การปรับปรุงคุณภาพของคินโดยใช้ ยางมะตอยน้ำชนิดพิเศษ

นายบัญชา เอกธรรมสุทธิ์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต แผนกวิชาวิศวกรรมโยชา บัณฑิตวิทยาลัย จุฬาลงกรณมหาวิทยาลัย พ.ศ. ๒๕๑๕

001348

EVALUATION OF SPECIAL LIQUID ASPHALT (PENEMULSION)

AS A SOIL STABILIZING AGENT

Mr. Buncha Ekathumasut

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering

Department of Civil Engineering

Graduate School

Chulalongkorn University

1976

Accepted by the Graduate School, Chulalongkorn University in partial fulfillment of the requirements for the Degree of Master of Engineering

Dean of the Graduate School

New Darange Chairman

V. Tuyannuy

S. Bumag

S. Kampanananda

Advisor Assoc. Prof. Sukree Kumpananonda

Thesis Committee

หัวข้อวิทยานิพนธ์ กา ชื่อ นา ปีการศึกษา ๒๖

การปรับปรุงคุณภาพของดินโดยใช้ยางมะตอยน้ำชนิดพีเศษ นายบัญชา เอกธรรมสุทธิ์ แผนกวิชาวิศวกรรมโยชา

บทคัดยอ

Penemulsion เป็นยางมะตอยน้ำชนิดหนึ่ง ผลิตขึ้นในประเทศสหรัฐอเมริกา เป็นยางมะตอยน้ำชนิด Cationic ที่มีคา penetration ต่ำ เนื้อยางมะตอย ผลิตขึ้นจากกรรมวิธีพิเศษโดยสกัดพวก gas oil ออกทั้งหมดซึ่งเป็นผลให้เป็น ยางมะตอย ที่มีคำ penetration ต่ำมาก (มากที่สุด ๑๘) Penemulsion นลิตขึ้นโดยเฉพาะอยางยิ่งใช้ในงานปรับปรุงคุณภาพของ soil เพื่อใช้เป็นชั้น พื้นทางของถนนและใช้ในการก่อสร้างถนนที่มีปริมาณการจราจรไม่สูงนัก วัศถุประสงค ของการวิจัยนี้เพื่อที่จะเปรียบเทียบคุณสมบัติในการรับน้ำหนักของ silty sand และ ลูกรังวาภายหลังที่ผสมควย Penemulsion แล้วจะมีคุณสมบัติในการรับน้ำหนัก แตกตางกับเมื่อผสมกับยางมะตอยน้ำชนิดธรรมคาอยางไร สามารถใช้เป็นชั้นรองพื้น ทางหรือขั้นพื้นทางของถนนได้หรือไม่ การเปรียบเทียบคุณสมบัติในการรับนำหนักนี้ ใชการหกลองของ Hveem Stabilometer และ Hveem Cohesiometer test ปริมาณของ Penemulsion และยางมะตอยน้ำชนิดบรรมดาคิดเป็นเปอร์เซนต์ที่ทำให้ silty sand และลูกรังเหมาะสมที่จะใช้เป็นพื้นทางเลือกมาจาก Hveem Stabilometer และ Hveiem Cobe Alometer test หลังจากนั้นเปรียบเทียบ Unconfined compressive strength ของวัสคุผสมที่เลือกนั้นโดยบมวัสคุผสมที่ เวลา ๓ วัน, ๙ วัน, ๑๕ วัน และ ๒๘ วัน ตามลำดับ ท้ายที่สุดเปรียบเทียบ Strength envelope ของวัสคุผสมควย Penemulsion และยางมะตอยนำชนิดธรรมคาที่ เลือกนั้นโดยใชวิธี Undrained triaxial test

