PRELIMINARY

This chapter will give some definitions and theorems which will be needed in our investigation.

The materials of this chapter are drawn from reference [3].

1. Generalized semi-metric space

2.1.1 <u>Definition</u>. Let E be a non-empty set. A general ized semi-metric on E is a function

$$d : \mathbb{E} \times \mathbb{E} \longrightarrow \mathbb{R}(> 0)^{*} = \mathbb{R}(> 0) \cup \{ \infty \}$$

- 1) d(x, y) = d(y, x);
 - 2) d(x, x) = 0;
- 3) $d(x, y) \leq d(x, z) + d(z, y)$

for all x, y, $z \in E$.

satisfying

A generalized metric on $\mathbb E$ is a generalized semi-metric on $\mathbb E$ such that

$$d(x, y) = 0$$
 implies $x = y$

for any x, $y \in E$. i.e. if d is a generalized metric 2) becomes

$$d(x, y) = 0$$
 if and only if $x = y$.

A generalized semi-metric (respectively generalized metric) space is a set E together with a generalized semi-metric d (res-

pectively generalized metric) on E and denoted by (E, d). Note that a generalized semi-metric (respectively generalized metric) space is a <u>semi-metric</u> (respectively metric) <u>space</u> if all values of d are in \Re (\geqslant 0). And we can see easily that a metric space is a special case of a generalized semi-metric space.

2.1.2 Definition. Let (E,d) be a generalized semi-metric space.

An open ball with center at $x \in E$ and radius r > 0 is the subset S(x, r) of E, defined by

$$S(x, r) = { y \in E / d(x, y) < r }.$$

A closed ball with center at x ϵ E and radius r > 0 is the subset S [x, r] of E, defined by

$$S[x,r] = \{ y \in E / d(x, y) \leq r \}$$

2.1.3 <u>Definition</u>. A subset G of a generalized semi-metric space (E, d) is called an <u>open set</u> if, given any $x \in G$ there exists r > 0 such that $S(x, r) \subset G$.

2.1.4 Definition. A subset F of a generalized semi-metric space (E,d) is closed if its complement is open.

2.1.5 <u>Definition</u>. A point x of a generalized semi-metric space (E, d) is called a <u>cluster point of A \subseteq E if, for every r > 0 $S(x,r) \cap A \neq \emptyset$.</u>

2.1.6. Definition. Let (E, d) be a generalized semi-metric space. The closure of $A \subseteq E$ is the subset \overline{A} of E, defined by

$$\overline{\Lambda}$$
 = $\left\{ x \in \Lambda / x \text{ is a cluster point of } \Lambda \right\}$.

2.1.7 Definition. A sequence $\{x_n\}$ in a generalized semimetric space (E, d) is said to d-converge to a point $x \in E$ if, given any $\{E_n\}$ 0, there exists a positive integer N such that $d(x_n, x) < \{E_n\}$ for all n > N. The point x is called a limit of the sequence $\{x_n\}$.

Clearly, $\left\{x_n\right\}$ d-converges to x iff $d(x_n, x)$ converges to 0. 2.1.8 Definition. Let f be a mapping from a generalized semi-metric space (E_1, d_1) into a generalized semi-metric space (E_2, d_2) . A function f is said to be continuous at a point $x_0 \in E_1$ if, for any $\xi > 0$ there exists $\delta > 0$ such that for all $x \in E_1$, $d_2(f(x), f(x_0)) < \xi$ whenever $d_1(x, x_0) < \delta$.

The mapping f is said to be continuous on E if it is continuous at every point on E.

2.1.9 Proposition. Let f be a mapping from a generalized semi-metric space (E_1, d_1) into a generalized semi-metric space (E_2, d_2) . Then f is continuous if and only if a sequence $\{f(x_n)\}$ of E_2 d₂-converges to f(x) whenever the sequence $\{x_n\}$ of E_1 d₁-converges to $x \in E_1$.

Proof. Assume f is continuous. Given any E > 0 and $x \in E_1$, there exists S > 0 such that for all $y \in E_1$

 $d_1(x, y) < \delta$ implies $d_2(f(x), f(y)) < \xi$.

