Chepter IIT
FEYNMAN'S PATH IVTEGRAL

In this chapter, we will give Feynman's argument in
writing downthe propagator in the form of path integrals
“and will also show that the propagator in this form can be
derived directly from the Schrodinger equation,

If a particle moves from one point to another point
there are many possible paths which the particle can take.
In terms of classical mechanics which consider the particle
as a point, there is a principle of least action which expresses
theoondition that determines a Qarticular path from among
all the possible paths., Tor simplicity, we wi;l restrict
‘ourselves to the case of a particle moving in one dimension.
Thus the position at any time can be specified by a coordi-
nate x, a function of t., By the path, we therefore mean
a function x(t).

If a particle starts from the point X, at an initial
time ta and goes to the final point X at time tb’ there
will be many possible paths in which the particle can travel.

For each path ghere exists the action S,
b

$ = | Liz,=,tdl,

t
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where L = K.E. - P.E, is the lagrangian for the system.

¢

The principle of least action states that the particular
path x (t) in which the particle can travel is that for which
S is a minimum. That is to say, the value of S is unchanged
in the first order if the path x (t) is slightly modified.
This particular path x (t) is called the classical path.

In the next chepter, we shall determine the classical
action of disordered systems, which is quite difficult. It
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is as well first +to become familiar with a simple system

of classical action, which can then serve as a guide to the
more difficult determination of the classical action ofr
disordered systems. The determination of the classical action
-of a harmonic oscillator will therefore now be studied.
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For a ha.rmtonic oscillator L=(3-"5)("-‘-”‘), therefore
b
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a
Suppose the path x(t) is varied from X by an amount
Sx(t). Since the end points Xz and x, are fixed, therefore

x(t) L) =0 e (s)

From the principle of least action, the condition that X must
yield a minimum value of S means
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By avplying the condition in Eq. (3.1) to the first term
in the L.H.S. of Eq. (3.3) , we obtain
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Thus '
2orwx 0 Semee e (3-4)

The solution of Eq. (3.4) is
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% (t) = femols Lo wT) NgER by - % D

wvhere A and B are constants.

By applying the poundory conditions x(ta) = x, and
x(tb) = x, to Eq. (3.5) and making the period T oi the
harmonic oscillator ecual to t, - ta sy We can obtain the
constents A and B , '
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Differentiating Eq.(3.5) vwitn respect to t, we obtain
(1)) = poewvt-Bwoemowlt . __ ... (2.7)
Substituting 7q. (3.5) when t.,= 0 and t = T and Eq.(3.7)
when't = 0 and t = T into ©q. (3.6), and also making use '

of the value of A and B, we obtain

m W a
Su = . » WWT('K:-Q-'“E,) - 29(07'5 " ____(3.8)
A A W

Thus we coan obtain the classical _qction of the harmonic
oscillator.

N8
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After discussing the path in which a particle can
move from a to b from the classical point of view and showing
how the classical path and classical action can be found,
we will next look at this from the quantum mechanical point
of view, ’

Quantum mechanics deals with probabilities, that
is, it states that we cannot specify the position of a par-
ticle, we can only know the ﬁroba‘qility of its being found
in a given place. The probability that a particle will be
found to have a path x(t) lying somewhere within the space
time continuum is the absolute square of a probability am-—
plitude. The probability amplitude is associated with the
entire motion of a particle as a function of time, rather
than simply with the position of the particle at a parti-
cular time. Thus when we consider the path by which the
particles goes from a to b , we must specify how much each
trajectory contributes to the probability amplitude K(b,a).
It is not just the particular path of extreme action which
contributes; rather,it is the case that all the path con-
tributes. The contribution ¢Ec(t2/ from a single path is
the classical action for that path in units of b .

¢[xm] _ watexf_»:is[um] :

The amplitude K(b,a), is thus the sum over all trajectories
between the end points a and b of contributions (I)[x(t?]
from each « .

