x in G, 1ox = xXo1 = x ,
Such an element 1 is unigque and is called the identity of the
loop. If a loop (G,o) is associative, i.c. for every x, ¥y, 2
in Gy (xo0y)oz = xo(yez). Then we call (G,0) a group. A

group(G, ©) is a cyclic group iff there exists an element a

in G such that every element of G is a power of a., We say that

a is_a generator of G. The number.  of element in a_group(G, °0),

!G l, is called the order of G. Tor each a in G, the order of a
is the least positive integer m such that & = 1, and denoted by
|al « 1t is well - known that if |G| = p, p a prime, then

G is a cyclic group.
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3e1¢1 Remark Let (Gyo) be a loop. Then for each a in G,

there exists unique x in G such that aex = 1 and there exists

unique y in G such that yea =1 , We shall call x the _right

inverse of a and y the left inverse of a., They will be denoted

by a;1 and a£1 respectively., It can be shown that if (G, 0 )

is a group then the right and left inverses of a are equal, It

will be called the inverse of a and denoted by a

3e1+2 Remark Given any finite set V we can always define a
binary operation o on V such that (V, o) forms a group. This

can be done as follows.,.

Let (G, *) be any cyclic group of order I Vi e Let f be
a onée -~ to - one mapping from V onto G. Define a binary operation
o on V by the equation xoy = f-1(f(x) * f(y))e Then (V40 )

forms a cyclic group of order lV

Since cyclic groups are loops, quasi - groups and
groupoids. Hence on any finite set V we can define a binary
operation o on V so that (V,¢ ) forms a loop, or a

quasi - group or a groupoid.

3¢2 Isomorphisms, Automorphisms and Isomorphic Groupoids.

*
Let (Gyo) and (G , *) be groupoids. A mapping © from

G into G* is called a homomorphigm from a groupoid (G, ¢ ) into

; *
a groupoid (G , *) if for each X,y in G, (x0y) © = x @ x y © .
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If a homomorphism © is one - to - one and onto, then.
© is called an isomorphism from (G, 0) onto (G*, *)e If there
is an isomorphism from (G, o) onto (G*, %), then we say that
(Gy o) 1is isomorphic to (G*, +) and write G Z G* « IV 4s

an isomorphism from (G,0 ) onto itself, then @ is called an

automorphism of (G, e ).

34241 Remark If © is an isomorphism from a groupoid (G, o )
* %
onto groupoid (G , *). Then it is clear that lGI - l G I 4

3¢3 Digraph Induced by the Groupoid (G, ¢ ) and a Subset A .
Let (G, o) be a groupoid, and A a subset of G. Let

EA =‘\(x,xoa)€GXG/xeG,aeAE.

Then (G, E,\) is called the digraph induced by the groupoid(G, © )

and a subset A .

For example, let (G,0 ) be a groupoid with the following

multiplication table,

Let A ={a,bz;.

Then EA & {(a,a), (bya), (byec), (&,b), (c, C)} . 3
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Hence (G, E,\) can be represented by the following diagram,
2

Fige 3e341

3¢3¢1 Remark If (G,0) is a group, then E, can be written

in the following forms :
EA=i(x,x0a)EGXG/x€G,a€A7X
={(x,y)éGXG/x,yeG,aaeAay-_-xoa}

o i(x, y)GGXG/x,yeG, x-lyeA}.

v

/ "
3e3e2 Theorem Let (G,0 ) be a quasi - group and A , A be

/ 1
subsets of Go If A=A - A , then EA = EA' - EAa .