If $\{x_n\}$ d₁-converges to x then there exists a positive integer N such that for all $n \ge N$ d $(x_n, x) < \delta$. So that d₂(f (x_n) ,f(x))< ξ . Therefore the sequence $\{f(x_n)\}$ d₂-converges to f(x).

To prove the converse, assume that $\{f(x_n)\}\ d_2$ -converges to f(x) whenever $\{x_n\}\ d_1$ -converges to x_0 . Suppose f is not continuous at a point x_0 . Therefore there exists an $\ell>0$ such that for each $\delta>0$ there is $x'\in E_1$ such that $d_1(x',x_0)<\delta$ and $d_2(f(x'),f(x_0))\geqslant \ell$. So that for each positive integer n, we can choose x_n such that $d_1(x_n,x_0)<\frac{1}{n}$ and $d_2(f(x_n),f(x_0))\geqslant \ell$. Clearly, $\{x_n\}\ d_1$ -converges to x_0 , but $\{f(x_n)\}\ does not d_2$ -converge to $f(x_0)$. This contradicts our assumption. The proof is complete.

2.1.10 Proposition. Let (E, d) be a generalized semi-metric space and $\Lambda \subset E$. Then

d(x, A) = 0 if and only if $x \in \overline{A}$

where

 $d(x, A) = \inf \{d(x, a) / a \in A\}.$

<u>Proof.</u> Assume $d(x, \Lambda) = 0$, suppose $x \notin \Lambda$, then there exist $r_x > 0$ such that $S(x, r_x) \cap \Lambda = \emptyset$. For any $y \in \Lambda$, we have $y \notin S(x, r_x)$, so that $d(x, y) \ge r_x > 0$. Therefore

 $d(x, \Lambda) = \inf \left\{ d(x,y) / y \in \Lambda \right\} \ge r_x > 0$. Contradict the assumption $d(x, \Lambda) = 0$. Therefore $x \in \overline{\Lambda}$.

To show that converse, assume $x \in \overline{A}$. Suppose d(x,A) = r > 0. Since $d(x,y) \ge d(xA) = r$ for all $y \in A$, i.e. there exists r > 0 such that for all $y \in A$, $y \notin S(x,r)$ and hence $A \cap S(x,r) = \emptyset$. Therefore $x \notin \overline{A}$. Contradict the assumption $x \in \overline{A}$. The proof is complete.

2.1.11 Theorem. Let (E,d) be a generalized semi-metric space. Define a relation R on E as follows:

 $(x,\,y) \in \mathbb{R} \quad \text{if and only if } d(x,\,y) < +\infty \ .$ Then R is an equivalence relation on E and E is decomposed into (disjoint) equivalence classes.

We shall call this decomposition of E the canonical decomposition.

- <u>Proof.</u> 1) For all $x \in E$, $d(x,x) < +\infty$, we have $(x,x) \in R$;
 - 2) Since d(x,y) = d(y,x), if $(x,y) \in \mathbb{R}$, then $(y, x) \in \mathbb{R}$;
- 3) If $(x,y) \in R$ and $(y,z) \in R$, then $d(x,y) < +\infty$ and $d(y,z) < +\infty$. Since $d(x,z) \leqslant d(x,y) + d(y,z)$, we have $d(x,z) < +\infty$. Therefore $(x,z) \in R$. The proof is complete.

¹⁾ See appendix

- 2.1.12 Definition. A sequence $\left\{x_n\right\}$ in a generalized semimetric space (E, d) is called a d-Cauchy sequence if, given any $\xi>0$, there is an integer N such that $d(x_n,\,x_{n'})<\xi$ whenever $n,\,n'\geqslant N$.
- 2.1.13 <u>Definition</u>. A generalized semi-metric spece (E, d) is said to be <u>d-complete</u> if every d-Cauchy sequence in E is d-convergent to an element in E.
- 2.1.14 Theorem. Let (E, d) be a generalized semi-metric space. E = U $\left\{ E_{\chi} \mid \chi \in \mathcal{A} \right\}$ be the canonical decomposition and for each $\chi \in \mathcal{A}$ d $_{\chi}$ = d $_{\chi}$ = d $_{\chi}$, the restriction of d to χ χ χ χ χ . Then
 - a) for each $d \in \mathcal{R}$, (Eq , dq) is a semi-metric space;
 - b) for each d, $\beta \in A$, with $d \neq \beta$ $d(x, y) = +\infty$

for any x \in E₄ and y \in E₈;

