CHAPTER IT

PRELIMINARY

This chapter will give some definitions and theorems which
will be needed in our investigation.

The materials of this chapter are drawn from rcference [3} .

le Generalized semi-metric space

2elel Definition. Let-E be a non~empty set. A generalizesd

semi-metric on E is a fanction

*
d ¢ EXE/ s R(P 0 =R(» o)UgoO}

satisfying
1) alx, y) = aly, x) g
2) dalx, x) = 03

3) dAdlx, y) £ a(xy 2z) + dlz¢ B
for all %, y, z €_E,
| A generalized metric on I is a generalized semi-metric on E
such that
d(x, y) = O dmplies x = y

for any x, y € E, i.e. if d is a generalized metric 2) pecomes

d(x, y) = 0 if ang only if x = y.
A ggperalizedyggmi:ggﬁric (respectively generalized metric)

space is a set E together with a generalized semi-metric d (res-



pectively gencralized metric) on E and denoted by (E, 4).

Note that a generalized semi-metric (respectively generalized
metric) space is a semi-metric (respectively metric) space if all
values of d are in R ( = 0). A4And we can see easily that a metric

space is a special case of a generalized semi-metric space.

2ele2 Definition. Let (Z,d) be a generalized semi-metric space.
An open ball with center/at x € T and radius r > 0 is the
subset S(x, r) of E, defined by

S(x, r) —= { ¥y e E/fdGe y) < r } .

[

A closed ball with/center'at x.€ E and radius r > O is the

subset S [x, r] of B, defided by

S [xy, r] = { Y EE /dlx, y) £ r }

2ele3 Definition. A subset G of a generalized seni-metric space

(£, d) is called an‘open set if, given any x € G there cxists r > O

such that S(x, r) & G.

2.1k Definitions A subset F of a generalized seni-netric space

(E,d) is closed if its complement is open.

2ele5 Definition. A point x of a generalized semi-mctric space
(B, d) is called a cluster point of A€ & if , for cvery r = O

S(x,r) N A + 4,

2el.6. Definition. Let (I, d) be a generalized semi-metric spacc.

The elesurc of A © E is the subsct A of B, defined by

A = {x €4 / x is a cluster point of .-’L} o



2e1l47 Definition. A sequence {x ]

| %p in a generalized scmi-

metric space (E, d) is said to d-converge to a point x € E

if, given any ¢ > O, therc exists a positive integer I such
that d(x , x) < € for all n > N. The point x is called a
limit of the sequence é Xn} .

Clearly, {Xn } d-converges to x iff d(xn, x) converges to O.

2eled Definition. Let f be a mapping from a generalized
scmi-metric space (El’ dl) into' & generalized semi-metric
space (E,, dy). A functionf/is said to be continuous at a

Eﬂi@iaazowfm§l if, for any” /&/ > O'therc exists & > 0O such
that for all x € By, (06, f(xo)) < €  whenever
dl(x, XO) < Cg °

The mapping f is said t& Be €ontinuous on & if it is

continuous at every point on i

2ele9 Proposition. Let. f be a wapping. from e generalized

scni-metric space (El, dl) intoa generalized semi-metric space
{

(32, dz). Then f is continuous if and only if a sequence {f(xn)}

of 32 dpo-converges to f(x) whenever the sequence { Xn} of Eq

d,~converges to x € By

Proof, Lssume f is continuous. Given any £ ) O and x € El’

there exists & > 0 such that for all y € E,
d)(x, y) < ) implies dz(f(x), f(y)) < € .
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It { X, } dl-converges to x then there exists a positive integer
N such that for all n > N d(x_, x) < & . So that d,y(£(x ), £(x))< €.
Therefore the sequence { f(xn) } d,-converges to f(x).

