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CHAPTER 1
INTRODUCTION

Let (X;)ien be a sequence of random variables in a probability space (2, F, P)

and for each n € N,
S,=X1+Xo+---+X,.

We say that (X;);en satisfies the strong law of large numbers (SLLN) if there

exist sequences of real numbers (a,),en and (b, ),en such that

Sn/— Gn as.
nb 220 as n — oo,
n

the abbreviation a.s. stands for almost sure convergence.

Now, to study the strong law of large numbers, a simple question comes in
mind. When does the sequence (X;);en satisfy the SLLN? Many conditions of the
sequence (X;);eny have been found under this question.

In 1983, Etemadi[5] found a sufficient condition of the sequence of nonnegative

random variables with finite variances to obtain the SLLN.

Theorem 1.1. [5] Let (X;)ien be a sequence of nonnegative random variables with
finite variances such that

(i) sup B(X;) < oo,

ieN
() E(XX,) < E(X)E(X,) for anyi < j, and
= Var(X;)
(iii) Zl —Qn <o

Then




In the same year, he found another conditions for nonnegative random vari-

ables possessing SLLN.

Theorem 1.2. [6] Let (a,)nen be a sequence of positive real numbers and b, = Z a;

i=1
such that

a
b—”—)O and b, — 00 asn — 0.
n

Let (X;)ien be a sequence of nonnegative random variables with finite variances
such that
(i)  sup B(X;) < o0, and

i€EN

. 2 < a;a;Cov™ (X;, X;)
TRD3) SLCLAEANEN
J

j=1 i=1

where Cov™ (X, X;) = max{Cov(X;, X;),0}. Then

W, — E(W,,)
bn

a.s.
0asn— o

where W,, = Z a; X;.
i=1
In 1992, Tapas, Chandra and Goswami[16] also proved the SLLN of the se-

quence of nonnegative random variables with finite variances.

Theorem 1.3. [16] Let (a,)nen be an increasing sequence of positive real numbers

such that
Up — 00 AS N — OO.

Let (X;)ien be a sequence of nonnegative random variables with finite variances.

Assume that

n
: E(X:)
i) sup y —= < oo,
( ) neN zzl Qn
(ii)  there exists a double sequence (p; ;)i jen of nonnegative real numbers such

that for each n € N,



n n

Var(S,) < Zme, and

i=1 j=1

oo o0

) Y% A <o where 13 ) = (i )

as..,.
i=1 j=1 (V)

Then
Sn — E(Sy)

Qn

a.s.
>0 as n — oo.

The random variables in Theorem 1.1-1.3 are nonnegative. The followings are
SLLN’s for random variables which nonnegative condition is replaced by depen-

dence properties.

A sequence (X;);eny of random variables is said to be pairwise positively

dependent (pairwise PD) if for any a,b € R,

and it is said to be pairwise negatively dependent (pairwise ND) if for any

a,beR,

P(X; > a,X; >b) < P(X; > a)P(X; > b) fori#j.

In 1989, Birkel[2] derived a SLLN for a sequence of PD random variables as follow.

Theorem 1.4. [2] Let (X;)ien be a sequence of pairwise PD random variables

with finite variances. Assume that
(i)  sup B|X; — E(X;)| < o0, and
ieN

< Q.
72

=1

Sn — E(Sy)

n

a.s.
— 0 as n — 0.

On the other hand, Matula[12] derived a SLLN for pairwise ND in the year
1992.



Theorem 1.5. [12] Let (X;);en be a sequence of identically distributed and pair-
wise ND random variables. Then

STL a.s.
— a as n — oo for some constant a € R
n

if and only if
E(1X1]) < o
and if E(|X1]) < oo, then a = E(X}).

The followings are SLLN’s for pairwise ND random variables which were ob-

tained between 2003-2011.

Theorem 1.6. (Azarnoosh[1], 2003)
Let (X;)ien be a sequence of pairwise ND random variables with finite vari-
ances. Assume that

(i)  sup E|X;| < oo, and

ieN

.. = Var(X;)

(ii) Z —Qe <%
i=1

on — E(Sy,)

n

a.s.
>0 as n — oo.

Theorem 1.7. (Azarnoosh[1], 2003)
Let (X;)ien be a sequence of pairwise ND random variables such that

() supBIXi| < os,
iEN

(i) Y P{X| >} <o,
(iii) Xn:Equ”{Xi»})

— 0 as n — o0, and

n
i=1
2 E(| X2 x, 1<
<1V) Z (| i |i2{X1< }) < 00.
i=1
Then
S — E(Sy)



Theorem 1.8. (Nili Sani, Azarnoosh and Bozorgnia[15], 2004)

Let (ay)nen be a positive and increasing sequence such that
a, — 00 as m — oo.