Therefore y = x0 a

Proof Iet (x, y) be any element of EA'

/ " /
for some a € A. Since A=A - A, therefore a € A and

4 /
a #A « Since a € A, therefore (x, y) € Ept o If

7] ”
(xy, ¥) & EA” we would have y = x © a’ for some a’e Ry
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: i
which shows that therec exist distinct elements a, a in G such

that x o a =, Y = X0 a” o« This is a contradiction. Thus

(x, Y)f EA” o Hence (x, y)€ EA’ - EAu e« Therefore

= R .
EA A’ EA” o

Conversely, let (x, y) be any element of EA’ - EAII e Therefore

(x, Y)E EAI and (x, y)¢ EAII o Since (x, y)€ E hence

A

"
Yy = xo0o a for some a € A’. Since (x, ¥y) ¢ EAf" therefore a* A o

/ # .
Hence a € A' = A = A . Therefore (x, Y)€ E, « Thus E,, - E,,€E
A K A A
Hence EA = EA' - EA”
DeEeDe
3¢3¢3 Theorem Let © be an isomorphism from a groupoid (Gye)

*
to a groupoid (G*, *)e Lot Ay ;‘1* be subsets of G, G respectively.

* R *
IfA = A8, wherc A0 = iac/ a €& A k , then (G, EA)=(G 5 EA*) .
Proof Let [OusnGrr> G* be an isomorphism, That is Q@ is
one - to - one and onto and for each x, ¥y in G, (x o y) © = x@ » ¥y© .
e shall show that © is also a digraph isomorphism from (G, EA)

. *
onto (G , E, P

Since © is one - to - one and onto., Hence we have only to show

that for each x4, y in G

(x, ) € EAb@)(xO,yO)eEX .
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Let (x, y) & E, - Then there exists a € A such that y = x o0 a ,
So we have ¥y0 = (x o a)® = =x0 « a@ . Since a & A, then
% .
a®@ & A6 = A . Therefore there exists a0 & A* such that
y© = x0 &« a@ ., Hence (x0 , yO)& EA* .

. ¥ ”w
Conversely, let (x0 4 yO) € E,* , Then there exists a € A

A
. %* * * *
such that y0 = %0 + a ., Since ae A = A® , hence a = a@
* "
for some a€ A. So We have y@ = x0 &« a = x0 « a®@ = (xo0 a)o .

Since @ is one - to - one, hence y = x o a  where a € A.. That is
(x4 Y)E E, »

Hence © is a digraph isomorphism from (G, EA) onto (G*, EA*) .
Therefore (G, EA) = (G*, B )

A

QeFeDe

3.4 Groupoid Digraphs, Quasi -~ group Digraphs, Loop Digraphs

‘and Group Digraphs

Let (V, E) be a digraph. If there exists a groupoid

(G, ) and a subset A of G such that (V, E) = (G, EA)’ then

we say that (V, E) is a groupoid digraph. If the groupoid can

be chosen to be a quasi - group, or a loop, or a group, or a
cyclic group, the groupoid digraph will be called a

quasi - group digraph, or a loop digraph or a group digraph or

a cyclic group digraph respectively.
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3¢5 Characterization of a Groupoid Digraph

Jede] 'Theor_gg Let (V, E) be a digraph, Then (V, E) is a
groupoid digraph if and only if E = ’ or for each ve V.,
there exists u € V such that (v, u) € E.

Proof : Let (V, E) be a groupoid digraph., Then there exists a
groupoid (G, ° ) and a subset A of G such that (V, E) = (G, EA) .
Let § : G—V be a digraph isomorphism from (&, EA) onto
(vy E)o

p % § EA e ()b ’ it is c;l.ear that E{: t# .

If E, 4 ¢ , then there exist x, y € G such that (x, y) € E,.
Therefore there exists a &€ A such that y = xea , Hence A ¢ ¢ .

Let v be any element of V. Hence v = x'Lfr for some x'€ G .

Let a’€ A, Put 'y’ = x'oa’. Hence (x, ¥) € E,. Let ue€v

such that u = y’LP . Therefore (v, u) = (x’(f : y'kf )€ N

Hence for each Vv € V there exists u € V such that (v, u) € E .

Conversely, let(V, E) be a digraph such that E = ¢ or for

each v € V, there exists u € V such that (v, u) € E.

Case 1 Suppose E = ¢ o Let o be any groupoid operation

of ¥ Let A = ¢ o Then EA = ¢ s and the identity mapping on
V is a digraph isomorphism from (V, E) onto (V, EA)' Hence (V, E)

is a groupoid digraphe.