To prove the converse, assume that { f(xn)} d,-converges to

f(x) whenever { X } d,=-converges to x. Suppose f is not continuous
o n 1 °

at a point X, « Therefore there exists an € > O such that for
cach & > 0 therc is ¥ € E, such that dl(x: xo) < 3 and

dz(f(xl), f(xo)) = € . So that for ecach positive integer n, we

F
can choose x such thag dl(xn,xo) Z<=z.and d2(f(“n)’ £f(x )) > €.

-

Clearly, {Xn/¥ dl-convorgos to X but {f(xn) } docs not da—convcrge

to f(xo). This contradicts our sssumption. The proof is conpletce.

2110 Proposition. Let (,-d) be 2 generalized scnmi-nctric space

and A< I, Then

a(x, A) 0 if and only if x ¢ 4

1

where

dlx, 4)

inf { R BINETRE ¢ A } .
Proof. Assume d(x,-a) =0, suppose X tfh then therec exist

r > 0 such that S(x, rx) N4 = @, For any y € &, we have

v ¢ 5(x, rx), so that da(x, y) > r_ > O. Dherefore
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d(x, A) = inf { Alxyy) /vy € A } >r_> 0. Contradict the

assumption d(x, A) = 0., Thercfore x € ..

To show that conversec, assumec x € Qe Suppose d(x,i) = r > 0.
Since d(x, y) > d(x.A) = r for all y € i, i.c. there exists
r > O such that for all y € &, y ¢ S(x, r) and hence 4N S(x,r) = Z.
Thercfore x & L. Contradict the assumption x € Lo The proof is

complete,

2e1.11 Theoren. Let (E,d)¥ bera gemeralized semi-metric space.
Define a relation R on E 4¢/follows
(xy, ¥) € R/ ¥f/4nd 6hly ifd(x, y) < + @ .
. . (" 1) e ) .
Then R is an equivalenceé relation on't and I is decoriposed into
(disjoint) equivalence c¢lasses.
We shall call thiscdecomposition of 1 the canonical decompositicn.

Proof. 1) For all ¥'€ &, alx,x) < +.9 , we have (x,x) € R;

2) Since d(x,y) = a(y,x), if (¥,y) € R, then (y, x) € R

<e

3) If (x,y) € R and (y, z) € R, then d(x, y) < + o0
and d(y,z) < + © . Since d(x,z) ¢ da(x,y) + aly,z), we have

d(x4z) < + e o Therefore (x,z) € R. The proof is completc.

1)
See appendix
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2elel2 Definition. A sequence { Xn} in a generalized semi-

metric space (E, d) is called a d-Cauchy sequence if, given

any £ » O , there is an intcger N such that dlx,y x) < €

/
whenever n, n > N

21413 Definition. A generalized semi-metric spece (%H, d)
is said to be d-complete if cvery d-Cauchy sequence in X is

d-convergent to an eclement din Ze

2elell Theorem. Let (E, @) Be n'generalized semi-nctric

space. B = U {}i(/ oL E 7* } be the canonical decomposi-
tion and for each o €K /a I B R , the restriction
k .'i:o(A E"

of d to @‘ XI5, o Then
a) for each o € K (@‘ v &, ) is a semi-metric spaccy
b) for each o s, g €K with da B
alx, y) % T
for any x € Ei and 'y € ﬁﬁg .

c) (E, d) is a complete goneralized semi-metric space if
and only if for ecach of €%, (%K , qi ) is a complete scmi-metric
space.

Proof. a) Clearly, d, is a semi-metric.
b) Suppose for some s B € & with & 2+ 3, there

cxists x € §;, and y € I such that a(x, y) < + & . Thercfore

¥ and y arec in the some class . Contradict the assumption that



o

x and y are not in the same class, The proof is complctc,
c) Assume (Z, d) is a complete generalized semi-netric

spacc. Tor each o € % , let {}%1} be a q* -Cauchy scqucnce

in qi » Then {jxn} is also d;Cauchy in . Since I is complete,
{)%1} d-converges to 2 point x € T. Since {Jﬂl} d-converges
to =z, hence d(x,, x) < + 00  for sufficiently large n. It
follows that x € E'.L- . Thcrefore(E.L ,(33 is a comnplete semi-
mctric space. -