- c) (E, d) is a complete generalized semi-metric space if and only if for each $\alpha \in \mathbb{N}$, (E, , d,) is a complete semi-metric space.
- Proof. a) Clearly, da is a semi-metric.
- b) Suppose for some d, $\beta \in A$ with $d \neq \beta$, there exists $x \in E_d$ and $y \in E_\beta$ such that $d(x, y) < +\infty$. Therefore x and y are in the some class. Contradict the assumption that

x and y are not in the same class. The proof is complete.

c) Assume (E, d) is a complete generalized semi-metric space. For each $x \in \mathbb{R}$, let x_n be a d_x -Cauchy sequence in E_x. Then x_n is also d-Cauchy in E. Since E is complete, x_n d-converges to a point $x \in E$. Since x_n d-converges to x, hence $x_n \in E$ for sufficiently large n. It follows that $x \in E$. Therefore (E_x, d) is a complete semimetric space.

To prove the converse, suppose that for each $d \in \mathbb{A}$, (\mathbb{E}_{d}, d_{d}) is a complete semi-metric space. Let $\left\{\mathbf{x}_{n}\right\}$ be a d-Cauchy sequence in E. Then there exists a positive integer N such that $d(\mathbf{x}_{m}, \mathbf{x}_{n}) < +\infty$ for m, n \geqslant N so that there exists an $d \in \mathbb{A}$ such that $\mathbf{x}_{n} \in \mathbb{E}_{d}$ for n \geqslant N. Since \mathbb{E}_{d} is a complete semi-metric space, the sequence $\left\{\mathbf{x}_{n} \mid n \geqslant \mathbb{N}\right\}$ d -converges to $\mathbf{x} \in \mathbb{E}_{d} \subset \mathbb{E}$. Therefore (E, d) is a complete generalized semi-metric space.

2. Metric space and the complete metric space

2.2.1 Theorem. The set of all real number X with a function d defined as follows:

$$d(x, y) = |x - y|$$

where x, y are any real numbers, is a metric space. We shall denote this metric space by (\mathbb{R}^1 , d) or simply \mathbb{R}^1 .

Proof. The nonnegative function d satisfies property 1) and 2) in definition 2.1.1. Moreover, for any x, y, z in X, d satisfies property 3) by setting a = x - z, b = z - y in inequality

for any real numbers a, b so that

$$|x-y| \leq |x-z| + |z-y|$$
.

Therefore (X, d) is a metric space.

2.2.2 Lemma. If f and g are any bounded real valued functions defined on a set X then

$$\sup_{\mathbf{x} \in X} |f(\mathbf{x}) + g(\mathbf{x})| \leqslant \sup_{\mathbf{x} \in X} |f(\mathbf{x})| + \sup_{\mathbf{x} \in X} |g(\mathbf{x})|.$$

Proof. Since f and g are bounded real valued functions, f + g is also bounded real valued function. Let

$$a = \sup_{x \in X} |f(x)|, b = \sup_{x \in X} |g(x)|.$$

For any $x \in X$, $|f(x)| \le a$ and $|g(x)| \le b$ so that $|f(x) + g(x)| \le |f(x)| + |g(x)| \le a + b.$

Therefore

$$\sup_{x \in X} |f(x) + g(x)| \le \sup_{x \in X} |f(x)| + \sup_{x \in X} |g(x)|$$

The proof is complete.

2.2.3 Theorem. The set of all continuous functions defined on the closed interval [a, b], with a function d given by

$$d(f, g) = \sup_{a \notin x \leqslant b} | f(x) - g(x) |,$$

is a metric space. We shall denote this metric space by $C_{[a,b]}$.