001243
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Case 2 Suppose that for each v € V there exists ue Vv such

that (v, u)& E . Hence for each veéV,

{_wev/ (v;w)GQ} i 9.

l b (v)‘ is a positive integer. Since

b(v)

]

Hence 4 (v)
ld(v') / v’é v E is finite, Hence it has a maximum value,
Let d = max {d(v’) / vie Vk . Hence there exists w &€ V such

that d(w) = d . Since d(v/)> O for all v'e V, hence d » O .
For each v &€ V, 1et-u1(v), ua(v), veny ud(v)(v) be the distinct
elements of & (v) .

Put A = L(W) = {u,]('), u2(W)’ seey ud(W)}

Define a binary operation ] on V as follows :
For each v, u€e V, we put

ui(v) if u = ui(w) and 1< i ¢ da(v)

ud(v)(v) for otherwise .

Under this binary operation, (V, 0 ) is a groupoid.
We shall show that I = E1 .
4
Let (vyu) € E. Hence ué€ L(v) . Then u = ui(v) for some

1, 1TE £.% dlv)s Sineco voui(w) = ui(v), hence voui(w) = U

Therefore (v, u) € E, . That is E SEA.
4
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Conversely, let (v, u) € EA' Then there exists uj(w) € A

for some j, 1< j<d such that u = v«:uj(w). Since
Vouj(w) = ui(v) for some i, 1< i £d(v), hence u = ui(v).
Thercfore u € &(v). That is (vy u) E E. Hence EAE Ee
Therefore | E= EA .

Hence (V, E) is a groupoid digraph.

(;, QE.Df

3.6 Characterization of a Quasi = group Digraph.

Characterizations of quasi - group digraphs and loop
digraphs were given by H.He Teh [2] e« To prove a theorcm which
characterizes a quasi = group digraph, we neced the Hall's

Representation Theorem [6] which states as follows.

34641 Hall's Representation Theorem Tet Sq1 8 veay 8.  be

2! n

any finite system of subsets of a set S(si's need not be distinct).
Wle can choose a,€8;, 1 = 1, 2, +es,y n such that a,'s are distinct
if and only if every k set of the subsets Si contain among them

at least k distinct elements,

3,6.2 Theorem Let (V, E) be a digraph. Then (V,E) is a

quasi - group digraph if and only if (V, E) is a regular digraph.
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Proof : Let (V,E) be a quasi - group digraph., Hence there exists a

quasi - group(G, o) and a subset A of G such that (v, E)=(a, EA)'
Let \f’ : V-G be a digraph isomorphism from (v, E) onto (G, E,&).
4

Since (x, y) € E if and only if y = x 0 a for some a € A.

A

Hence for each x € G, we have

L(X) = {Y&G/(X,Y)é E‘q.}={xoa/a6.A}.

Observe that © : A ———)L(x) defined by a@ = x e« a, for each

a€ A 1is a one - to - one onto , Hence we have ' L,(x) ! = 'A

Similarly, for each x of G we have

f(x) ={yeG (y, x) € EA}={x*a/a6A},

where x s« a denotes the solution y of y o a = x, and
For each v € V we have v \f) = x for some x &€ G . It follows

from the digraph isomorphism property of \f that the restriction

‘-{)/e(v) s Wwhere
L(v) = {uelv / (vy u) € E } "

is a one - to - onc correspondence from b (v) to & (x) « Hence
|G(V)| = l b (x) ‘ = l Al for all v & V., Similarly, we can
show that |4f(v) ‘ = I f(x) ‘ = ‘ A ‘ for all veg V. Heref(v)

is as usual, i.c. f)(v) = {u €V /! (u, v) € E}.

Hence (Vy, E) is regular of degree IA
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Conversely, 1let(V, E) be a regular digraph of degrec k say.

Case 1 : Suppose k = O, Then E = ¢. Let o be any

quasi = group operation of V, Let A = ¢ e Then EA = ¢ sy ‘and
the identity mapping on V is a digraph isomorphism from (V, EA)
onto (V, E). Hence (V, E) is a quasi - group digraph.