To prove the conversdy, suppusc.that for each o € W ,
(Q‘ ' dd ) is a comp¥eps sgmiQMctric space. Let {X§1} be a
d-Cauchy sequence in“E,/ /ihsn fherc cxists a positive integer N
such that d(xm, xn) < A /oo sforim, n > N so that there exists

an ol € R such that x ‘€SB for/n > N. Since 1 is
corplete semi-metri@hspace, the scoguengé { X, / n> N }
d& -converges to x GPE E-E . Pherefore (T, 4) is o complete

generalized semi-metric ispaces

4

2e Metric space and the complete metric space

Zat el 2239322. The set of all rcal number X with 2o function
d defined as follows :
dlx, ' v) = | x -y |

wherc x, y are any real numbers, is a metric space. We shall

. 1
denote this metric space by (R, d) or simply P .
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Proof. The nonnegative function d satisfies property 1) and 2)
in definition 2,1.1. Moreover, for any x, y, z in X, @ satisfies
property 3) by setting a = x = z, b=z - y in inequaligy
la + b | $lal + | vl
for any real numbers a, b so that
|x -5 | ¢ |x -z |« |z - y’ .

Therefore (X, d) is a metric space.

2ele2 Lecmma. If f and gorc axy-bounded real valued functions
defined on a set X thén

um | £+ sup | g(x) | .
A x€ X

sup | £(x) + g(x) ¢/
x €X 2

0

[l

Proof. Since f and g/are/ bounded reakivalued functiong, £ + g

is also bounded real valued “function. Let

a = sup | f(ﬁ)l Wak, = sup | g(x)
x €X x €X

For any x € X, l f(x) fé a_ and lg(x) l& b so that
| f(x) + g(x)| < | f(x)l A |g(x)‘ La+b .
‘herefore

sup ' f(x) + g(x)l < sup ' f(x)l + sup | c(x) |
x €X x€X x €X

The proof is complete.

2+233 Epqugg. The set of all continuous functions defined on

the closed interval [a, b] y with a function d given by

a(f, g) = sup i f(x) - g(x) | )
aéx &b '
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is o metric space. We shall denotc this metric space by C[a,b]'

Proof, Let f, gy h be any thrce functions in C[,1 b] ° Since
oA 2y

i

a(f,g) sup l flx) - g(x)l
b

alxé
< mp ] 260 - 56O |4 p0O - 00 l}
e b.

By lemma 2.2.2 , we have

a(f,g) £ sup | £(=)/ A70(x) | + sup ‘ h(x) - g(x)i
afx<hb as$x £hb

a(f, by 47d(h, 5)s
Moreover, 4 satisfies”th¢/prapertics. 1) and 2) in definition

2elal obviously. Our/ propf is)complcte.

2e244 Lemma., Lot .0 gk £6r %= 1, 2,..., n be any bounded

real valued functions defined® on a-sét X. Then for any x € X

and I = 1y 245eey 0
sup fi(x) + gi(x) £ sup fi(x) !+ sup ’ &i(x)'
Xyl KR Xyl

Proof. Since fivgj arelbounded real lvalued functions for
i=1, 2yceey ny, hence fi+ s is also bounded real valued
function for ecach i =1, 2, .o., ne. Let

a = sup ‘ f.(x)’ y b = sup ’ fgi(x)l
X,1 * Xyl

so that for any x and i
l fi(x)l £ a Igi(x) | ¢v

and hence
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l £5(x) + g5 (x) | £ l fi(x)| + gi(x)' La+b .,

Thercfore

sup If (x) + bl(X)‘ sup
Xy d b i

£ (x) i sup | g4 (3
The proof is complete.