Let (X;)ien be a sequence of pairwise ND random variables with finite variances

such that

: —~ E(|X; — BE(X))])

i su < 00, and

( ) nEII\)I (zzl a'n

) SoVerx)

i=1 a? ‘
Then
B E a.s.
Sn () 0 as n — oo.
(7%

In case of 2-dimensional array of random variables, we let (X;;); jen be a
double sequence of random variables and
Spn = ZZXW' for m,n € N.
=1 j=1
We say that (X, ;) jen satisfies the strong law of large numbers(SLLN) if
there exist double sequences of real numbers (@ n)mnen and (bpn)mnen such
that

Sm,n — Omn as.

— 0 as m,n — oo.

bm,n

Note that for a € R, the notation a,,, — a as m,n — oo means

Ve > 03N, € NVm,n € N[m,n > N, = |aym, —a| < €. (1.1)

A double sequence (X ;)i jen is said to be pairwise positively dependent

(pairwise PD) if for any a,b € R,
P(Xij >a,Xg; >b) 2 P(Xi; > a)P(Xy, >0b) for (i,5) # (k,1),

and it is said to be pairwise negatively dependent (pairwise ND) if for any

real numbers a,b € R,



P(Xi’j > a,Xk,l > b) < P(Xi,j > a)P(Xk,l > b) for (Z,]) 7é (k, l)

In 1998, a SLLN for a 2-dimensional array of pairwise PD random variables
was proved by Kim, Beak and Seo[10] which extended the works of Etemadi[6]
and Birkel[2].

Theorem 1.9. [10] Let (X, ;)i jen be a 2-dimensional array of pairwise PD ran-

dom variables with finite variances. Assume that

(1) sup E|X1,] — E(XZJ)’ < 00, and

4,7EN

Cov(X,; ., X
S Y O”(, o LR S
i, k1 (Z X j)
ixj21 \ kxI<ixj

Smn 4 4 E(Sm,n) a.s.

: — 0 asm xn— 0.

mXn

For a € R, the notation ay,,, —+ @ as m X n — oo means
Ve > 03N, € NVm,n € N[m x n > Ne = |am, — a| < €]. (1.2)

Note that the convergence of (@, n)mmnen as m X n — oo implies the conver-
gence of (amn)mnen 8 m,n — oco. In other words, if ap,, — a as m x n — oo,
we have a,,, — a as m,n — oo, to see this, we assume (1.2) holds. Let € > 0.
Then there exists N, € N such that for m,n € N, we have m x n > N, implies

|@m.n — a| < e. Let m,n € N such that m,n > N, then we have
mxn = N x N. > N, implies |ay,, —a| < e.

This proves (1.1). By the way, the following example show that the converse is

not true in general.

(—1)™*"(m + n)

Example 1.1. a,,, = for m;n € N.



We first show that a,,, — 0 as m,n — oo. Let ¢ > 0. By Archimedean

2
principle, choose N € N with N > —. Then for m,n > N, we have
€

(—1)m+n(m+n)| l_{_l i_|_i __'_E
n N N 2 2

|am,n—0|:|
mXxn

Next, we will show that a,,, - 0 as m x n — o0o. Suppose on the contrary that
Amn — 0 as m x n — oo. Pick ¢g = 1. Then there exists Ny € N such that for

m,n € N,
mxn = Ng = |amn, — 0| < €.

But for m = 1,n = Ny we have m x n > Ny but

(=1)' N (14 No)| 1+ Ny
N, N,

£1.

|am,n - 0| =
This is a contradiction. Therefore a,, - 0 as m x n — oo.

One year later, in 1999, Kim, Baek and Han[9] generalized Theorem 1.9 to a

weighted sum of 2-dimensional array of pairwise PD random variables.

Theorem 1.10. [9] Let (a;;)ijen be a 2-dimensional array of positive numbers
and by, ,, = Z Z a; j such that
i=1 j=1

Qm,n

— 0 and by, — 00 as m,n — oo.
bm,n

Let (X, )ijen be a 2-dimensional array of pairwise PD random variables with

finite variances such that

(1) sup E|Xl'7j — E(Xz?])‘ < 00, and

i,jEN

.. ai,jak,lCov(Xiyj,Xk,l)
(ii) E E 12 < 00.
i, k,l 0,J
ixj=l \kxI<ixj

Wmn - E(Wm,n) a.s

5

5> 0 asm X n— oo.

bm,n

m n
where Wm,n = E E ai,in,j'

i=1 j=1



The purpose of our work is to obtain SLLN for a 2-dimensional array of random

variables. The followings are our results.

Theorem 1.11. Let (ay)men and (by)nen be increasing sequences of positive num-

bers such that a,,,b, > e and
am — 00 asm — oo and b, — oo asn — oo.

