ผลของส่วนประกอบทาง ๆ ที่ใช้ในการทำยาเม็คทออัตราการละลายของพาราเซตามอล

นายพจน์ กุลวานิช

001809

วิทยานิพนชนี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญา เภสัชศาสตรมหาบัณฑิต ภาควิชา เภสัชอุตสาหกรรม บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย พ.ศ. 2522

EFFECTS OF VARIOUS ADDITIVES USED IN TABLET FORMULATION ON DISSOLUTION RATE OF PARACETAMOL

Mr. Poj Kulvanich

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Pharmacy

Department of Manufacturing Pharmacy

Graduate School

Chulalongkorn University

1979

Thesis Title	Effects of Various Additives Used in Tablet
	Formulation on Dissolution Rate of Paracetamol
Ву	Mr. Poj Kulvanich
Department	Manufacturing Pharmacy
Thesis Advisors	Pakdee Pothisiri, Ph.D.
	Assistant Professor Vanee Krisnamis
2	
Accepted	by the Graduate School, Chulalongkorn University
in partial fulfi	llment of the requirements for the Master's degree
	S. Buunag Dean of Graduate School
(Associa	te Professor Supradit Bunnag, Ph.D.)
Thesis Committee	
******	Pindhi Sudhi Azomne Chairman
(Profess	or Captian Pisidhi Sudhi-Aromna RTN.)
*******	Plengvidhya, P. Member
(Associa	te Professor Prachote Plengvidhya, Ph.D.)
*******	Vanu Krisnamis Member
	nt Professor Vanee Krisnamis)
	Palidie Pothisini Member
(Dr. Pak	dee Pothisiri)

หวังข้อวิทยานีพนธ์ ผลของส่วนประกอบต่าง ๆ ที่ใช้ในการทำยาเม็คต่ออัตราการละลาย

ของพารา เชตามอล

ชื่อนิสิต นายพจน์ กุลวานิช

อาจารยที่ปรึกษา คร.ภักดี โพธิ์ศิริ

ผู้ชวยศาสตราจารย์วาณี กฤษณ์มีษ

ภาควิชา เภสัชอุตสาหกรรม

ปีการศึกษา 2521

บทคัดยอ

การวิจัยนี้ได้มุงความสนใจอยูที่การศึกษาหาความสำคัญและอิทธิพลที่มีตอการละลายตัว
ของพาราเซตามอลของส่วนประกอบตาง ๆ ที่ใช้ในการทำยาตอกเม็ด ซึ่งเน้นเฉพาะสารปรุง
แตง(additive)แตละชนิด ณ ระดับความเข้มข้นตาง ๆ กัน พร้อมทั้งผลเกิดจากการ
เปลี่ยนแปลงแรงตอกอัดระดับตางกันด้วย โดยการใช้ตัววัด(parameter) ซึ่งสามารถนำมา
เปรียบเทียบให้เห็นได้ชัดเจนคืออัตราการละลาย(dissolution rate) ของพาราเซตามอล
ปริมาณของสารปรุงแตงที่แปรเปลี่ยนไปในแตละส่วนผสมได้จำกัดเฉพาะในช่วงปริมาณที่ใช้เป็นส่วน
ประกอบของยาตอกเม็ดโดยทั่วไป ในการทดลองนี้ได้ใช้วิธีตรวจหาอัตราการละลายด้วยวิธี
rotating diskโดยใช้เครื่องมือที่ออกแบบขึ้นเป็นพิเศษโดยเฉพาะ

จากผลการทคลองสามารถสรุปได้ว่า แลคโตส(lactose)และโพลีไวนีลไพโรลลี— โดน (polyvinylpyrrolidone)ไม่มีผลอยางนับสำคัญในการลดอัตราการละลายของพารา-เซตามอล

การเพิ่มปริมาณของไมโครครีสตัลลินเซลลูโลส(microcrystalline cellulose) และแป้งเบียก (starch paste) มีผลทำให้อัตราการละลายลดลงอยางรวกเร็ว ทั้งทาลค์(talc)และแมก เนเซียมสเตียเรท(magnesium stearate) ทำให้ อัตราการละลายลดลงอยางเห็นได้ชัด แต่แมก เนเซียมสเตียเรทมีผลในการลดอัตราการละลายมาก กวาทาลค์ ทาลค์และแมก เนเซียมสเตียเรทไม่มีอิทธิพลเกี่ยวข้องรวมกัน(Interaction) ในการลดอัตราการละลาย

แป้งข้าวโพค(corn starch)ไม่มีผลตออัตราการละลาย และวิธีการผสมโพลีไวนีล ไพโรลลิโคนโดยการผสมแห้งกอนแล้วเติมตัวทำละลายหรือใช้ในรูปสารละลายไม่มีผลแตกตางกัน

แรงตอกอัดมีผลตออัตราการละลาย เฉพาะในกรณีของส่วนผสมที่มีไมโครครีสตัลลินเซล ลูโลสในปริมาณสูง เมื่อเพิ่มแรงอัดมีผลให้อัตราการละลายลดลง. Thesis Title Effects of Various Additives Used in Tablet

Formulation on Dissolution Rate of Paracetamol

Name Mr. Poj Kulvanich

Thesis Advisors Pakdee Pothisiri, Ph.D.