2+2¢5 Theorem. Let C?F b] be a space of n-tuples
Ly

f = (flva""’ f,) of continuons function f1afs0eee, Ty

defined on the closed interval [a, bl with a function 4 given by

a(f, g) =" =p !fi(x) =g (x) | .
KA/l

n . A
Then C[n b] is a metyic /spact:
et |

s that

Proof. Let f, g, h “b¢ any threé¢ functions in c[a b1

a(f, g) = sup }fi(x) - g;(x) |
Xel

1

4 sup {i fi(X) = hi(X)I + lhi(X) = BI(X)I

gL

(o~

M

By lemma 2.2.4 , we hawve

a(f,g) [ .&isup lf GBN -UN (x)‘ ¥ sup ' h; (x) - g (X)‘
Xyi

= d(f, h) + da(h, g)

and hence d satisfies propcrty 3) of definition 2.1.1. lMorcover,
d satisfies properties 1) ond 2) of definition 2.1.1 obviously.
The proof is complete.

1
2.246_Lemma. Cauchy sequence in [R  is bounded.
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1
Proof. Let {:xn:}be a Cauchy scquence in R . Let £ = 1
there exists N such that
- | 1
' n T ¥y | <
for all my n 2 N . Since
X = X = X + X
n n N N
!Xn | S ! Xn = ¥ l + | XN'
< IXN l + .1
for 211 n > N, Let
M = max £ !xl\, [x2| AR\ !XN-ll ,| XN| + 1),

therefore |x |< M fof ALL W& The proof is complete.

1
24247 Proposition. The/metric spice’ ( R, d4) is complete

1
Proof. Let {xn:}be a d-Cauchy scquenee of points in R .

Given any £ > O, there exists an N.sHigh that

£
lxn 3 Xm{ f 3
for all my n 2 Ni Let
r 1
AN+k = { X, / n>N+ k, for all nonnegative integers k j

so that f,, D A

e 3 cmma 2 6 Iy is bounded
iy N+l = °°° o 3Y lemma 2.2.6, W4k 1S boun

above by a real number M. So that each AN+k has the least

T = ° = ¥ _("“ > > oooooooo
upper bound. Let dk sup Ay ,os  then & > dj/
Let

B o= {d, A e }
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B has a lower bound namely - M, since - M éfxn‘g M for all n,
Sc that B has the greatest lower bound, . Let

x = 1inf B

then there exists dk such that

o
x &, <x+ ¢ sssnsex GL)
k
0
vhere dk = sup AN+k‘ . Therefore there exists x € &y )
0 o o
such that
d— g < X " d‘ © 00000 o0 oc(2>
k 2 m k
E o
where m 3> N + ko°
By equation (1) and (2)
3 € 13
- = £ INE =
X -2 & dko 3 Tx € iko< X + 5
£ 3
X = = <ot -
2 i 2
£
and hence lxm - X t 8 5
Now., for any n3 m we have
‘ n = @ | < | S S T RS
£ &
< + = =
272
Thercfore { xn} converges to x. The preooef is complotc.
2+2.8 Definition. Let {fn}'bc a sequence of functions from

an arbitrary set X into a metric space (Y, d). Then {jfn} is

»

said to d-converge uniformly to a function f : X—Y if,




1k

for every € > 0, there cxists a positive integer N such that

n >V implies | £(x) - £(x) | < € for all x € X,

2.2.9 Lemna, Let {‘fn } be a sequence of continuous functions

on [ a, b { which converges uniformly to f, then f is continuous

on [n, b] .

Yy

Proof. Given any > 0, therc exists a positive intcger N
such that for all n » N 4 £ 2 8(x) | < % for all

x €[a, b] . Let X4 be-anyrclement in [a, b] so that fy
is continuous at X, i.é. thcre exists © > 0 such that

| x = x, ¥V £ /&7 ifplics | £y (x) - fN(xo)l < % .
Thereforc we have
| £0) = £0x) | € 20 g g o | 2y (x) = 20|

+ !fN(XO\) - f(Xo)i

ST €
<-- — - = §
317513

vhenever | x - xo] < § Thig ) completés the proof.