Case 2 Suppose k » O .

Let Vv = {v,l, Voy eeey vn} and let A = {v,], Vs eesy vk} o

Our object is to show that there exists at least one quasi - group

operation o of V such’ that I = EA .

Consider the following subsets of V,

(3.6.1) b(v,)s o (vy)y seey b(v).

Since (V, E) is a regular digraph of degrece k, we have

lé(y)‘ < lé.(vz)' = eee = l ‘;(vn)l - k¥ 0
We shall show that for any m setsé(vi‘]), & (via), sivy & (vim)
contain at least m clements,
Since for each v € V, ‘f(v)’ = k, we see that v can belong

to at most k members of {é(v. o alw, ¥, civs BlE, )}.
i, i, i

Suppose é;(vi YU é(vi )U...U[o(vi ) = {u,‘, Usy eeey up} where
‘ s 2 m
Ugy Usy seey up are distinct elements. Suppose uj belongs to

kj members of {L(vi1),_ é,(viz), iy L(vim)} where 1 £ j £ p.
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P
Hence kjf‘-k for 1% j £p ., Therefore Z k., € pk

j=1 J
P
Since Z kj = mk , Hence mk € pke Therefore m £ p.
j=1
Hence Jbe VeV Vb )| 2.
i, i i

Ilence by theorem 3.6,1, there exists a complete set of distinct

representatives for the system (3.6.,1) say

(sﬂ, S,q1 ooy sm)

when P ¢ q .

& R
such that S41 € é(vi) 07 12 R&Ew , and Sp 1 ¥ Sq1

Let E’ = B - {(v,{, S'l‘l)’ (v2, .‘321), seey (vn, Sn,])k .

Claim that (V; E’) is a regular digraph of degree k - 1,

Since 59 = L(vi) , hence (vi, Si‘l) € E'. Therefore viéf(si.,).
Hence we have {Si‘l} A (vi) and {vi} Esb(si,‘) .

1 { !
Let l;(vi) = {u €V I (vi, u) € E } « For an arbitrary element

we€ V 4, we have

v € b(v,) &= (v, WE 8’
%s)(vi,_ w) € B ‘and (vi,w)¢ {(v.], S’l‘l-)""(vn’sm)}
%WG.L(V:-L) and W¢-{Si1}

v € {':(Vi) - {Si'l} .
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)
Hence b (vi) = b(vi) - {Si'l‘l &

Similarly we can prove that

(uy S;4) € E'} = p(S3q) - {vi]}.

FI(Sﬂ) = iu( v

Hence ‘Ll(vi)’ = k =1 and , ?’(Si,')l = k «1,

Since is11' 821’ ceoy sn1 } = { v1) v2' ecey vn‘ﬁ L

Therefore, for each Ve ® V.,

y / I ] l
‘Q’(vi) - l f(vi) -~ k - 1 °
Hence (v, E’) is a regular digraph of degree k - 1,

Consider the following subsets of V,

o
(3.6.2) L b - oes b(v ).

!
Ifk-1% 0, theh—b (vi) B ? ¢« By similar argument, we see
that there exists a complete set of distinct representatives for

the system (3.,6.2) say

(512’ 322' ceeey Snz)

! :
259 e R o
such that 812 € b (vi) < 6 (vi) for 1€£i4£n and

szf Sqa when D # q .
As far as k = (j - 1) > O we may repeat and obtain for each j ,

£ 1.%% a permutation of V say

(S’lj’ s?_j, T snj )
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8., when

£ : <
such that Sijé L (vi) for “1TE £ %%, “and Spj $ a3

Pt a.

Therefore, for each i, 1< i< n

6 (vi) = {' Si.], Siz, eeey Sik}

such that S when 1 ,L m e

af Sy
Let E = VXV - .

By theorem 2.3.1, (V, V X V) is a regular digraph of degreg Ne

*
Hence by theorem 2,3.,2, (V, E ) is a regular digraph of degree
n-=%k,
*
ITn-k)o0, them/ /8 (vi) $# ¢ e By applying the forgoing

sk
argument to the regular digraph (V, E ), we obtain for each

J =k +1, k + 2, seey n a permutation of V say

(S1j, SZj' ee ey Snj) : —

S . when p 3 q .