Assistant Professor Vanee Krisanamis

Department Manufacturing Pharmacy

Academic Year 1978

ABSTRACT

The present studies are focusing on an elucidation of the influences of individual additives at various concentrations and compressional forces on dissolution behaviors of paracetamol. Dissolution rate is used as a comparative parameter to indicate the effects of these variable factors. Various concentrations of additives used in the experiments were varied in the range which was commonly employed in pharmaceutical industries of compressed tablet. Determination of dissolution rates were performed by rotating disk method using a specially designed apparatus.

On the basis of the experimental results it may be concluded as the following:

Lactose and polyvinylpyrrolidone had non-significant retarding effect on dissolution rate of paracetamol tablet.

An increase in the amount of microcrystalline cellulose and starch paste drastically reduced dissolution rate.

Both talc and magnesium stearate decreased the dissolution rate appreciably, but magnesium stearate had the more pronounced retarding effect. Effect produced by interaction of talc and magnesium stearate in combination was found to be non-significant.

Dry corn starch exerted no effect. No difference was detected in dissolution rate between dry mixing prior to activate with solvent and in solution adding of polyvinylpyrrolidone.

The compressional force exerted non-significant impact on dissolution rate except when compressed disk contained high concentration of microcrystalline cellulose which dissolution rate decreased with increasing compressional forces.

I would like to express my sincere gratitude to Dr.Pakdee Pothisiri, Director of Technical Devision, Food and Drug Administration, Ministry of Public Health, for his helpful advice and encouragement throughout this study. I also wish to express my gratitude to Assistant Professor Vanee Krisnamis, Head of the Department of Manufacturing Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for her encouragement and providing me with the opportunity to conduct this study programme.

My gratitude is extended to Professor M.L. Pranod Xumsaeng, Head of the Department of Food Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for the use of his spectrophotometer with excellent facilities.

I am grateful to Assistant Professor Dr. Sompol Prakongpan of the Faculty of Pharmaceutical Sciences, Mahidol University, for his suggestion in fabricating compression die assembly.

This investigation was supported in part by a grant from the Graduate School, Chulalongkorn University, to which I am grateful.

Finally, I gratefully acknowledge the help and encouragement recieved from scores of individuals, too numerous to mention by name.

CONTENTS

	Dage
21620	Page
THAI ABSTRACT	iv
ENGLISH ABSTRACT	νi
ACKNOWLEDGEMENTS	viii
LIST OF TABLES	3
LIST OF FIGURES	xiii
CHAPTER	
I INTRODUCTION	1
II MATERIALS AND METHODS	21
III RESULTS	35
IV DISCUSSION AND CONCLUSIONS	56
REFERENCES	69
APPENDIX	77
VITA	93

LIST OF TABLES

Table		Page
1.	Composition of Paracetamol-Diluent and Paracetamol	
	-Lubricant Mixtures	23
2.	Composition of Drug-Binder Mixtures	24
3.	Combination of Talc and Magnesium Stearate Mixed	
	with Granules	26
4•	Surface Volume Mean Diameter of Drug and	
	Additives Determined by Microscopic Method	36
5.	Effect of Concentration of Additives on Intrinsic	
	Dissolution Rate of Paracetamol from Paracetamol	
	-Additive Mixtures Compressed at 2,000, 3,000, and	
	4,000 lb Using Compression Die Assembly	41
6.	Dissolution Rate of Paracetamol from Mixtures	
	Containing Different Concentration of Dry Corn	
	Starch Compressed at 2,000, 3,000, and 4,000 lb	
	Using Compression Die Assembly	52
7.	The effect of Lubricants in Combination of Talc	
	and Magnesium Stearate on Intrinsic Dissolution Rate	
	of Paracetamol by Factorially Designed Experiment	53