ผลการศึกษาพบว่า silty sand และลูกรัง ผสมกับ Pe**nemulsi**on หรือ ยางมะตอยน้ำชนิดธรรมคาสามารถใช้เป็นชั้นรองพื้นทางและชั้**นพื้**นทางของถนนได้โดยคำ Hveem stabilometer R และ Cohesiometer C - value ของวัสดุผสมด้วย Penemulsion จะมีค่าสูงกว่าวัสคุยสมค้วยยางมะตอยน้ำชนิดบรรมคาจำนวนหนึ่ง
คา Unconfined compressive strength ของ silty sand แสมกับ
Penemulsion ให้ค่าสูงกว่าเมื่อแสมกับยางมะตอยน้ำชนิดบรรมคาเล็กน้อย แต่คา
Unconfined compressive strength ของลูกรั้งเมื่อแสมกับ Penemulsion
จะมีค่าสูงกว่าประมาณ ๑๐ เปอร์เซนต์ เปรียบเทียบกับลูกรั้งแสมกับยางมะตอยน้ำ
ชนิดบรรมคา จากแลที่ได้นี้คาดว่า ถ้าใช้ soils ที่มีคุณภาพคีขึ้น Penemulsion
จะให้คุณสมบัติในการรับน้ำหนักดีขึ้นด้วย จาก Triaxial test พบว่า วัสคุยสม
ค้าย Penemulsion จะให้คา cohesion สูงกว่าเมื่อแสมกับยางมะตอยน้ำชนิดบรรมคา
แต่คา angles of shearing resistance ดูเหมือนว่าจะไม่แต่กต่างกัน

*อลมุดกล?

Thesis Title

Evaluation of Special Liquid Asphalt (Penemulsion)

as a soil Stabilizing Agent.

Name

Mr. Buncha Ekathumasut, Department of Civil Engineering

Academic Year

1975

ABSTRACT

Penemulsion invented in the United States is a cationic, low penetration asphalt emulsion. The Penebase or base stock is produced by a special refining process, which removes all oily constituents (commonly known as gas oils) resulting in a very low (maximum 18) penetration asphalt. Penemulsion was especialy developed for base stabilization and secondary road construction. The purpose of this study is to provide comparative strength data between silty sand and lateritic soil stabilized with Penemulsion and a similar asphalt emulsion product (SS-K) using as subbase and base courses for payement. The Hyeem stabilometer and cohesiometer tests were conducted to study the comparative strength of both emulsion mixtures. The percentage of Penemulsion or SS-K emulsion that made the soils suitable for base course was selected form the Hveem tests. The comparative unconfined compressive strength of the selected stabilized mixtures were determined after curing periods of 3 days, 7 days, 15 days and 28 days. Finally, undrained triaxial test was conducted to study the comparative strength envelope of the selected stabilized mixtures.

The test results indicate that the silty sand and lateritic soil stabilized with Penemulsion or SS-K emulsion are good enough for subbase and base courses. The Penemulsion mixtures tend to give higher stabilometer R and cohesiometer C values than the SS-K mixtures to a certain amount. The unconfined compressive strength of silty sand stabilized with Penemulsion was slightly higher than that stabilized with the SS-K emulsion. But the unconfined compressive strength of lateritic soil stabilized with Penemulsion was approximately 30 percent higher than that of the SS-K emulsion mixture. From this result, it is expected that higher strength could be obtained by using better gradation aggregates. From triaxial test, the results show that the Penemulsion mixtures gave a higher cohesive strength than the SS-K emulsion mixtures, but the angles of shearing resistance measured were apparently unaffected by the Penemulsion used.

ACKNOWLEDGEMENTS

The author wises to express his gratitude and sincere thanks to Assoc. Prof. Sukree Kumpanananda for his kind suggestions and encouragement. Special thanks are also extended to Prof. Dr. Niwat Daranandana, Assoc. Prof. Vichein Tengumnaug and Asst. Prof. Dr. Supradit Bunnang for serving as members of the Thesis Committee.

Appreciation is also extended to the Graduate School, Chulalongkorn University for financial support provided for this investigation.

The author wishes to thank the Thai Highway Department for permission to using the research Laboratory for the period of this investigation. Many thanks also go to Dr. Teeracharti Ruenkrairergsa, civil engineer in the Materials and Research Division for his valuable suggestion.

Finally, the author would like to express his appreciation to Mrs. Foifa Bhandkufalck for her reading and correcting his English.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	Abstract (Thai Language)	iv
	Abstract	vi
	Acknowledgement	viii
	Table of Contents	ix
	List of Tables	Mii
	List of Figures	vx
I	INTRODUCTION	1
II	LITERATURE REVIEW	3
	1. Asphalt Emulsion Stabiliza-	3
	tion	
	1.1 Theory of Emulsifica-	
	tion	5
	1.2 Emulsion-Aggregate	
	Systems	
	1.3 Mixing-Grade Classifica-	6
	tion	
	2. Asphalt Emulsion Systems	7
	Used for Base Stabilization	
	2.1 Asphalt Emulsion-Aggregate	8
	Combinations	
	2.2 Coating	8
	2.3 Development of Tensile	9
	Strength	