2¢2410 Proposition. The metric space C[ b] ° where d is
- ".:‘~’
defined in theorem 2.2.3, is conmplete.
Proof.  Let { £, } be. any d-Cauchy sequence in a nectric space
CL.n b] ° Then ,given any £ > O, there exists a positive integer
ol

N such that

alfy £p) = swp | £ () -1, ()] <
a€«x<h

MM
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for all n , n' 2 N. Thercforc we have

(%) | £,(x) - £/ (x) | <

nor ™

for all n, n’ 2 N and x € [a, b ]. For each x fixed in|[ a, b],

the sequence {jfn(x) } forms a - Cauchy sequence in R . Since

i 1
R is complete, {jfn(X)} converges to an element in M .
Let
c, = _lim fn(x)
N--5 o

Now we define a funmcti¢n £on f[a, b] such that

f(x) =

for all x € [ a, b}/ /Then we' have

fx) =/ 1im f (%),
n
== 00

for each x € [ a, b ],

g . #. & *
Dy taking n goes to + 6o in-(%) s we have

|2, Gh< 260 | € E02 ¢

for 21l n 2 N amd @ €9hsnblnyine: {fq } d-converszes

unifornmly to f. . Byl lémna 2629 s melhave ! If € C, ni e here-

fore ifn} d-converges to f € C[.,l bl ° The proof is complete.
o,

2e2e1l Proposition. The mctric space C?q b1 » where & is  gen
. Mlagt |
fined as in theorem 2.2.5, is complete.

Proof. Lot {f(p)}% = { (fip) . fép), el fr(lp))} be a

’ . . : n
d-Cauchy sequence of continuous function of a metric space C_ b) *
(A’

001883
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Given any £ > O there ecxists 2 positive integer N such that

d(f(p), f(q)) =  sup l f§p)(x) & féq)(x)| 2 g
Ked

for all py g = N so that

(* %) | eP) () - fgq)(x)i < E
i i 2

foroll pyg = N,y xe lay, B Bd A= 1y Byeewy Be Tow

each x and i fixed { fip)(x)} forms a2 Cauchy scquence in

R . Since R is complete, {‘fi? §x)j converges to an
: >

element in R . Let

- (p)
[ ~3 - 7
fop = //Adin £ X
D=2
foer 1 =1, 2, «o., 06/ Now'we\ define the functions f; on

2, b] such that

fi(x) = Gi X
for all x € [a, bwmed—F=4, 2ys54% n. Hence
O L S
P2

So that therc exist positive integers Ni such that
|26y - £ 0] < %
s 1 .

for all p > Ni s X & layb] 88d = UiP5esey B = Let

r—

[ |
N = max iNl’ N2’°'°’ an 5

P, 0 = e | Pl <
Hgd
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r 3
Therefore | f(p)} d-converges to f.

By taking q goes to + o in (% ¥), we have

fgp)(x) - fi(x)! & e

Tap oieh = 1y Pyuway @ and € [ay Bl » T8

(p)?

d=converges uniformly to fi. by lemma 2.2.9, f3 arc continuous,

fOT i = 1' 2,-09’ n and hOnCO f = (fl, fz,o.o, fn) 6 C?Q b] °
oot )
The proof is complete. ,széé/

s

Q
Ze2e12 Proposition. ) ﬁ}\\{gjﬁ“blosed subspacec cf a

/ -

/
complete metric spac f}yﬁJThon (%, 1) is completc.
-

Proof. Let | x fﬁ;@iﬁghy sequence in Y € X. Since

e L nj
(Xy d) is complete and Y/jé#&iégéd, we have {~xn} d-converges
/ A X ﬁﬁ‘} A\l

| (4
to a point x ¢ Y. Thea\’””fgigz"ompleteo
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