Let (X, ;)i jen be a 2-dimensional array of random variables with finite variances.
Assume that
(1) there exists a double sequence (p; ;)i jen of nonnegative real numbers such that
for each m,n € N,
Var(Smn,) < Z Z pij, and
i=1 j=1

(i) there exist positive real numbers p,q such that

(o Sl )

e ! af X bf
b 9
Then for any double sequence (¢ypn)mmnen such that ¢, = am x by for every
m,n € N,
Sm,n - E(Sm,n)

Cm,n

a.s.
>0 as m X n — 00.

Theorem 1.12. Let (ay)men and (by)nen be increasing sequences of positive num-

bers such that a,,,b, > e and
Ay — 00 as m —> 00 and b, — 00 asn — oo.

Let (X;;)ijen be a 2-dimensional array of pairwise ND random variables with
finite vartances. If there exist positive real numbers p,q such that
[e.e] o
Var(X;.;
>3 <
— £ 2
(2

q
2

then for any double sequence (Cpn)mmen Such that ¢y, > az X b2 for every

m,n € N,



a.s.
>0 as m X n — 00.

Corollary 1.13. Let (am)men and (by)nen be increasing sequences of positive

numbers such that a,,,b, > e and
Ay — 00 asm — oo and b, — oo asn — oco.

Let (X, ;)ijen be a 2-dimensional array of pairwise ND random variables with

finite variances. If there exist p,q € N such that

>N MX;) < o0, (1.3)

2
i=1 j=1 a; X b]»

then for any natural number k = p+ q,

Sm,n 7 E(Sm,n) a.s.

( +b)k >0 as m X n — 00.
a’m n

Corollary 1.14. Let (X ;)i jen be a 2-dimensional array of pairwise ND random

variables with finite variances. If

ZZ VCLT 2] OO,

i=1 j=1 <ij
then

Sm,n - E(Sm,n) a.s

81( » )2 >0 asm X n— 00.
mXn

Theorem 1.15. Let (X, ;)ijen and (Y;;)ijen be 2-dimensional arrays of random

variables on a probability space (Q, F, P). If

iiP{X@j # Yij} < oo,

i=1 j=1

then

m n

1 a.s.
ZZ(XM—YM)—'%O as m X mn — oo.
X =




CHAPTER 11
PRELIMINARIES

In this chapter, we review some basic knowledge in probability which will be

used in our work.

2.1 Basic Knowledge in Probability

Definition 2.1. Let Q2 be a set and F be a o-algebra. Let P : F — [0,1] be a
measure such that P(Q) = 1. Then (Q,F, P) is called a probability space and
P, a probability measure. The set € is the sure event and the elements of F
are called events.

A random variable is a function X : Q — R with the property that for every
Borel set B in R,

X1B)={we|Xw)eB}eF.

Note that the events { w € Q| X(w) > a } are always abbreviated by (X > a).
Let E be an event on Q. A function Ig : Q — R defined by
1, if weeE,

Ip(w) =
0, if w¢g E

1s a random variable which is called an indicator random variable.

Proposition 2.1. Let X, Y be random variables on a probability space (2, F, P).
Then X +Y, XY and cX are random variables on (2, F, P) for any c € R.

Theorem 2.1. Let (X,,)n>1 be a sequence of random variables on (§2, F, P). Then

liminf X, limsup X,, and lim X, (if it exists) are random variables.
n—oo n—oo n—oo
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Note that the abbreviation
“X, 25 as n — 0o”
means there exists a set M C Q such that P(M) = 0 and for every w € Q — M,
Xp(w) = pasn — 0.

Let Ay, As, As, ... be a sequence of events. We define

limsup A,, = ﬁ G A,

n—00
m=1n=m

and we often write “A,, i.0.” to be a representative of limsup A, where i.0. is
n—oo

the abbreviation for “infinitely often”.

Theorem 2.2. [3]| Let (X,)n>1 be a sequence of random variables on a probability

space (2, F, P). Then

X, 250 asn— oo
if and only if for any e > 0,

P{|X,|>€io. }=0

Theorem 2.3. [3]|(Borel-Cantelli Lemma).
Suppose that Ay, As, Az, ... is a sequence of events such that Z P(A,) < co. Then
n=1

P(limsupA4,,) = 0.

n—o0

2.2 Expectation Variance and Covariance

Definition 2.2. Let X be a random wvariable on a probability space (2, F, P).

Denote

E(X) = /Q XdpP

and we say that a random variable X has a finite expectation if E(|X|) < oo.
Otherwise we say that the expectation of X does not exist and we call E(X) an

expected value of X.
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Theorem 2.4. Let A be an event and 14 be an indicator random wvariable on a
probability space (2, F, P). Then
1. E(I4) = P(A) and
2. if E(|X|) < oo, then
2.1 |[E(X)| < E(|X]) and
2.2 E(|X|1a) =0 if and only if P(A) =0 or X =0 almost surely on A.

