Chapter 1II

THE DENSITY OF STATES

This chapter shows how to define a density of
electron states in terms of the electron Green function.
Before going straight to this formulation, it is best to
know what the density of states is, and in general how it
can be calculated. ' i

, According to the Pauli principle not more than two
electrons may occupy any orbital state, so that, at the

absolute zero of temperature, two electrons will go into

the ground state, two into each state of next higher energy,

and so on, until all the electrons are allocated to states
of lowest possible energy, In particular, it is possible,
and useful, to define a density of states in energy n(E)

in the following way: the number of orbital states with
energies lying between I and E+dE is n(E).

Here it 1is assumed that dE is very small but still
large enough for the interval to contain very many states.
It follows that the number of orbital states, ¥ (E) say,
with energies less Ethan E is

v(E) = m(e)de ,
"so that ° 5
nie) o d¥’.
dE

As a simple example, let us consider the way in
which the density of states of a free electron confined in
a cubical box of side L can be obtained. ;
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The Schrodinger equation for the free electron is
2
T8 LR R
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where Y(x,y,2) is the wave function which must fall to zero
at the surface of the box, and E is the energy eigenvalues

of the free electron.

By separating the paftial differential equation and
then imposing the boundary conditions on them, the wave’
function\y(x,y,z) and the energy eigenvalue E can be easily
obtained, thus

t‘/(x,q,&,)_: J__l:; oim’_f_\r__::\-l r.u'/n'll:’—lT*j ”‘i’““:zr'}7—---(2‘z)
; L
¥ ;
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where 0, ny,nZ are integers .

It should be noted that changing the sign of ny,
ny,or uzdoes not change the energy, nor does it result in
a different wave function. All the stationary states are
therefore given by the positive integral values of ny, Dy,
n,. Also, none of these may be zero, for this would make
the wave function also zero, which is not permitted.

By looking at (2.3, in the n-space,
2 2 2 ' ;

2
n + - am L
% ¥ Ty T Ny ok €12

h T v i %
aml E
it can be seen that it describes a sphere with radius(fﬁr—T' ps
We note, first of all, that each orbital state is

mw
represented by a triad of positive integral values of N,
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Dy, and hence by a point in the positive octant of this
n-space. Also, if we divide the octant up into unit cubic
cells as shown in Fig.41, every point will represent a state
lies at a corner of a cell, so that the unit wvolume contains
just one representative point.

Thus, the number ¥ (E) of states with energies less
than B is just the number of representative points lying
within the positive octant of this sphere. Since there is
one representétive point per unit volume, therefore, this
number is equal to the  volume of the.octant,3

2 VA 2 %
»(€) = L &R [ 2amiE ] (W\) E
2

3 2 3 N 2
. I T Y A
where #:17 . . _
Differentiation with respect to E gives the density

of states
2 ¢ R
2L

'n(E) W 5 2'": E . . P (a,n,)

z o
w1 h
The graph representing density of states for a free
electron system is shown in Fig. 2 .

From this example, it can be seen that the general
way to find the density of states is to begin with the
Schrodinger equation, solve for the wave functions and
eigenenerges,and the result.is the density of states. In
applying the above method to the finding of the density
‘of states of disordered systems, it is necessary to solve
the Schrodinger equation (1.2) as many times as all possible
arrangements of ions which is clearly impossible in practice.-
But by formulating a new procedure for the evaluation of
the density of states using Green function formalism, the
density of states of disordereq‘systems can be found,
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Fig. 1 The positive octant of n-space.
The dots represent states.

| n(E)

o .

7

Fig. 2 Density of states in energy for
a free-—electron system.
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For the Schrddinger equation (1.2) for an electron
moving in the presence of fixed centers 34 which give rise
to the electron-center potentialsu(;-_lzi), we can define»
the one electron Green function G(x,r,t,t) of this equation
as the solution of

2 3 ;
,‘12)9—{4‘1-‘7 -Z.U(-’L"&.L) G (_&,ﬁ",t,t')_.: (S (5“5,)§(t-t') ‘

am o '
cereewoa(a.8)

