ระบบการจักตัวของวิถีประสาหที่เข้ามาสู่นิวเคลียสอักคัมเบนส์ในหนูขาว: การศึกษาโดยใช้ฮอร์สเรดิช เปอร์ออกซิเดส

นางเจียมจิต แสงสุวรรณ

วิทยานิพน ก็นี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญา เภสัชศาสตรมหาบัณฑิต ภาควิชาสรีรวิทยา บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย พ.ศ. 2527

ISBN 974-563-960-5

TOPOGRAPHICAL ORGANIZATION OF THE AFFERENTS TO THE NUCLEUS ACCUMBENS OF THE RAT: A HORSERADISH PEROXIDASE STUDY

Mrs, Jiamjit Sangsuwan

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Pharmacy
Department of Physiology
Graduate School
Chulalongkorn University
1984

Topographical Organization of the Afferents Thesis Title

to the Nucleus Accumbens of the Rat:

A Horseradish Peroxidase Study.

By

Mrs. Jiam jit Sangsuwan

Department

Physiology

Thesis Advisor

Assistant Professor Boonyong Tantisira

Thesis Co-advisor

Assistant Professor Kanoknart Yingcharoen, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree.

> (Associate Professor Supadit Bunnag, Ph.D.)

Thesis Committee

Paral Taymade Chairman

(Associate Professor Pavich Tongroach, Ph.D.)

Boony ang Tamhsira Member

(Assistant Professor Boonyong Tantisira)

Kanolinart Yingcharow Member

(Assistant Professor Kanoknart Yingcharoen, Ph.D.)

Boonsirm Willy achum Member

(Assistant Professor Boonsirm Withyachumnarnkul, M.D., Ph.D)

Copyright of the Graduate School, Chulalongkorn University

หัวข้อวิทยานิพนธ์

ระบบการจัดตัวของวิถีประสาทที่เข้ามาสู่นิวเคลียสอัคคัมเบนส์

ในหนูขาว การศึกษาโคยใช้ฮอร์สเรคิช เปอร์ออกซิเคส

ชื่อนิสิต

เจียมจิต แสงสุวรรณ

อาจารย์ที่ปรึกษา

ผู้ช่วยศาสตราจารย์ บุญยงค์ ตันติสิระ

อาจารย์ที่ปรึกษร่วม

ผู้ช่วยศาสตราจารย์ คร.กนกนาถ ยิ่งเจริญ

ภาควิชา

สรีรวิทยา

ปีการศึกษา

2527

การศึกษาถึงวิถีประสาทนำเข้านิวเคลียสอัคคัมเบนส์ โดยวิธีฮอร์สเรคิช เปอร์ออกซิเดช (เอ็ช อาร์ พี) พบว่าหลังจากฉีดเอ็ช อาร์ พี ไปยังบริเวณต่าง ๆ ของนิวเคลียสอัคคัมเบนส์ จะพบ เชลที่ถูกเลเบลด้วย เอ็ช อาร์ พี ที่ เอ็นโทไรซ์นอล คอร์เทคซ์, นิวเคลียส อมิกดาลาพารัส บาโส— แลทเทอรัล และพารัสบาโสมีเดียล, ฮิปโปแคมปัส, ด้านล่างของสูบิคูลัม, นิวเคลียสของทาลามัส ซึ่งได้แก่พาราฟาสิคูลาร์นิวเคลียส, พาราเวนตริคูลาร์ นิวเคลียส, ริวเนียน นิวเคลียส, นิวเคลียส ของทาลามัสส่วนกลาง, เวนทรัลเทกเมนทัล นิวเคลียส, ซับสแทนเทีย ในกรา, อินเทอร์พีดันคูลาร์ นิวเคลียส และคอร์ซอล ราเฟนิวเคลียส

จากการศึกษาพบว่ามีการจัดระบบการเรียงตัวของวิถีประสาทนำเข้านิวเคลียสอัคคัมเบนส์ เช่น นิวเคลียสบริเวณลิมปิค จะส่งวิถีประสาทเข้ามายังส่วนบนและส่วนกลางของนิวเคลียสอัคคัม— เบนส์ ส่วนวิถีประสาทจากมีโสลิมปิค พบว่ามีการเข้ามายังทุกส่วนของนิวเคลียสอัคคัมเบนส์ Thesis Title Topographical Organization of the

Afferents to the Nucleus Accumbens of

the Rat: A Horseradish Peroxidase Study.

Name Mrs. Jiamjit Sangsuwan

Thesis Advisor Assistant Professor Boonyong Tantisira

Thesis Co-advisor Assistant Professor Kanoknart Yingcharoen, Ph.D.