Proposition 2.2. Let X and Y be random variables and a,b € R. Then the
followings are true.

1. If E(X),E(Y) < 0o then E(aX +b0Y) = aE(X)+bE(Y).

2. If X <Y, then E(X) < E(Y).

5. [E(X)| < E(X)).

Definition 2.3. Let X be a random variable such that E(|X|) < co. Denote
Var(X) = E[X — B(X)]?

and we say that a random variable X has a finite variance if Var(X) < oo.
Otherwise we say that the variance of X does not exist and we call Var(X) the

variance of X. For any random variables X,Y , we denote
Cou(X,Y) = B[(X = E(X))(Y — E(Y))]
and we call Cov(X,Y’) the covariance of X and Y. Note that
0< Cov(X,X)=Var(X).
Proposition 2.3. Let X be a random variable such that E(X?) < co. Then
Var(X) = E(X?) — E*(X).

Theorem 2.5. (Chebyshev’s inequality).

Let X be any random variable. For any ¢ € R;b >0 and m > 0, we have

E|X —c|™
P(1X — ¢ >b><%~

In particular,
Var(X)

P(IX - B(X)| > b) <

bQ



CHAPTER III
STRONG LAW OF LARGE NUMBERS
FOR 2-DIMENSIONAL ARRAY OF PAIRWISE
NEGATIVELY DEPENDENT RANDOM VARIABLES

In this chapter, we prove a SLLN for a 2-dimensional array of pairwise ND

random variables.

Let (X;;)ijen be a 2-dimensional array of random variables. We denote

m

Srim = ZiXiJ for m,n € N.

=1 j=1
A double sequence (X; ;)i jen is said to be pairwise negatively dependent

(pairwise ND) if for any a,b € R and 4, j, k,1 € N such that (i, j) # (k,1),
P(XZ'J‘ = a,XkJ > b) < P(XZ'J > a)P(ijl > b)

Throughout this work, C' stands for a constant which may be different in each

appearance.

3.1 Auxiliary Results

Proposition 3.1. ([7] pp.313) Let (X, ;)i jen be a double sequence of pairwise ND

random variables. Then
Cov(X;;, Xiy) <0 for (i,75) # (k,1).

Proposition 3.2. ([14] pp.42) Let (X )i jen be a double sequence of positive num-
bers such that for all i,j € N,

Aittj — Aig =0, Aijyr — Nij 20, A — A1y — A F Ay =00 (3.1)
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and
Aij — 00 as max{i,j} — oo. (3.2)

Let (a; )i jen be a double sequence of real numbers. Assume that
(i Z Z

9 ;5
(i1) E N < oo for every i € N and E 21 < 00 for every j € N.
k=1

i,k k]

Then

n

1 m
3 Z Zai’j — 0 as max{m,n} — oo.
M =1 =1

We here note that for a double indexed sequence of real number (@, n)m.nen

and a € R, the notation a,,,, — a as max{m,n} — co means
Ve > 03N, € NVm,n € N[max{m,n} > N, = |am, — a|] < €.

The following proposition is a Borel-Cantelli lemma for a sequence of double

indexed events .

Proposition 3.3. Let (E; ;)i jen be a double sequence of events on a probability

space (2, F, P). Then

ZZP ij) < oo implies P{E;; i.0.} =0

i=1 j=1
00
where {E@j 10} = ﬂ U Ei,j
k=1 1,3
ixj=k

Proof. Let L € R be such that L = Z Z P(E; ;). First note that

i=1 j=1
k LVE] |VE]

P(Ei;) = lim .Y PE,)=L
1

i=1 j=1

k
lim 5
k—o0
=1

=1 j=
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where [\/EJ denote the greatest integer smaller than or equal vk. Since
P(E; ;) >0 for all i, j € N, we have for any k € N,

|VE] |VE] k
DD PE) < Y P(Ey) <Y ) P(Ey)
i=1 j=1 ij i=1 j=1
ixj<k
which implies that
Vk] [VE] £k
L= lim >N P(Ey) < Jim Z P(E;) < klggoZZP(E”) -y
=1 j=1 1,) =1 ]:1
iXj<k

Hence lim Z P(E;;) = L. Therefore

k—oo “—
7’7]
ixj<k

P{EZ'J‘ 10} = klim P( U Ei,j)
i%?;k
< Jlim >0 P(E)
0,7

iXjzk

ST ZZP@"J) o Z P(Ei;)