By applying the complex Fourier transform on the :
time variable and defining

6(2,2;E )"= J c,(zz_,:".",t,t')exl,[%_g(t-(’)}o{t

- 00

as the transform of G(r,r3t,t) on t, we obtain

[E+£V1—EU(£-K‘)]G(£,£'}E) = dl2-1) .
am oL ‘

2, Since the Hamiltonian H of the system is equal to
_h V + CU(r-R),and the delta function 3(;-;’) can be written
«

am
as the complete set of the wave. fuctions,

S(2) = Dy la) v, () -

Eq.(2.6) becomes

( E—Hl)e(a,_a‘;s) ,

); %‘(.4)‘!: (2) -

Therefore (‘,-(a_-,gr.,-,E) ='/ (F_-H).'Z Ly“(_)_;)\y; (2")
- n

(B2 T ¢, (2)¥) () -
o i el s e (a.v)

A small imaginary term _tif has to be added to the denominator
of £q.(2.7) in order that the-pole at E-Ejcan be taken.



14

Therefore, there are two basic solutions of Eq. (2.6)
-
' ’ . * .
Gy (2,458)= (E-Ent i6) Ty, (a) % (2)

where G+corresponds to the outgoing wave and G_to the incoming
wave, Now since the functionsypare normalized

JG:(_’!&;E)JQ w Y (E-Eﬂ:;:e)-'7

n
and since
-1 - Ve
(E-E.-c¢e) - (e-E3ie) o> ai _€
. (E-E“)’+e’

N glE-e)
consequently
J[GJ:&,.&;E)—G_(.L&,ﬁ;E)]JA=_,,.T.;)_;§(e-s,‘).

& wibin s ]

From the definition of the Dirac delta function,

s(E—En) will always be zero except at the points where E

equals I3 hence té(E—En) in Eq.(2.8) is to be interpreted
as the summation Which indicates how many states of the
electron have energy E, which by definition is the density

of states. Thus, Eq. (2.8) becomes
J [G+(57A}E)“G-(&,.Q;E)JJ_4 = -amim(E),
- R T

where n(E) is the density of states.

For disordered systems in which the distribution

of ions has several configurations, the average density
of states is obtained by averaging n(E) over the configurations
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of ions in the probability with which theé various configu-
rations occur. Denoting this averaging process by bracket

<”__> we therefore have

B O o

The averages of G,and G.will be functions of r-r alone, as
the averaged system must be spatially homogeneous.

Let f(g-_&';t-t') = 'L[(G,)-<G->] )

then Eq. (2.10) can be written in terms of‘f(k E), the Fourier
transform of f(r-x'yt- t), as

(ﬂ(E)> _—i 5)“‘-75) Ols)z b ——— e e - (a;u)
a“)

wherefNlis the total volume, and f(k E) may be regarded as
the probability of finding an electron with energy E and
momentum k .

In order to follow the method of evaluating the
density of states of the electron with the use of this new
expression (2.11), the evaluation for the density of states
of the free electron system will be first considered.

Let Go(r,r'st,t) be the free electron Green function

satisfying fhe equation
2
v AV i€]6,, (_,_7 1) S(a-2)§(t-t") .

)t am :

7
By taking the Fourier transform with respect to t and 1,
and defining

cou.,mH 22510 mpbi b ey et fiadt,

- =00

we then obtain nNn4rone
"Jl);.u.‘.v
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[E-Ilkaiie] Go, (.&75) - A
G O [E-E_f:.&e]

am

In the case of a free electron the distribution of
ions is not concerned, so thé free electron Green function
and the density of states are not involved in the averaging

process, therefore

e, (kE) - _c:fe.xa,s)-g,_(t,s)]

alhv |
i . €
=S

Il

o e

n(e) =2 Jg (-5K) Lk

(%)
. isgé(e-g)ﬂ\’ﬁzelk- e (3
() .
By introducing a new variable M= ﬁv{; JEq.(2.12)

can be written as v

2 L
n(E) = a-(—ﬁ) S(e-y) 4 dy
W\
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%.(E) = 42 £ = 2
» T | A

which is exactly the same as was obtéined previously in
Bq:(2:.4);

In the case of free electrons where the distribution
of ions is not concerned, and also in the case of perfect
crystals which have only one configuration of ions, the
expression (2.11) for the evaluation of the density of states
may not have much advantage over the general method. But
the expression will be very useful in evaluating for the
density of states of disordered systems, where the evalua-
tions have to be taken as many times as the number of possible
configurations of ions which may occur.