Proof. Let f, g, h be any three functions in $C_{[a,b]}$. Since $d(f,g) = \sup_{a} |f(x) - g(x)|$

$$d(f,g) = \sup_{a \le x \le b} \left| f(x) - g(x) \right|$$

$$\leq \sup_{a \le x \le b} \left\{ \left| f(x) - h(x) \right| + \left| h(x) - g(x) \right| \right\}$$

By lemma 2.2.2, we have

$$d(f,g) \le \sup_{a \le x \le b} |f(x) - h(x)| + \sup_{a \le x \le b} |h(x) - g(x)|$$

= $d(f, h) + d(h, g)$.

Moreover, d satisfies the properties 1) and 2) in definition 2.1.1 obviously. Our proof is complete.

2.2.4 Lemma. Let f_i , g_i for i=1, 2, ..., n be any bounded real valued functions defined on a set X. Then for any $x \in X$ and i=1, 2, ..., n

$$\sup_{x,i} \left| f_i(x) + g_i(x) \right| \leqslant \sup_{x,i} \left| f_i(x) \right| + \sup_{x,i} \left| g_i(x) \right|$$

Proof. Since f_i , g_i are bounded real valued functions for i = 1, 2, ..., n, hence $f_i + g_i$ is also bounded real valued function for each i = 1, 2, ..., n. Let

$$a = \sup_{x,i} \left| f_i(x) \right|, \quad b = \sup_{x,i} \left| f_i(x) \right|$$

so that for any x and i

$$|f_{i}(x)| \le a$$
, $|g_{i}(x)| \le b$

and hence

$$|f_{i}(x) + g_{i}(x)| \le |f_{i}(x)| + |g_{i}(x)| \le a + b$$
.

Therefore

$$\sup_{x,i} \left| f_i(x) + g_i(x) \right| \leqslant \sup_{x,i} \left| f_i(x) \right| + \sup_{x,i} \left| g_i(x) \right|.$$

The proof is complete.

2.2.5 Theorem. Let $C_{[a,b]}^n$ be a space of n-tuples $f = (f_1, f_2, \ldots, f_n)$ of continuous function f_1, f_2, \ldots, f_n defined on the closed interval [a, b] with a function d given by $d(f, g) = \sup_{x,i} |f_i(x) - g_i(x)|$.

Then $C_{[a,b]}^n$ is a metric space.

Proof. Let f, g, h be any three functions in Cn so that

$$d(f, g) = \sup_{x,i} |f_{i}(x) - g_{i}(x)|$$

$$\leq \sup_{x,i} \{ |f_{i}(x) - h_{i}(x)| + |h_{i}(x) - g_{i}(x)| \}$$

By lemma 2.2.4, we have

$$d(f,g) \le \sup_{x,i} |f_i(x) - h_i(x)| + \sup_{x,i} |h_i(x) - g_i(x)|$$

$$= d(f, h) + d(h, g)$$

and hence d satisfies property 3) of definition 2.1.1. Moreover, d satisfies properties 1) and 2) of definition 2.1.1 obviously. The proof is complete.

2.2.6 Lemma. Cauchy sequence in R is bounded.

Proof. Let $\{x_n\}$ be a Cauchy sequence in \mathbb{R}^1 . Let $\mathbb{E}=1$ there exists N such that

$$|x_n - x_m| < 1$$

for all $m, n \geqslant N$. Since

$$|\mathbf{x}_{n}| \leq |\mathbf{x}_{n} - \mathbf{x}_{N}| + |\mathbf{x}_{N}|$$

$$|\mathbf{x}_{n}| \leq |\mathbf{x}_{n} - \mathbf{x}_{N}| + |\mathbf{x}_{N}|$$

$$\leq |\mathbf{x}_{N}| + 1$$

for all $n \ge N$. Let

 $\label{eq:max} \text{M} = \max \ (\ | \ \mathbf{x}_1 |, \ | \ \mathbf{x}_2 |, \ \cdots, \ | \ \mathbf{x}_{N-1} |, \ | \ \mathbf{x}_N \ | + 1 \),$ therefore $| \ \mathbf{x}_n | \leqslant \ \text{M} \ \text{for all n.}$ The proof is complete.