=1 j=1 @,
ixj<k—1

This completes the proof. m

Proposition 3.4. Let (X, ;); jen be a 2-dimensional array of random variables on

a probability space (0, F, P). Then
X;; 250 asixj— o0

if and only if
Ve > 0, P{|X; ;| > € i0.} =0. (3.3)
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Proof. For € > 0 and k € N, we denote

A(e) = () {1Xijl < e} and A(e) = ] Ax(e).
i,j k=1

ix}}k
We have
{1Xil > e o} =) | U {I1Xisl > e} | =) Aslo). (3.4)
k=1 %, k=1

iXjzk

(=) Assume that X;; = 0 as i X j — oco. Then there exists g C © such that
P(Q§) =0 and

Vw € Q, Xij(w) = 0 as i x j — oo.

Let € > 0 be given. For each w € €, the convergence of {X;;(w)} to 0 as

1 X j — oo implies that, there exists K. € N such that
1 Xj = Ke = |Xl7j((,(.))‘ < €.

This shows that w € Ak, (€) and so Qy C U Ay (e). From this facts and (3.4) we

k=1
have that
P({|Xi ] > € 1.0.3) = P([ ] Aile) < P(25) =0
k=1
(<) Assume that (3.3) holds. Let 2y = ﬂ A(l) It follows from (3.4) that
n
n=1
1 !
P(AC) = P 4l0)
k=1
o0 . 1
=1-P([) A=)
k=1

~1. (3.5)

. 1 1
Since for each n € N, {|X, | < n——i-l} C{|X;, | < ﬁ}’ we have

1
n+1

A(——) C A(=) for all n € N.

1
n
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It follows from monotone property of probability measure and (3.5) that

P(%%) = P(( A(%)) — lim P(A(2)) = 1. (3.6)

n—00 n

Let w € Qo. Then w € A(2) for all n € N. In other word, for each n € N, there

exists K, € N such that,

S

ix > K, = |Xi,;w)| < (3.7)

For arbitrary € > 0, by Archimedean property, there exists n. € N such that
n% < €. Then (3.7) holds for n,, that is, there exists K, € N such that

ix > K — X (W) < — <
This means {X; ;(w)} converges to 0 for all w in a set of probability 1 and this
complete the proof. O

Theorem 3.1. Let (X, ;)i jen be a 2-dimensional array of random variables on a
probability space (2, F, P). If
ZZP(IXM! >¢€) < oo forall €e>0

i=1 j=1
then

Xij =250 asix j— o0,
Proof. Follow directly from Proposition 3.3 and Proposition 3.4 with
Eijle) ={w]||Xi;(w)| =€}

for e > 0 and 7,5 € N. O]

3.2 Main Results and Proofs

Theorem 3.2. Let (a,)men and (by)nen be increasing sequences of real numbers

such that a,,, b, > e and

Ay, — 00 asm — oo and b, — 0o as n — oo.
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Let (X, ;)i en be a 2-dimensional array of random variables with finite variances.
Assume that
(i) there exist a double sequence (p; ;)i jen of nonnegative real numbers such that

for each m,n € N,

m n

Var(Smn) < Z Zpi,j, and

i=1 j=1

(i) there exist positive real numbers p,q such that

oo o0

ZZ ppi’j T < 00.

2 2
i=1 j=1 @; X bj

Y q
Then for any double sequence (cypn)mmnen such that ¢, = amn x by for every

m,n € N,

Sm,n - E(Sm,n) a.s.

Cmyn

0 as m X n — oo.

Proof. Assume (i) and (ii) hold. Let m,n € N and define
f(m)=|lna,| and g(n)=[lnb,].
Clearly, f and g are increasing and also
f(m) <Ina, < f(m)+1 and g(n) <Ilnb, < g(n)+1
which imply that

ef(m) < A < ef(m)+1 and eg(n) < bn < eg(n)“"l.
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Let € > 0 be given. Then by Chebyshev’s inequality,

i iP { [Sn = B(Smn)l E}

C
m=1 n=1 m,n

CZ Z Var

m=1 n=1

n

CZZ ZZﬂw

mlnlm"iljl

1
= OZ Z Pij Z Z T Fag(m) (3.8)

i=1 j=1  m=in=j

We need the following facts to obtain the next inequality. For each i,j € N, let
Ai={seN: e/ >q} and Bj={teN : /O >p; 1

and

i =minA; and j =minB,.

Since i € A; and j € Bj, we have 1 <i and j < j. From this facts and (3.8), we

have

WV

;iip {|sm—mm<sm,n>| }
<O Y.

=1 j=1 m=i n=j
= 1
—Cz;zlpuzepﬂm Zqu< )
=17 m= =j

To obtain the next inequality, we have to prove that for each m € N,
am =e = 2|In(ams1)] = |In(ay,)| + 1. (3.9)
Let m € N. Assume that

2|In(ams1)]| < |In(ap)] + 1.