After seeing how the averéged density of states
can be expressed in terms of the electron Green function
and how the expression can be used, the next step is to
try to find the averaged Green function of disordered systems,
This chapter develops a method of finding the averaged Green
function by performing an expansion in fhe form of a per-
turbation expansion of the free electron Green function.

Since from Eq. (2.6), we have

(E—H)G(:_\,S;E) i é(ﬁ-_’f’) ’
(E-Hj'é(a-y)
[E <l - :v(am R )] Zty(zs)ty (%

& SR (l|'3)

therefore ¢ (x,4';E)

13

w

where Hy,1s the free electron Hamiltonian. Eq.(2.13) is
the initial equation in writing G as a perturbation
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expansion of the free electron Green function. Edwards was
the first to perform this expansion. His first paper8 was
concerned with using the Green function in the perturbation
expansion of the free electron Green function for the eva-
luation of the closed formal expression for the electrical
conductivity of metals without goihg through the intermediate
form of deriving a transport equation. His second paper6
used this expression for evaluating the averaged Green function
of disordered systems. In order to average G without diffi-
culty Edwards considered its expansion in terms of the de-
viation of the potentialEU(grgi> from its mean. Hence Eq.
(2.13) can be written as %3

G(Z‘-;l‘-'iE) = E—H.-(v)-»(V)-v P

V = z:_u (ﬁ;‘!iﬁ) .
” ‘

where
_Therefore R “ - V"(V) ‘
C(-’- )E) = [E-H" Olﬂ '-‘ E=H,={V)

& ;_{c,,(v-<v))} o cELL

where Gpsatisfies the equation

ikde s X (v) tla, a5t 1) - 5(&—«.\')5("47-
) 2

(2.14) can be expanded as a geometric series:

c.(&,.a.';E) - G.[|+{c.(v-<fé)§ s {c',(y-<V>)}1+ o
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6(2,258) = 6,4 6, (V-AW)6, + 6 (V-AM) 6 (V=) ¢,
Go (V=4V)) 6o (V=CY)) 6, (V-AVD) 64 ------

Averaging this series over all the possible c¢onfigurations
- of ions, we obtain

(6> = 6r6.{(v- <v>)>¢ + G (v=¢W)) Bulv- (v)))G

+ &, <(v (V) 6, (v-¢VY) 6, (V- (V)))G ¥ namia
----- (2-15)
Since <v-(V)> = (V)—(V)= o
‘ and since Edwards® has shown that when V is weak all the
odd averages in the series (2.15) (except {V) ) are small

compared with the even avarages which precede them, there-
fore Eq. (2.15) becomes

(6) = Gt 6 (V=4¥))6, (Y=<W )6,

+ 6 ((V-AW) 8L (V=CW) &, (V-(D) 6,(VEV)) ) 6, 4 - af210)
{Ejiivr;ié,?z -Zv);; . (vc..v> - (v) ¢, <v>
<(v-(V)) 6, (V-<V)) c,.(v-<V>)c.(v-<V))> = (veveve.vy-(vavyefvc

- e B e EE e e e e a e M ek i e [ U e e e e ket K e i A L

Thus each average in the series (2.16) contains terms like
Y 69 ¥) 2 { Vg0 V)ynlina i :

We consider the average {VV) , and for simplicity
will consider only the one-dimensional case.
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(V) = 3;:P ¢ R U(X,-RP)) .

M < SJ u(l:)exf{ ik(x.-&)jﬂj) ,,,‘Fi ;5‘(73-3{5)}
i dkolj> ;

where u(k) is the Fourier transform of U(x).