*
£ 3 <
such that S, , € b(vy), 1"$£i<n and Sp5 ¥ Sq3

Therefore for each i, 1€ i € n

*
b (vi) g {sikﬂ’ Sike? *o2 Bin }
such that Sil # sim when 1 3 m .

Hence é(vi) U E(Vi) = {S“, §i51 =ees S, } = V.

in

Define the binary operation ° on V as followse.
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For each Viy V &€ V , we put

For each Vi vj € V, if there exists Vor ¥ € VvV such that

t

then - §. = 8,
i ir

it? which would imply

i r 3 i g
that r = t. Hence there exists a unique vré V such that

v.oV = vj o Similarly, for each Vi v‘_j € V, there exists
a unique vcé \' such that vco vi = v‘j « Therefore (v, )

is a quasi - groupe.

Next we shall show that B = E

AQ
Let (u, v) € E. Hence v&€ &l{u). Since u€V, then u = v, for
some i, 1 £ i< n . Therefore V& é(vi). Thus v = sij for

some j, 1 ¢ j <k . Hence v=viovj where 1 < j< k.
Since vs € A, hence (vi, viovj)é E, - Therefore

(uy v) = (vi, v, o vj) € E,. Hence ES;.EA ;

Conversely, 1let (u, v) & E, « Then v =u “¥y for some
_vjé Ay 1 £ J gk, Bince ué€ V., hence u = v, for some i,

1€ 1. €10 % Hencev:viovj = Sij where 1 £ j £k . Thus

veE ‘(vi). Therefore (vi, v) &€ E. Hence (u, v) = (vi, v) € E.

Therefore EA;C. &

Hence E = EA

Therefore (V, E) is a quasi - group digraph.
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3.7 Characterization of a Loop Digraph "'~

3.7.1 Theorem Let (V, E) be a digraph. Then (V, E) is a loop

digraph if and only if (V, E) is a normal regular digraph.

Proof. Let (V, E) be a loop digraph. Hence there exists a loop
(Gy o) and a subset A of G such that (V, E) ¥ (G, EA) E

Let Y : V-—>G be a digraph isomorphism from (V, E) onto

(G, EA)° By the same argument as in the proof of theorem

3.6.2, we see that (V, E) is a regular digraph.

Let 1 denote the identity of G. Then either 1€ A or 1 ¢ A .

Case 1 If 1@ A, then for each x € G we have (x, x) = (x, x 0 1)E E,
Let v be any element of V. Hence v\.? = x, for some X, €& Ge

Hence (vp , vy) = (2" Ry € E,+ Therefore (vy v)E E .

Hence (V, E) is a normal regular digraph.

Case 2 If 1 % A . Suppose that (v,, vg )& E for some v, € Ve
Hence (v, \f’ ' Vg \f ) € E,» Therefore v, g = v, \.( o a for

some a & A. Since 1 is the unique element in G such that

VOL() = vckf © 1 . Thereforea = 1. Hence 1 & A, which is

a contradiction. Therefore there does not exist Vo €V

such that (v, , v, ) € E. Hence (V, E) is a normal regular

digrarph.

Conversely, let (V, E) be a normal regular digraph of degree

k say., First, we shall assume that (v, v)&é E for each v € V.
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Case 1 Suppose k = 1. Hence E = i(v, v)] veV }. Let o

be any loop operation on V. Let A = { 1 } s, where 1 denotes
the identity of (V, ® ). Then E, = &(v, v) [ v GV}, and the
identity mapping on V is a digraph isomorphism from (V, E) onto

(v, EA)" Hence (V, E) is a loop digraph.
Case 2. Suppose k % 1 .

Let v, be any element of V.

Let A = ‘(v,l) = {v,l, Vsy sees vk} say.
Let B = No=A -z ivk‘”, Vieyot °°° vn} say .
Then V = {.V1’ V2’o.e, Vk, Vk+1, oo”ﬂ;} = A&J B °

Consider the following system of subsets of V,

(3.7.1) b(v)y & (v,)y cony B(v ).