20

By increasing property of logarithm function,

2[(dms1)] < [1(an)] + 1 < [I(dpi1)] + 1

which implies that [In(a,,+1)] < 1. So In(a;,41) < 1 and hence a,, < @41 < e.
Similarly, we have (3.9) holds for (b,)nen. Therefore

ell(ans)] > o)) +1) apd elnCri] > d(nEn)l+1),

i.e. for every m € N|

ef(m+1) 2 e%(f(m)"'l) and eg(m+1) 2 e%(g(m)+1)_

Now, the inequality becomes

ZZP{|5mn—m (Swmn)] 26}

n

m=1 n=1
~ 1 - 1
OZ Zp” Z epf(m) e19(n)
i=1 j=1 nej
S O |
CZZpZ’J Z e%pm Z 6%qn
= m=f(i) n=g(j)
©© p
where Z~ - épm and Z % are geometric series whose common ratio (1) 2
m=f(i) n=g(j)

and (E)% respectively which are both less than 1 for all p,q > 0. This guarantees

the convergences of series. Hence

ii {\Smn—E(S n)l 26} CZme( o )(eéqlg@)' (3.10)

m,n

m=1n=1 i=1 j=1
Since i € A; and j € Bj, we have
1 - 1 d 1 - 1
— 11 —=C C .
5O S M ) T,

From this facts and (3.10) together with our assumption (ii), we have

>3 p{ e Bl Aoy y o

2
m=1 n=1 m,n =1 j= la Xb

By Theorem 3.1, we have

S’m,n - E(‘sm,n) a.s.
—0asmXn— oo

Cm,n
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as desired. n

Theorem 3.3. Let (ay,)men and (by)nen be increasing sequences of positive num-

bers such that a,,,b, > e and
Ay, — 00 as M — 00 and b, — 00 as n — 0.

Let (X j)ijen be a 2-dimensional array of pairwise ND random variables with

finite variances. If there exist positive real numbers p,q such that

Var(X;,)
Y

D q
then for any double sequence (Cpn)mmen Such that Cm, = anh X by for every
m,n € N,
Sm,n 7 E(Smm,) a.s.

Cm,n

0 asmXxXn— oo.

Proof. By the virtue of ND property, it follows from Proposition 3.1 that

Var(z ZXZ-J-) = Z Z Var(X;;) + Z Cov(X;;, Xx1)

i=1 j=1 T=11-4==1 ,7,k,l
(6,9)#(k,0)
m n
i=1 j=1

Then substituting VarX;; for p;; for all 7,7 € N in Theorem 3.2 verifies the
proof. ]

Corollary 3.4. Let (am)men and (by)nen be increasing sequences of positive num-

bers such that a,,,b, > e and
Ay, — 00 asm — 00  and b, — 00 as n — 0.

Let (Xi;)ijen be a 2-dimensional array of pairwise ND random variables with

finite variances. If there exist p,q € N such that

S V) -

then for any natural number k > p + q,
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Sm,n - E(Sm,n) a

( —I—b)’“ 20 as m X n — oo.
am n

Proof. Let p,q € N satisfying (3.11) and & € N such that & > p + ¢. Choose

Cmm = (am + by)®, then

P
2

q
Crmn = (A + b,)PT9 = al, X bE > aj, X b3

It follows from Theorem 3.3 that

Smn _E(Smn) a.s.
: —— =5 0 as m X n — oo.
(@ + by)*

Corollary 3.5. Let (X, ;)ijen be a 2-dimensional array of pairwise ND random

variables with finite variances. If

then

Sm,n — E(Sm,n) a.s.

81( —— 0 asm X n — 0.
m X n

Proof. For each m,n € N, put a,, = 3m,b, = 3n and let ¢,,,, = a2, x b2. Then
by choosing p = ¢ = 4, we have ¢, , > a2 X b3. The result follows from Theorem

3.3. [l

Theorem 3.6. Let (X, ;)i jen and (Y;;)ijen be 2-dimensional arrays of random
variables on a probability space (2, F, P). If
i=1 j=1

then

1 ¢ a.s
Z (Xi; —Yi;) — 0 asm xn — oo.
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Proof. Assume (3.12) holds. Let Qp = m U {Xi; #Yi,}.

z><j>k

By Proposition 3.3, we have

P(Qo) =P [ () | {Xi; #Yis} | = PUXi; # Vi) o) =0
k:1i><l]"]>k
For every w € Qf, we will first show that

2.0 i 7 (Kig(w) = ¥i(w)) < oo, (3.13)

i=1 j=1

— 1
> - —(Xij(w) — Yi;(w)) < oo for every i € N (3.14)
— 1 X ]
7j=1
and
= 1
Z » X j(w) =Y, ;(w)) < oo for every j € N. (3.15)
i ]
1=1
Then from (3.13), (3.14) and (3.15), we can apply Proposition 3.2 with \; ; =i xj
that
i 7; —0 —
mxnll; = Sw)) as max{m,n} — oo.

