DIGRAPHS

In this chapter we collect various definitions and theorems on digraphs.

2.1 Directed Graphs or Digraphs

Let V be a finite nonempty set and E be a subset of V X V. Then an ordered pair (V, E) is called a <u>directed graph or digraph</u>.

Elements of V and E are called <u>vertices</u> and <u>args</u> of (V, E) respectively.

To represent a digraph (V, E) by a diagram, we represent each vertex V by a point V and each arc (u, V) by an arrow from the point u to the point v.

For example, let $V = \{u, v, w\}$, and $E = \{(u, v), (u, w), (v, v), (w, u), (w, v)\}$. Then (V, E) is a digraph. This digraph can be represented by the following diagram .

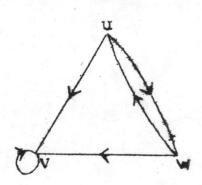


Fig. 2.1.1

2.2 In - degree, Out - degree and Degree

Let (V, E) be a digraph For any vertex v of (V, E), let

$$b(v) = \left\{ u \in V \mid (v, u) \in E \right\}$$

$$p(v) = \left\{ w \in V \mid (w, v) \in E \right\}.$$

and

We shall call $|\dot{b}(v)|$ and $|\dot{p}(v)|$, where $|\dot{s}|$ denotes the cardinal number of \dot{s} , respectively the <u>out-degree</u> and the <u>in-degree</u> of \dot{v} . If $|\dot{b}(v)| = |\dot{p}(v)|$, then we call $|\dot{b}(v)|$ the <u>degree</u> of \dot{v} .

2.3 Regular Digraphs, Normal Regular Digraphs and Degree of Digraphs

A digraph (V, E) is called a regular digraph if and only if for every two vertices u, v of (V, E)

$$|b(u)| = |b(v)| = |p(u)| = |p(v)|$$
.

By the degree of any regular digraph (V, E) we mean the degree of any of its vertices.

A regular digraph (V, E) is called a <u>normal regular digraph</u> if and only if either (v, v) \in E for each $v \in V$, or $(v, v) \notin E$ for each $v \in V$.

For example, consider the digraphs (V_1, E_1) and (V_1, E_2) represented by Fig. 2.3.1 and Fig. 2.3.2 respectively.

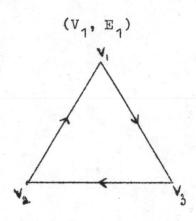


Fig. 2.3.1

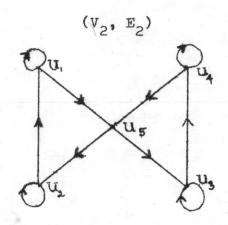


Fig. 2.3.2

It is clear that (V_1, E_1) and (V_2, E_2) are regular digraphs of degree 1 and 2 respectively. Since $(v, v) \not\in E_1$ for any vertex v in (V_1, E_1) . Hence it is normal regular. In Fig. 2.3.2, we see that $(u_5, u_5) \not\in E_2$ which $(u, u) \in E_2$ for all other vertices u. Hence (V_2, E_3) is not a normal regular digraph.

2.3.1 Theorem Let (V, E) be a digraph of n vertices. If $E = V \times V$, then (V, E) is a regular digraph of degree n.

Proof: Let (V, E) be a digraph of n vertices and $E = V \times V$.

Let $V = \{v_1, v_2, v_3, \dots, v_n\}$. For each $v_i \in V$, we have $\delta(v_i) = \{u \in V \mid (v_i, u) \in E\} = \{v_1, v_2, v_3, \dots, v_n\}$ and $\rho(v_i) = \{w \in V \mid (w, v_i) \in E\} = \{v_1, v_2, v_3, \dots, v_n\}$.

Thus $|\delta(v_i)| = |\rho(v_i)| = n$.

Hence $(V, V \times V)$ is a regular digraph of degree n .

2.3.2 Theorem Let (V, E_1) and (V, E_2) be regular digraphs of degree m and degree k respectively. If $E_2 = E_1$ and $E_3 = E_1 - E_2$, then (V, E_3) is a regular digraph of degree m - k.

Proof: Let \forall be an arbitrary element of V. For each i = 1,2,3, let

$$b_{i}(v) = \{u \in V \mid (v, u) \in E_{i}\}$$

and
$$\beta_{i}(v) = \left\{ w \in V \mid (w, v) \in E_{i} \right\}$$
.

Since (V, E_1) and (V, E_2) are regular digraphs of degree m and k respectively. Hence

$$\left| b_1(v) \right| = \left| \beta_1(v) \right| = m$$
 and $\left| b_2(v) \right| = \left| \beta_2(v) \right| = k$.

Claim that $\left| b_3(v) \right| = \left| \beta_3(v) \right| = m-k$.