2.2.7 Proposition. The metric space (\mathbb{R}^1 , d) is complete Proof. Let $\{x_n\}$ be a d-Cauchy sequence of points in \mathbb{R}^1 . Given any $\{\xi > 0\}$, there exists an N such that

$$|x_n - x_m| < \frac{\xi}{2}$$

for all $m, n \ge N$. Let

$$B = \left\{ \alpha_{c}, \alpha_{1}, \dots \right\},\,$$

B has a lower bound namely - M, since - M \leqslant x_n \leqslant M $\,$ for all n, So that B has the greatest lower bound. . Let

$$x = \inf B$$

then there exists α_k such that

$$x \leqslant A_{k_0} < x + \frac{\varepsilon}{2}$$
(1)

where $\mathbf{d}_{k_0} = \sup_{\mathbf{n}} \mathbf{A}_{\mathbf{N}+k_0}$. Therefore there exists $\mathbf{x}_{\mathbf{m}} \in \mathbf{A}_{\mathbf{N}+k_0}$ such that

$$\alpha_{k_0} - \frac{\varepsilon}{2} < x_m \leq \alpha_{k_0}$$
(2)

where $m \ge N + k_o$.

By equation (1) and (2)

$$x - \frac{\varepsilon}{2} \le \lambda_{k_0} - \frac{\varepsilon}{2} < x_m \le \lambda_{k_0} < x + \frac{\varepsilon}{2}$$

$$x - \frac{\varepsilon}{2} < x_m < x + \frac{\varepsilon}{2}$$

and hence $|x_m - x| < \frac{\varepsilon}{2}$.

Now, for any n≥ m we have

$$|x_{n} - x| \le |x_{n} - x_{m}| + |x_{m} - x|$$
 $< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

Therefore $\left\{ \mathbf{x}_{n} \right\}$ converges to \mathbf{x} . The proof is complete.

2.2.8 <u>Definition</u>. Let $\{f_n\}$ be a sequence of functions from an arbitrary set X into a metric space (Y, d). Then $\{f_n\}$ is said to <u>d-converge uniformly</u> to a function $f: X \longrightarrow Y$ if,

for every $\ell > 0$, there exists a positive integer N such that $n \ge N$ implies $|f_n(x) - f(x)| < \ell$ for all $x \in X$.

2.2.9 Lemma. Let $\{f_n\}$ be a sequence of continuous functions on [a,b] which converges uniformly to f, then f is continuous on [a,b].

Proof. Given any $\xi > 0$, there exists a positive integer N such that for all $n \ge N$ $|f_n(x) - f(x)| < \frac{\xi}{3}$ for all $x \in [a, b]$. Let x_0 be any element in [a, b] so that f_N is continuous at x_0 , i.e. there exists $\delta > 0$ such that

$$|x - x_0| < \delta$$
 implies $|f_N(x) - f_N(x_0)| < \frac{\xi}{3}$.

Therefore we have

$$|f(x) - f(x_0)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(x_0)| + |f_N(x_0) - f(x_0)|$$

$$< \frac{\xi}{3} + \frac{\xi}{3} + \frac{\xi}{3} = \xi$$

whenever $| x - x_0 | < \delta$. This completes the proof.

2.2.10 Proposition. The metric space $C_{[a,b]}$, where d is defined in theorem 2.2.3, is complete.

Proof. Let $\{f_n\}$ be any d-Cauchy sequence in a metric space $C_{[a,b]}$. Then, given any $\xi>0$, there exists a positive integer N such that

$$d(f_{n}, f_{n'}) = \sup_{a \le x \le b} |f_{n}(x) - f_{n'}(x)| < \frac{\xi}{2}$$

for all n , $n' \geqslant N$. Therefore we have

(*)
$$|f_n(x) - f_{n'}(x)| < \frac{\varepsilon}{2}$$

for all n, $n \ge N$ and $x \in [a, b]$. For each x fixed in [a, b], the sequence $\left\{f_n(x)\right\}$ forms a - Cauchy sequence in \mathbb{R}^1 . Since \mathbb{R}^{\uparrow} is complete, $\{f_n(x)\}$ converges to an element in \mathbb{R}^{\uparrow} . Let