We here note that for a double sequence (@ n)mnen and a € R,
U — @ as max{m,n} — 00 == ., —> @ as M X N — 0.

So for every w € ),

n

i n ZZ(X”(M) —Yij(w)) = 0asm xn— occ.

m

i=1 j=1
By the fact that P(QC) = 1, we have
ZZ i — —>Oasm><n—>oo
mxn e

as desired.
To prove (3.13), (3.14) and (3.15), let w € §f. Then there exists k,, € N such
that for 7,7 € N,

ixj =k, = X;;(w) =Y ;(w). (3.16)
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Thus for each w € QF, (X, (w))ijen and (Y;;(w)); jen are different only finitely
many terms. This implies that (3.13) holds.

For fixed i € N, we can find a large jo € N such that (3.16) holds for all j > j,
which means that there are only finitely many different terms of (X, ;(w)); jen and

(n,j(w))i,jGN- So for fixed 7 c N,

Z ; ij(Xi,j(W> -V (w)) < 0.

Similarly, for fixed 7 € N,

Zi ij(Xz‘,j(w) ~Y;(w)) < oc.

Now (3.14) and (3.15) are proved and this completes the proof. O

3.3 Examples

Example 3.1. A box contains pq balls of p different colors and q different sizes
in each color. Pick 2 balls randomly.

Let X;;,i=1,2,...,pand j =1,2,...,q be a random variable indicating the

presence of a ball of the i™ color and the ™ size such that

5 1, if thei'™ color and j size of ball is picked,
iy =

0, otherwise.

Fori,j €N, let X;; be a random variable defined by

X, if1<i<pandl<j<q,
Xi,j:

0, otherwise.
Then for any double sequence (Cppn)mmen Such that ¢y, ., = 81(m x n)? for every
m,n € N, we have

Sm,n - E(Sm,n) a.s.

Cm,n

0 asmXxXmn— oo.

In particular,
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Sm,n - E(Sm,n) a.s.

81( » )2 >0 as m X n — 00.
m X n

Proof. We first show that X;;’s are pairwise ND random variables, i.e. for

i,7,k,l € N such that (i,7) # (k,l) and a,b € R such that
P(Xm’ > CL,XkJ > b) < P(Xm’ > CL)P(Xk’l > b) (317)

Let i,7,k,l € N and a,b € R such that (i,7) # (k,1).

If2>porj>q, we have

1, ifa <0,
P(Xi’j > a) =

0, ifa>0
which implies that (3.17) holds for all k£, € N and b € R. Similarly, if & > p or
[ > q, we have (3.17) holds for all 7,7 € N and a € R. WLOG, we will show that
(3.17) holds for all 1 < i,k < pand 1 < 5,0 <q.
Assume that 1 < i,k <pand 1< j,1<q.
case 1 a < 0. We have P(X,; > a) = 1. So (3.17) holds.

case 2 0 < a < 1. We have

pg—1 2

Pq

P(XZ'J‘ > CL) = P(Xi?j = 1) =
pq
2

case 2.1 b < 0. We have P(Xj; > b) = 1 and hence (3.17) holds.

case 2.2 0 < b < 1. We have

-1 2
P(Xk7l>b):P<Xk7l: ):pq = —
q pq
2
and
1 2
P(X@j > a, XkJ > b) = P(X@j = 17Xk7[ = 1) = = .
pq\  Papa—1)
2

Since pq > 2, we have 2pq — 2 > pq and then
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2 1
— > )
pq = pg—1
Therefore
P(X;; >a,X;; >b) = 2 <<2>2 P(X;;>a)P(Xy; >b)
a, Xk, — x| =] = ij > @ k,l .
pq(pg — 1) pq !

case 2.3 b > 1. We have P(X;; > b) =0. So P(X;; > a,Xy; > b) =0 and
then (3.17) holds.
case 3 a > 1. We have P(X;; > a) =0. So P(X;; > a,Xy; > b) = 0 and then
(3.17) holds.
By any cases, we have X ;’s are pairwise ND.