Since (vi, vi)e E for each i 21, 2, ceey ny, therefore

vié ‘(vi). Henc‘e (v,|, Vsy eses vn) is a complete set of
distinct representatives of the system (3.7.1). Let us rewrite

(V1’ VZ’ eocey Vn) = (S,‘,]’ Sz,l’ ccey Sn1) °

That iS, Vi = Si1 for each i = 1’ 2, coocy Il o

.

By following the same argument used in the proof of theorem 3. 6.

we can construct another k = 1 permutations of V say
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(512’ s22’ e SnZ)
(813, 523' ecay Snj)
(s )

1k? Sogrecer S

such that

é(v,]) > &S,',‘, S12' A o9 S1k}

b(v,) = {521, 8200+ 5ok )

é (vn) = {Sn‘l’ S ot vees Snk} K

Since &S,'a, S,'}, .s s S‘Ik} = )lvz, v3, ccey vk}, without

loss of generality we may presume that

512 = V2 [ 813 = V3, cecoy S1k = Vk °

*
Now let E = VXV -E , By theorem 2.3.1 and theorem
* :
2.3.2, (V, E ) is a regular digraph of degree n - k . By the
same argument used before we can construct n - k permutations

of V say
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(s P )

1k+1 oL i Snk+’|

(s S )

1ke2 ¥ Sopear v Bop.o

(s1n v 8500 eeey 8 4"

such that for each Jj =k +/14 k+ 24 ceeoy N 4

s (vj) &sjkﬂ + Biiaree sjn} = V- L(_vj).

. *
Since ¢ (v,') = NV - L(v,]), then we have

is1k+1’ S'lk+2’ i, s'ln} 4 i TRtV et e vn}'

Without loss of generality we may presume that

S u.o'S = v °

T~ Yicsq? Oaghs = Vi o0 1n n

Therefore, for gachid =\0412304ssi51A0 we have S1j = v:i o

Now define the binary operation ° in V as follows .
For each Vi v:i € V we put

Vio vj = Sij °

By the same proof as in theorem 3.6.2, (V, 6 ) is a quasi - group.

Sifce wieo v, = 8. .' = v'_j , and vio¥ = 8y = Ve Hence V4

1 J 19 1 i1

is an identity of V, Therefore (V,© ) is a loop with v, as

1
its identity.
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By the same proof as in theorem 3.6.2, we have E = E, -
Hence (V, E) is a loop digraph.

Now we shall assume that (V, E) is a normal regular digraph of

degree k such that (v, v)* E for every v € V.

By hypothesis, (v, v)¢ E for every v € V. Hence vé 6 (v)
and v# f’(v).

et X . EU{(V, v){ v € v) .
Let §(¥) & {u € V-I (v, u)€ E'}. For an arbitrary w € V we have
woE b (v) T e (vy W€ E

Sy (vy WE E or(v,w)G{(v,v)}veV}
== w € $(v) or w=v
& wedmU{v)-

Hence b (v) =""6 () ) {v} -

Similarly we can prove that

?'(v) = {u( v , (uy, v) € E‘} f(v)U &v\k "

Hence lé'(v)l = k+ 1 and lf’(v)l 2 Kok oo

1,
Therefore (V, E) is a normal regular digraph of degree k + 1

such that for every v €V, (v, v)€ .
By the same proof used above, we get a loop (Vyo) with v, as
its identity and have a subset A’ of V such that E = EA‘

where
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EA/ = {(v, vov') VXV’ vev, V’EA’}.
A' - {V,I}-

Hence by theorem 3.3.2, we have

Let A

T T e

= By - {(v, Vo v,) / V&V}
" {(v, V)IVEV}
R {(v, v)/vé V}.

Since (v, v)* E for any v€ V and 2 = EU{(V, v)l v E V},

1}
=
-~

I

hence E' - {-(v, v)/ v E V} = B .

Therefore E

A = E °

Hence (V, E) is a loop digraph.
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