14

k(b,a) = Em ¢[»Lt)] :
peihufos.
a b b
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K(ba) = I emsl exp -ji-S[%(t)J Vigicina f 0N
o
pothe from ‘
abb
e have thus described the physical ideas concerned
in the constructing the amplitude for a particle to reach
a particular point in space and time by closely following
its motion in getting there. So if we want to find the pro-
bability amplitude of the particle going from a to b, we
have to carry out the sum in Eq. (3.9) . But the number of
paths from a to b is infinite, so Eq.(3.9) is very difficult
to work with. Another method and more efficient method of
computing the sum over all paths will now be described. ’

Choosing a subset of ‘all paths by first separating
the independent time into a small time interval € , this
gives us a set of successive times t, ,t2 ,t3 esese DEtween
the values t, and ty , where t; ,= ti+e,at each time ti we
select some special point Xy and contructing a path by con-—
necting all the points so selected to form a line. This
process is shown in Fig. 4. It is possible to define a sum
over all paths constructed in this manner by taking a mul-
tiple integral over all values of x4 for i between 1 and
n-1, where

me - tb—ta' ’ to =,y b tb >

XO = Xa ’ Xn = X‘b .

By using this method , Eq. .(3.9) then becomes

k(b a) NMJ exp %S[%(t)] Ao, dy <o dm s

FRLNES (340)

We do not integrate x5 or x, because these are the fixed
end points x, and xp, « In order to achieve the correct
measure, Eq.(3.10) must be taken to the limit & =0 and some nor-
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Fig. 4 Diagram showing how the path integrals can
be constructed.
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malizing factor A™"which depends oné must be provided in

order that the limit of Eq. (3.10) when € approaches zero
will exist. Thus Eq. (3.10) becomes

K(ba) = Lim 4_” ...... J exp| L S[x(t)]|dn du ____dx,,

€E—>0 A }:

-ena-o (34)
Eq. (3.11) can also be written in less restrictive notation

aKs(b,ﬂt)= NJ}J exp _%_S[x(t?[]i)(paﬂ) ;

This is called a path integral and the amplitude K(b,a) is

known as the Feynman Propagator.'
So far, we have followed Feynman's argument in writing

down the propagator in the form of path integral. It will

now be shown that the propagator in this form can also be
derived directly from the Schrodinger equation..

The time-dependent Schrodinger equation is

J—'E—H .’i;t) = 0 -
We can define the one-electron Green function of this equation
as the solution of

ikd (2,2t 1) = J(2-2)a(t-t’
[ & H]G(__,t,) (2-27)d(1-1)

Thus the Green function can be written as

( ’—lt t) <é é"l’[‘i““(t't'):] AN il (318

Let us divide the time interval t-t’ into n equal
small subintervals , then t-t =né€ , By making use of the
identity
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According to the rules of quantum mechanics we can
insert the complete set between each pair of factors in
EBq. (3. 13)'

We now consider the Hamiltonian of the system in position

representa}ion
am

where &? is the momentum operator.

Zi:o‘ll-‘if—”.& ;-""'E)M(Pl"*é—ﬁJrV("ﬂ/ ‘>
S<“‘I‘E>AP<-E] >{1-—[.E_ v(n“,__(a,,.;;

From quantum mechanics, the momentum eigenfunctions{a]x)are

AT i e
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Therefore

Qe Hl >_(_E,)35"*f’[ ("m"&;)-.ﬁ”l'%[‘,% + V(ﬁﬂdﬁ

L] naa

We now replace "'f [,“‘ by the corresponding
exponentialj the error introduced here is O(€), so that the
total error from all the n factors can be neglected. Eq.
(3.16) thus becomes

A
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It can be seen that the time- dependent Green
function (3.19) of the Schrodinger equation has also exactly
the same form as the Feynman propagator (3.11), which the
latter can be written in this form by using the argument
discussed at the beginning of this chapter. As a simple
example of how to obtain 6(z,r,t,t) written in the form of Eq.
(3.19), let us consider the case of a free electron.

: 2
For a free electron L= ™M 2 , therefore by using
p- 5

Eq.(3.18), we obtain
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The calcgulation is carried out by direct path integrations

as follows:
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Multiplying this result by (——'—
™m

and integrating over ;2, we obtain

2
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In this Way a recurring process 1is established by

which, after (n-1) steps, we obtain
3

2
6 (2,2 0) —fm 2xp im(a-2Y) |,
2l inne€ zx(.ne)

Since né =t , r, = r and ro= r therefore
%
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The method of direct path integration can be carried
out only in this simple case of a free electron. For other
cases, it is difficult to work out. Therefore we will intro-

“duce another method which will help us to compute the path
integrals.