Table		Page
8.	Analysis of Variance of a Factorial	54
9.	The Regression Equations for Dissolution Rate of	
	Paracetamol from Paracetamol-Additive Mixtures	62
10.	The Absorbance of Standard Solution of Paracetamol	
	at 244 nm	78
11.	Dissolution Data by the Method of Nogami et al. in	
	50 ml of 0.1 N HCl at 37° from a Disk of 1.5 cm	
	in Diameter Rotating at 200 rpm	79
12.	Dissolution Profiles of Paracetamol Compressed at	
	2,000, 3,000, and 4,000 lb Using Compression Die	
	Assembly	80
13.	Dissolution Profiles of Paracetamol from	
	Paracetamol-Lactose Mixtures Compressed at 2,000,	
	3,000, and 4,000 lb	81
14.	Dissolution Profiles of Paracetamol from	
	Paracetamol-Microcrystalline Cellulose	
	Mixtures Compressed at 2,000, 3,000, and 4,000 lb	82
15.	Dissolution Profiles of Paracetamol from	
	Paracetamol-Magnesium Stearate Mixtures Compressed	
	at 2,000, 3,000, and 4,000 lb	83

Table		Page
16.	Dissolution Profiles of Paracetamol from	
	Paracetamol-Talc Mixtures Compressed at 2,000,	
	3,000, and 4,000 lb	85
17.	Dissolution Profiles of Paracetamol from	
	Paracetamol-Starch Paste(10 %w/w) Mixtures	
	Compressed at 2,000, 3,000, and 4,000 lb	87
18.	Dissolution Profiles of Paracetamol from	
	Paracetamol-Polyvinylpyrrolidone(in Solution)	
	Mixtures Compressed at 3,000 and 4,000 lb	89
19.	Dissolution Profiles of Paracetamol from	
	Paracetamol-Polyvinylpyrrolidone(Dry Adding)	
	Compressed at 3,000 and 4,000 lb	90
20.	Dissolution Profiles of Paracetamol from	
	Granule-Dry Corn Starch Mixtures Compressed	
	at 2,000, 3,000, and 4,000 lb	91
21.	Dissolution Profile of Paracetamol from	
	Paracetamol-Lubricants Mixtures(Combination of	
	Magnesium Stearate and Talc) Compressed at 2,000	
	and 3,000 lb	92

LIST OF FIGURES

Figure	9	Page
1.	Top: Schematic representation of the stagnant	
	film.	
	Bottom: Concentration gradient in film	15
2.	A. Dissolution profile under non-sink condition.	
	B. Dissolution profile under sink condition	18
3.	The schematic drawing and dimension in cm of	
	compression die assembly	28
4.	The schematic drawing of outer casing assembly	29
5.	The schematic representation of dissolution	
	apparatus	31
6.	Dissolution behavior of paracetamol under	
	non-sink condition as a function of time in	
	50 ml of 0.1 N HCl at 37° from a disk 1.5 cm in	
	diameter compressed at 10,000 lb(4,464.3 kg)	
	rotating at 200 rpm	37
7.	Finite difference diagram for dissolution of	
	paracetamol plotted in accordance with Fig.6	38

Figure		Page
8.	Dissolution behaviors of paracetamol under sink	
	condition at various compressional force in	
	250 ml of 0.1 N HCl at 37° rotating at 50 rpm	
	using compression die assembly	40
9.	Effect of concentration of lactose and	
	compressional force on dissolution rate of	
	paracetamol from paracetamol-lactose mixture	44
10.	Effect of concentration of microcrystalline	
	cellulose and compressional force on dissolution	
	rate of paracetamol from paracetamol-microcry-	
	stalline cellulose mixture	45
11.	Effect of concentration of magnesium stearate	
	and compressional force on dissolution rate of	
	paracetamol from paracetamol-magnesium stearate	
	mixture	46
12.	Effect of concentration of talc and compressional	
	force on dissolution rate of paracetamol from	
	paracetamol-talc mixture	47

Figure		Page
13.	Effect of concentration of 10 % w/w starch	
	paste and compressional force on dissolution	
	rate of paracetamol from paracetamol-starch	
	paste mixture	49
14.	Effect of concentration of polyvinylpyrrolidone	
	(in solution) and compressional force on dissolu-	
	tion rate of paracetamol from paracetamol-	
	polyvinylpyrrolidone mixture	50
15.	Effect of concentration of microcrystalline	
	cellulose and compressional force on dissolution	
	rate of paracetamol plotted according to equation	
	in Table 9. Top: quadratic equation, Bottom:	
	exponential equation	64
16.	Effect of concentration of magnesium stearate	
	on dissolution rate of paracetamol at compressional	
	force of 2,000, 3,000, and 4,000 lb plotted	
	according to equation in Table 9. Top:quadratic	
	equation, Bottom: exponential equation	65
17.	Effect of concentration of talc on dissolution	
	rate of paracetamol at compressional force of 2,000,	
	3,000, and 4,000 lb plotted according to equation	
	in Table 9. Tonequadratic equation Bottome	

Figure		Page
	exponential equation	66
18.	Effect of concentration of 10 % w/w starch	
	paste on dissolution rate of paracetamol	
	at compressional force of 2,000, 3,000,	
	and 4,000 lb plotted according to equation	
	in Table 9. Top:quadratic equation, Bottom:	
	exponential equation	67