TABLE OF CONTENTS (Continued)

CHAPTER		TITLE	PAGE
		2.4 Selection of the Design	9
		Asphalt Emulsions Content	
		2.5 Mix Design Crileria	9
	3.	Penemulsion Stabilization	11
III	EXPERIMENT	TAL INVESTIGATION	12
	1.	Materials	12
		1.1 Soils	12
		1.2 Asphaltic Materials	12
		1.3 Water	19
	2.	Natural Soil Samples	19
		Preparation and Testing	
		2.1 Preparation of Natural	19
		Soil Samples	19
		2.2 Determination of Index	19
		Properties	
	3.	Hveem Stabilometer and	20
		Cohesiometer Test	
		3.1 Mixing	20
		3.2 Compaction	21
		3.3 Stabilometer Tests	22
		3.4 Cohesiometer Tests	25
	4.	Unconfined Compression Tests	26
		4.1 Mixing	26
		4.2 Compaction	26

TABLE OF CONTENTS (Continued)

CHAPTER		TITLE	PAGE
		4.3 Curing of Specimens	27
		4.4 Testing of Specimens	27
	5.	Triexial Tests	27
		5.1 Mixing	27
		5.2 Compaction	27
		5.3 Testing of Specimens	28
IV	EXPERIM	ENTAL RESULTS AND DISCUSSION	29
	1.	Mixing Water Required to	29
		Produce Uniform Coating of	
		Asphalt	
	2.	Hveem Test Results on Silty	31
		Sand Mixtures	
		2.1 Density-Liquid Content	31
		Curves	
		2.2 Stabilometer R-value and	31
		C-Value V.S. Emulsion	
		Contents	
	3.	Hveem Test Results on Lateritic	49
		Soil Mixtures	
		3.1 Density - Liquid Content	49
		Courves	
		3.2 Stabilometer R-Value and	49
		C-value V.S. Emulsion Contents	

TABLE OF CONTENTS (Continued)

CHAPTER	TITLE	PAGE
	4. Unconfined Compressive	65
	Strength Test Results	
	5. Triaxial Test Results	68
٧	CONCLUSIONS	73
	REFERENCES	75
	VITA	78

LIST OF TABLES

TABLE	TITLE	PAGE
1	Design Criteria for Base Course	10
	Requirement from Chevron Asphalt Company	
2	Properties of Silty Sand.	13
3	Properties of Lateritic Soil.	15
4	Properties of SS-K Emulsion.	17
5	Properties of Penemulsion.	18
6	Mixing Water Required to Produce	30
	Uniform Coating of Asphalt.	
7	Hveem Test Results for Silty Sand	32
	Stabilized with Penemulsion by	
	Standard Method.	
8	Hveem Test Results for Silty Sand	33
	Stabilized with SS-K Emulsion by	
	Standard Method.	
9	Hveem Test Results for Silty Sand	34
	Stabilized with Penemulsion after	
	Moisture Vapor Susceptibility.	
10	Hveem Test Results for Silty	35
	Sand Stabilized with SS-K Emulsion	
	after Moisture Vapor Susceptibility.	
11	Hveem Test Results for Lateritic	50
	Soil Stabilized with Penemulsion	
	by Standard Method.	

LIST OF TABLES (Continued)

TABLE	TITLE	PAGE
12	Hveem Test Results for Laleritic Soil	51
	Stabilized with SS-K Emulsion by	
	Standard Method.	
13	Hveem Test Result for Laleritic Soil	52
	Stabilized with Penemulsion after	
	Moisture Vapor Susceptibility.	
14	Hveem Test Results for Lateritic Soil	53
	Stabilized with SS-K Emulsion after	
	Moisture Vapor Susceptibility.	
15	Unconfined Compressive Strength Test	66
	Results for Silty Sand and Lateritic	
	Soil Stabilized with Penemulsion and	
	SS-K Emulsion after Curing Time.	
16	Triaxial Test Results for Silty	69
	Sand and Lateritic Soil Stabilized	
	with Penemulsion and SS-K Emulsion.	