Since the classical path is that for which S is a
minimum, this path is therefore completely fixed. Consequently
any path r (¥) can be written in terms of the classical path
r(%) and of a new variable y (), the deviation from the
classical path:

r(t) = _f‘gp(") +4(7)>

and the path differential D r(T ) can be replaced byd y( T ).
That is, instead of defining a point on the path by its
distance (%) from an arbitrary coordinate axis as for-
merly, we now define it by its deviation y( <) from the
classical path, as shown in Fig.5 . Since any path z(T )

and the classical path.gc(qf) must reach the same end points,
therefore

1(0) ~ i(t) = O °
In between these end points y(€) can take any form.

For a particle whose lagrangian has the form

2 ‘ .
L= a@i@ebmizre®a’ v d@)i+ 2z {0,

L4

the integral for the action can be written

S am] . -s[zsb('cn gm]
t
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Fig. 5 Diagram showing path deviated from the -
classical path.
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If all the terms which do not involve y(¥) are collected,
the resulting integral is\just the clé;sical action Scﬂ‘

If all the terms which contain‘l(tf) as a linear factor are
collected, the resulting integral vanishes. All that remain
are the second-ovder terms in y. Thus

S[i’-("):] = SU.+ ) [a(t)fj_z-c- b('c):j_:j_+e('c) Ajz]d[f .

0
Thus the Green function can be written

2 . )
ela:231) < NJ 2xp __i_{s + 5[0.(1)_‘_3_ +b('t):5_§+e(c)fjdt}'}»f
, R |
Since the integral over paths‘z(t') does not depend upon
the classical path and all paths Z(t’) start from and return

to the point y=0, therefore G(r,r';t) can be written as
0

' : t 2 .
6(2,2;1) - uy.é:Sa NSMF _A«__S u(‘z’)ﬁ%lo(c)iéfg
M :k_o -L({(t)lz}d‘l’ DY) s

o

Consequently it can be seen that the path integral(3.19)

which was specified by the distance r(€ ) from an arbitrary
coordinate axis and which depends upon the end-point positions
can be reduced to a product of two functions which do not
depend upon the'end~point positions. The new product depends
upon the classical action which can be obtained without too
much difficulty, and also depends upon the times at the end
points.

-
4

Consider the path integral for a one-dimensional
harmonic oscillator. This is

okt [l [ (370 a0

x
Using the method which has just been described, this path
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integral can be reduced to a product of two function,

s zxf_%gt%(sz—w‘f)dc i)‘a((f)-)
o R & S =

Since the classical action %& of the harmonic os-

cillator has already been calculated at the beginning of
this chapter, we can write

S - mw mwt(x'z-;-xa)—ax%' .
U

(‘,(x,x’}t) = AXP }:S
h

1nhmwt

We have therefore to evaluate the remaining path integral
°

t
. va 11
wplh| (G704 Ydef Dy (v)
F)a b
[4] o "

which we will later call F(t). There are two ,methods of
evaluating F(t). One is to expand y(t ) as a Fourier sine
series,

y(t) = T & oin n?
n t

and then consider the paths as functions of the coefficients
of ay instead of functions of y at any particular time 4,
‘The details of this method for evaluating F(t) are already
present in Feynman and Hibbs' book7 . %Pe result is
2
Flt) = et :
gﬁ'ijx n&n.0>t

The other method is to tﬁrn F(t) into a determinant as is i

shown in the paper by S.G. Brush20, The result is F(t)=(7” ) %
. amh D

-——_———— (3.11)

2OS.C—. Brush, " Functional Integrals and Statistical

Physics," Reviews of Modern Physics, 33 (1961), 79.
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where D is the determinant which satisfies the equation

2 2
mdd o D (9’__!’ )
dtz Jxl
with the initial conditions D(0) = O and [dD}= 1 .
dt
'tso
Since the potential V of the harmoni illator is equal
L2 %
to v_;_;wy. , therefore
2 |
mdDd - mwD .
d t*
Thus

D = H.txf(wt) + Bxxr‘('..w;f)"'. e e

we obtain
A =1 and B # M~
2w 2w
Substituting for A and B in Eq.(3.23),ve obtain
D =_|_(M\f(wt)+.u\°(.wt)) L \ CMM'LU)t .
W w

Therefore, Eq. (3.22) becomes,
P a

Flt) = L i

| ath ok (01)
& m W 1%
" aﬂixn&nw’tJ

L.

Thus the time-dependent Green function of the harmonic os-
cillator is

. 3 a '
¢ (2, 251) = axp| 42 T2 wat (# +% )rax'x] || o
am?nwt
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