Since the system is assumed homogeneous which implies :
that the 1last expression must depend on I}‘-R or that j=-k,

P

L jM(k)u(~")MP{i‘\("-"‘.\)}mr{xk(«d—xp)§49
o(F \
))M(k)'w(k) ‘QXF{ ‘LL (xl-(xa)} Qa (&)0“1 >

therefore

(W)

where Cla(k) - A% < ,cxr ii&(R“—RP)} > :
4\ P

The function a, (k) is the two-body correlation in
k-space,i.e, the Fourier transform of the probability that
given one atom at x, another will be found at Xoe

Thus the problem in obtaining <V’V) is that of finding
u(k) and a, (k), and we can similarly show that the problems
in obtaining (VVVV) ’ <V’VVVVV) 9 sessses are also those
of finding u(k) and ay, (x)°, ag (E) -3 Senves a"‘(k) , the
2n — body correlation function. Consequently, the problem
of finding {G) in Eq. (2.16), and hence the density of states
from Bq.(2.10) is also reduced to that of finding u(k), a,(k)
ag (k), FURIET N , a2n (k). u(k) and ap(k) can be theore-
tically determined after a model has been adopted. a, (kD
can also be determined from the k—ray or neutron scattering
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data. Since a4 (k), ag (K) seescesee 5 82n (k) are not yet
known, it is indeed fortunate that Edwards? is able to

show that under certain circumstances concerning the relative
magnitudes of the electron mean free path L and the range

of order R, a,, (k) can be factorized into products of az(k).

As an exercise, it is worth knowing how u(k) and
a,(k) can be theoretically determined by using the simplest
model «

Let us take the one-dimensional disordered potential
EEU(rrBu) as a delta function potential, i.e.

: (_X-—-_{l‘_) fa Z:_ é(x- Ro’-) :
P oL
By taking the Fourier transform of both sidés, we obtain

._‘._.3 tju(k)ur ?{L (x-R_L)\ Ik = AT 'WF{ {k(u—&)}i

(21-‘.) oL (:Tl) ok

Therefore the Fourier transform u(k) of the disordered delta
function potential is a constant.

If we now take the one-dimensional disordered systems
as completely disordered, the probability distribution will

be given by 5

P(Rn'”'" RN) = ﬂ- .4__%2‘_ o
| dsl{ .JJix
Since (U__? Z ' b-( .A(R-R
E ot)P< r{" . P)}>

% b 78 <.vxf7§ { k(ﬁa‘ﬂ(&)}>+_ : <mr{ik(&d-ﬁp)}
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aa(k) = ) 3 Writ i p)S JR olR
5 “1P )AR JJRP
: axpl ih(R-Re) 1 dR  d&ge
E )
- §WS) + 8L,

—L¢L¢P. L

thercfore when k: # O only the terms with J= F survive, i.e.
(1) = N and when k = O

B k) s JSLxF{ik(R‘-RP)EJ&JQP

Lo p
BL? '“2
N = .
= _'a :JS MF{OS oleOJRP = -i—a-
L 4p

Bdwards® wes the first to evalua.te(G) and hence
the density of states of disordered systems, by the method
which has just beer discussed. He used the simplest model
of & one-dimensionel completely disordered system with a
deltn function potential. An extension to the case of three
dimensions using the same model has also been made by Edwards
The work of deard=6 -9 has dealt only with the case of free

bands. Beeby and Edward§10'extend the calculations from free
bands to bound bands by renlacing the scattering potential
by a t-matrix. Ballentinel?2 has calculated the density of
states from these formulae for certain liquid metalsg——alami
nium, =zinc and bismuth--bytaking the two-body correlation
( the structure factor)a, (k) of aluminium and zinc from

the X-ray scattering data of
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Gammertsfelder17 , that of bismuth from the neutron scattering

data of Sharrah and Smith'8 and the screened ion potential
u(k) from Heine and Abarenkovi? .

‘ Lukes' has used another method to obtain (G) from
the series (2.16). In this paper the averages {V) ’ <W> s

<VVV,> yeeein Eq. (2.16) can be obtained by assuming a mul-
tivariate gaussian distribution.,

The density of states obtained from this method (i.e.
evaluating {G) from the perturbation expansion of the free
electron Green function and substituting into tﬁe expression
(2.10) for the density of stgtes) has nearly the same value
as the experimental result as is shown in Fig. 3, but the
exponential tail which is the important chaiacteristio of
disordered systems can not be obtained. So we must find
another method to calculate the averaged Green function.
Edwards and Gulyeav13 have pointed out that, by using Fey-
nman's path integral formalism,it is possible to express the
averaged time-dependent Green function or the Feynman pro-
pagator of disordered systems in a closed form.
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Fig. 3. Density of states in energy for

disordered systems.
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