Let $u \in \mathcal{L}_2(v)$, hence $(v, u) \in \mathcal{L}_2$. Since $\mathcal{L}_2 \subseteq \mathcal{L}_1$, hence $(v, u) \in \mathcal{L}_1$. That is $u \in \mathcal{L}_1(v)$. Therefore $\mathcal{L}_2(v) \subseteq \mathcal{L}_1(v)$.

Similarly we can prove that $\beta_2(v) \leq \beta_1(v)$.

Let w be any element of $\frac{1}{3}$ (v). Since $E_3 = E_1 - E_2$, hence

$$w \in b_3(v)$$
 \iff $(v, w) \in E_3 = E_1 - E_2$
 \iff $(v, w) \in E_1 \text{ and } (v, w) \notin E_2$
 \iff $w \in b_1(v) \text{ and } w \notin b_2(v)$
 \iff $w \notin b_1(v) - b_2(v)$.

Hence $b_3(v) = b_1(v) - b_2(v)$.

Similarly we can prove that $\beta_3(v) = \beta_1(v) - \beta_2(v)$.

Hence $|b_3(v)| = m - k$ and $|\beta_3(v)| = m - k$.

Therefore (V, E_3) is a regular digraph of degree m - k.

Q.E.D.

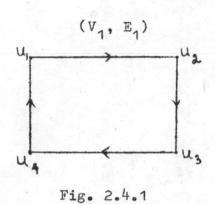
2.4 Digraph Isomorphisms, Digraph Automorphisms and Isomorphic Digraphs

Let (V_1, E_1) and (V_2, E_2) be digraphs. A one - to- one mapping V_1 from V_1 onto V_2 is called a <u>digraph isomorphism</u> from (V_1, E_1) onto (V_2, E_2) if for each $v_1, v_2 \in V_1$

 $(u,v) \in E_1 \iff (u , v) \in E_2.$

If there is a digraph isomorphism from (V_1, E_1) onto (V_2, E_2) , then we say (V_1, E_1) and (V_2, E_2) are isomorphic or (V_1, E_1) is isomorphic to (V_2, E_2) and write $(V_1, E_1) \cong (V_2, E_2)$.

For an example, consider the digraphs(V₁, E₁) and (V₂, E₂) in Fig. 2.4.1 and Fig. 2.4.2 respectively.



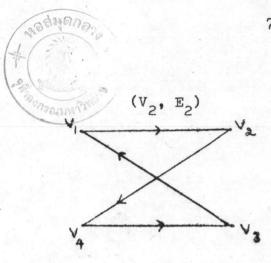


Fig. 2.4.2

Let φ : $V_1 \rightarrow V_2$ be a mapping such that $u_1 \varphi = v_1, u_2 \varphi = v_2$, $u_3 \psi = v_4$ and $u_4 \psi = v_3$. It can be verified that ψ is a digraph isomorphism from (V_1, E_1) onto (V_2, E_2) . Hence $(V_1, E_1) \cong (V_2, E_2)$.

2.4.1 Remark If $(V_1, E_1) \cong (V_2, E_2)$, then it is clear that $|V_1| = |V_2|$ and $|E_1| = |E_2|$.

2.4.2 Remarks Observe that for any digraph (V, E), the identity mapping $1: V \mapsto V$ is a digraph isomorphism from (V, E) onto (V, E).

If ψ is a digraph isomorphism from (V_1, E_1) onto (V_2, E_2) , then it can be verified that ψ^{-1} is a digraph isomorphism from (V2, E2) onto (V1, E1).

If $\psi_1: V_1 \rightarrow V_2$ is a digraph isomorphism from (V_1, E_1) onto (v_2, E_2) and $\psi_2: v_2 \longrightarrow v_3$ is a digraph isomorphism from

 (V_2, E_2) onto (V_3, E_3) . Then it can be verified that $\varphi_1 \bullet \varphi_2$, the composition of ψ_1 with ψ_2 is a digraph isomorphism from (V_1, E_1) onto (V_3, E_3) .

From the above observation we see that

- (1) $(V, E) \cong (V, E)$;
- (2) if $(V_1, E_1) \cong (V_2, E_2)$, then $(V_2, E_2) \cong (V_1, E_1)$;
- (3) if $(V_1, E_1) \cong (V_2, E_2)$ and $(V_2, E_2) \cong (V_3, E_3)$ then $(V_1, E_1) \cong (V_3, E_3)$.

If ψ is a digraph isomorphism from (V, E) onto itself, then ψ is called a digraph automorphism of (V, E).

2.4.3 Remark. The above remarks show that the set of all digraph automorphisms of a digraph (V, E) forms a group under composition. This group is known as the digraph automorphism group of (V,E). It will be denoted by $\Pi(V,E)$.