$$c_{x} = \lim_{n \to \infty} f_{n}(x)$$

 $c_{\mathbf{x}} = \lim_{n \to \infty} f_{\mathbf{n}}(\mathbf{x})$ Now we define a function f on [a, b] such that

$$f(x) = c_x$$

for all $x \in [a, b]$. Then we have

$$f(x) = \lim_{n \to \infty} f_n(x).$$

for each x € [a, b].

By taking n goes to + oo in (*), we have

$$|f_n(x) - f(x)| \le \frac{\xi}{2} < \xi$$

for all $n \ge N$ and $x \in [a, b]$, i.e. $\{f_n\}$ d-converges uniformly to f. By lemma 2.2.9, we have $f \in C_{[a,b]}$. Thereforc $\{f_n\}$ d-converges to $f\in C_{[a,b]}$. The proof is complete.

2.2.11 Proposition. The metric space $C_{[a,b]}^n$, where d is defined as in theorem 2.2.5, is complete.

Proof. Let
$$\{f^{(p)}\}=\{(f_1^{(p)}, f_2^{(p)}, ..., f_n^{(p)})\}$$
 be a

d-Cauchy sequence of continuous function of a metric space Cn [a,b].

Given any $\varepsilon > 0$ there exists a positive integer N such that

$$d(f^{(p)}, f^{(q)}) = \sup_{x,i} |f_i^{(p)}(x) - f_i^{(q)}(x)| < \frac{\epsilon}{2}$$

for all $p, q \geqslant N$ so that

$$(**)$$
 | $f_{i}^{(p)}(x) - f_{i}^{(q)}(x)$ | $< \frac{\varepsilon}{2}$

for all p, q \geqslant N , x \in [a, b] and i = 1, 2,..., n. For each x and i fixed $\left\{f_{\mathbf{i}}^{(p)}(x)\right\}$ forms a Cauchy sequence in \mathbb{R} . Since \mathbb{R} is complete, $\left\{f_{\mathbf{i}}^{(p)}(x)\right\}$ converges to an element in \mathbb{R} . Let

$$c_{i,x} = \lim_{p \to \infty} f_i^{(p)}(x)$$

for i = 1, 2, ..., n. Now we define the functions f_i on [a, b] such that

$$f_{i}(x) = c_{i,x}$$

for all $x \in [a, b]$ and i = 1, 2, ..., n. Hence

$$f_{i}(x) = \lim_{p \to \omega} f_{i}^{(p)}(x)$$
.

So that there exist positive integers N; such that

$$|f_{i}^{(p)}(x) - f_{i}(x)| < \epsilon$$

for all $p \ge N_i$, $x \in [a, b]$ and i = 1, 2, ..., n. Let $N = \max \{N_1, N_2, ..., N_n\}.$

If $p \geqslant N$, then

$$d(f^{(p)}, f) = \sup_{x,i} |f_i^{(p)}(x) - f_i(x)| < \epsilon$$
.

Therefore {f(p)} d-converges to f.

By taking q goes to $+\infty$ in (**), we have

$$|f_{i}^{(p)}(x) - f_{i}(x)| < \epsilon$$

for each $i=1, 2, \ldots, n$ and $x \in [a, b]$, i.e. $\left\{f_i^{(p)}\right\}$ d-converges uniformly to f_i . By lemma 2.2.9, f_i are continuous, for $i=1, 2, \ldots, n$ and hence $f=(f_1, f_2, \ldots, f_n) \in C^n_{[a,b]}$. The proof is complete.

2.2.12 Proposition. If (Y, d) is a closed subspace of a complete metric space (X, d). Then (Y, d) is complete. Proof. Let $\left\{x_n\right\}$ be a d-Cauchy sequence in Y C X. Since (X, d) is complete and Y is closed, we have $\left\{x_n\right\}$ d-converges to a point x \in Y. The proof is complete.