Next, we will find E(X, ;) and Var(X; ;).

pqg—1
E(Xij) =) aP(X;;=x)=P(X;; =1) = =
2
and
Var(X;;) = B(X?;) — E*(X;)
- 2 2
=Y BRP(Xiy= ) - (—>
x=0 rq
. 4
pq  (pq)?
Since
i a VCL’I“(X” ( )
zl]l(lx'] 'Ll]lzxj
we have
i Var(X ” ~ lim i Var(X ”
i=1 j=1 <ij el \ = =1 ZXJ
2 4 W 1
= lim = -
m.n—00 ( Pq (pQ)2> ;; (i x j)g)
2 4 UL 1
= — - lim
(pq (PQ)2) m,n—09 (;; (i % 3)2)
2 4 . — 1
B (pq (pq)Q)ZZ (i x j)?
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o0 o0 1

because Z Z (i x j)2 < 0o. By applying Corollary 3.5, for any double sequence
i=1 j=1

(Cmn)mnen such that ¢, , = 81(m x n)? for every m,n € N, we have

Sm,n - E(Sm,n)

Cmn

a.s.
— 0asm XxXn— oo.

In particular,

Sm,n - E(Sm,n)

81( » )2 23 0asm X n — oo.
mXxn

]

Example 3.2. An urn contains pq candies of p different brands and each brand
having q distinct flavours. Pick 2 candies randomly.
Let Xi,jyi =1,2,...,pand j=1,2,...,q be a random variable indicating the

presence of a candy of the i brand and the 7™ flavour such that

5 2i7, if the i brand and § flavour of candy is chosen,
i =

0, otherwise.

Fori,j € N, a random variable X, ; be defined such that

X, if1<i<pandl<j<gq,
XZ‘J'Z

0, otherwise.
Then for any double sequence (Cm.p)mnen Such that ¢, > (Sm)%o X (Sn)q70 for
any po, qo > 3, we have

Sm,n - E(Sm,n)

Cm,n

a.s.
>0 as m X n — 00.

In particular,

Sm,n - E(Sm,n)

L0 asm X n — 0o
81(m x n)? ’ '

Proof. We first show that X ;’s are pairwise ND random variables. Let 7, j,k,l €
N and a,b € R such that (i, ) # (k,1).

If 2 >porj>q, we have



1, ifa <0,
P(Xi’j > a) =

0, ifa>0
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which implies that (3.17) holds for all k£,I € N and b € R. Similarly, if & > p or
[ > q we have (3.17) holds for all 7,5 € N and a € R. WLOG, we will show that

(3.17) holds for all 1 < i,k <pand 1< j,1<q.
Assume that 1 < i,k <pand 1< j,1<q.
case 1 a < 0. We have P(X;; > a) =1. So (3.17) holds.

case 2 0 < a < 2¢5. We have

-1 2
P(Xi;>a)=P(X;; =2ij) == ==
pg\ M
2
case 2.1 b < 0. We have P(Xj; > b) = 1 and hence (3.17) holds.

case 2.2 0 < b < 2kl. We have

P(XkJ > b) = P(XkJ <=kl

g pq
2
and
. 1 2
P(XZ‘J' > CL,X}CJ > b) = P(Xi,j = 22]7Xk71 = 2]{/‘[) = = .
g pq(pg — 1)
2
Since pq > 2, we have 2pq — 2 > pq and then
2 1
= > )
pq = pg—1
Therefore
P(Xi;>a, X, >0b) 2 <<2)2 P(X;; > a)P(Xy, > b)
1,5 a, R = x| — = ij a , .
’ ol pa(pg —1) =~ \pq ! ol

case 2.3 b > 2kl. We have P(X;; > b) =0. So P(X,; > a,Xy; > b) =0 and

then (3.17) holds.

case 3 a > 2ij. We have P(X;; > a) =0. So P(X;; > a, X;; > b) =0 and then
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(3.17) holds.
By any cases, we have X ;’s are pairwise ND.

Next, we will find F(X, ;) and Var(X; ;).

—1 437
pq pq
2
and
Var(X;;) = B(X};) — E*(X)
3 4i\?
—42]P(X 2@3)_ -
pq
8i%j% 164252
Pq p2q2
Let pg, qo > 3. Then
m VaT(X ) A m n 1 8i2j2 1622j2
ZZ 'épO X qu 7 Z 7;])0 X jqo pq - p2q2

m n

8 16 1
= (1—95 N p2q2> ;; po—2 % jqo—Q

q )
) (p%‘p ;) (ZZW T )
)

i=1 j=1
( oo [e.e]
= ZZZPOZX 02
=1 7= ‘]

7=1

< 00

because ZZ P ]qo 5 < 00. By applying Corollary 3.5, for any double
i=1 j=1

sequence (Cmn)mnen such that ¢, , > (Bm)%0

x (3n)% for every m,n € N, we

have



In particular,

S — E(Smn)

Cmn

Sm,n - E(van)

81(m x n)?

a.s.

— 0asmXxn— oo.

a.s.

— 0 asm X n — oo.
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