LIST OF FIGURES

FIGURE	TITLE PAG	ŧΕ
1	Grain Size Distribution of Silty Sand.	4
2	Grain Size Distribution of Lateritic Soil.	6
3	Moisture Vapor Susceptibility Test Assembly. 2	3
4	Hveem Stabilometer test.	4
5	Hveem Cohesiometer test.	4
6	Comparison of Liquid-Density Curres of	6
	Silty Sand Stabilized with Penemulsion	
	and Emulsion (SS-K) by Standard Method.	
7	Comparison of Stabilometer "R" Value of	37
	Silty Sand Stabilized with Penemulsion	
	and Emulsion (SS-K) by Standard Method.	
8	Comparision of Cohesiometer "C" value of	38
	Silty Sand Stabilized with Penemulsion	
	and Emulsion (SS-K) by Standard Method.	
9	Comparision of "Rt" Value of Silty Sand	39
	Stabilized with Penemulsion and Emulsion	
	(SS-K) by Standard Method	
10	Comparision of Liquid-Density Curves	40
	of Silty Sand Stabilized with Penemulsion	
	and Emulsion (SS-K) after Moisture Vapor	
	Susceptibility (M.V.S.).	

LIST OF FIGURES (Continued)

FIGURE	TITLE	PAGE
11	Comparision of Stabilometer "R" Value of	41
	Silty Sand Stabilized with Penemulsion	
	and Emulsion (SS-K) after Moisture Vapor	
	Susceptibility (M.V.S.)	
12	Comparison of Cohesiometer "C" Value of	42
	Silty Sand Stabilized with Penemulsion	
	and Emulsion (SS-K) after Moisture	
	Vapor Susceptibility (M.V.S).	
13	Comparison of "Rt" Value of Silty Sand	43
	Stabilized with Penemulsion and Emulsion	
	(SS-K) after Moisture Vapor Susceptibility	
	(M.V.S.)	
14	Water Absorbed of Silty Sand Stabilized	44
	with Penemulsion or Emulsion (SS-K)	
	after Moisture Vapor Susceptibility	
	(M.V.S.)	
15	Comparision of Strength Characteristics	45
	of Silty Sand with Various Percentages of	
	Penemulsion and SS-K Emulsion at Standard	
	Condition and after Moisture Vapor	
	Susceptibility.	

LIST OF FIGURES (Continued)

FIGURE	TITLE	PAGE
16	Comparison of Dry Density Curves of	54
	Lateritic Soil Stabilized with Penemulsion	
	and SS-K Emulsion by Standard Method.	
17	Comparison of Stabilometer "R" Value of	55
	Lateritic Soic Stabilized with Penemulsion	
	and Emulsion (SS-K) by Standard Method	
18	Comparison of Cohesiometer "C" Value of	56
	Lateritic Soil Stabilized with Penemulsion	
	and SS-K Emulsion by Standard Method.	
19	Comparison of "R" Value of Lateritic Soil	57
	Stabilized with Penemulsion and SS-K	
	Emulsion by Standard Method.	
20	Comparision of Stabilometer "R" Value of	58
	Lateritic Soil Stabilized with Penemulsion	
	and SS-K Emulsion after Moisture Vapor	
	Susceptibility (M.V.S.)	
21	Comparison of Cohesiometer "C" Value of	59
	Lateritic Soil Stabilized with Penemulsion	
	and SS-K Emulsion after Moisture Vapor	
	Susceptibility (M.V.S.)	

LIST OF FIGURES (Continued)

FIGURE	TITLE	PAGE
22	Comparison of "Rt" Value of Laleritie	60
	Soil Stabilized with Penemulsion and	
	SS-K Emulsion after Moisture Vapor	
	Susceptibility (M.V.S.)	
23	Water Absorbed of Lateritic Soil Stabilized	61
	with Penemulsion or SS-K Emulsion after	
	Moisture Vapor Susceptibility (M.V.S.)	
24	Comparision of Strength Charateristics	62
	of Lateritic soil with Various Perc-ntages	
	of Penemulsion and SS-K Emulsion at	
	Standard Condition and after Moisture Vapor	
	Susceptibility.	
25	Comparision of Unconfined Compressive	67
	Strength of Silty Sand and Lateritic	
	Soil Stabilized with Penemulsion and	
	SS-K Emulsion after Curing Time.	
26	Comparison of Typical Mohr Circles	70
	for Silty Sand Stabilized with Penemulsion	
	and SS-K Emulsion	
27	Comparison of Typical Mohr Circles for	71
	Lateritic Soil Stabilized with Penemulsion	
	and SS-K Emulsion.	