Deaprtment Physiology

Academic Year 1984

ABSTRACT

Afferent connections of nucleus accumbens were investigested by a retrograde axonal transport of horseradish peroxidase (HRP). Following electrophoretic injection of HRP into various regions of the nucleus accumbens labeled cells were observed in the entorhinal cortex, the nucleus amygdaloideus basalis, pars lateralis and pars medialis, hippocampal field CA l ventral portion of subiculum thalamic nuclei including parataenial nucleus parafasicular nucleus, paraventricular nucleus reuniens nucleus, medialis thalamic nucleus both pars medialis and pars lateralis, ventral tegmental nucleus, substantia nigra, interpeduncular nucleus and dorsal raphe nucleus.

The afferent connections to the nucleus accumbens were observed to be topographically organized that limbic afferents terminated in the rostral and middle part while termination

of mesolimbic distributed throughout the nucleus.

The functional role(s) of the nucleus accumbens in relation with the limbic-mesolimbic and motor system were discussed.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor,
Assistant Professor Boonyong Tantisira, for his advice,
encouragement and support throughout this study.

Special thanks and acknowledgement are due to
Associate Professor Dr. Pavich Tongroach, Head of Department
of Physiology. Faculty of Phamacy, Chulalongkorn University,
for his kind helps in providing me the opportunity to study
in the Department and also assisting and guiding me in
raising this thesis topic.

I would like to extend my gratitude to Assistant

Professor Dr. Boonsirm Withyachumnarnkul for having provided

the guidance and knowledge of the first look for HRP-labeled

cells under light microscope.

Sincere and warm appreciation of kind and valuable help is due to Assistant Professor Dr. Kanoknart Yingcharoen an instructor of Laboratory of Neurobiology, Mahidol University, for her precious guidance, assistance, encouragement and kindness and understanding. The success of this study is greatly depended upon her helps that always remind me of what she did for me during this study.

Thanks are due to Associate Professor Pongsak

Kanluan for his generous assistant and advice. I would

also like to express my appreciation to Miss. Anongwan Piroj

and staff of Laboratory of Neurobiology, Mahidol University

and staff of Pathology Unit, Pramongkutklao Military Hospital for their skillfull technical assistance and support during my thesis study.

Finally, I would like to extend my grateful thanks to the Graduate School, Chulalongkorn University for the financial support in conducting this study.

CONTENTS

	PAGE
บทคัดยอภาษาไทย	i
ABSTRACT	ii
ACKNOWLEDGEMENTS	iv
LIST OF TABLES	vii
LIST OF PLATES	viii
LIST OF FIGURES	ix
ABBREVIATIONS	xi
CHAPTER 1 "INTRODUCTION"	1
CHAPTER 2 "MATERIAL AND METHODS"	9
CHAPTER 3 "RESULT AND INTERPRETATION"	14
CHAPTER 4 "DISCUSSION"	5.9
SUMMARY	66
REFERENCES	68
APPENDIX	86
DIOGRAPHY	0.4

LIST OF TABLES

TABLE		PAGE
]	Summary of localization and the	
	extension of HRP injection site	
1	in the cases included in the	
	present study	26-29

LIST OF FIGURES

FIGURE			PAGE
1	A standard diagram of coronal		
	equally spaced serial sections of		
	the rat brain showing location and		
	topographic relation of various		
	region of the nucleus accumbens.		30-31
2-6	Diagrams of coronal equally spaced		
	serial sections of the rat brain	k .	
	showing the extension of the		
	injected HRP and the distribution		
	of HRP labeled cells in various		
	cases.		33-43

LIST OF PLATES

PLATE .		PAGE
1	Photomicrographs of coronal sections	
	of the rat brain in the region of the	
	nucleus accumbens showing the locali-	
	zation and extension of HRP injection	
	site in various parts of the nucleus.	44-45
2	Photomicrographs of HRP-labeled cells	
	in the ventral part of subiculum.	46-47
3	Photomicrographs of HRP-labeled cells	
	in the ventral tegmental area.	48-49
4	Photomicrographs of HRP-labeled cells	
	in the dorsal raphe and paraventri-	
	cular nucleus.	50-51
5	Photomicrographs of HRP-labeled cells	
	in the paratenial nucleus and para-	
	fasicular nucleus.	52-53
6	Photomicrographs showing the charac-	
	teristics of HRP-labeled cells in the	
	parataenial nucleus and reuniens	
	nucleus.	54-55
7	Photomicrographs of HRP-labeled cells	
	in the medial thalamic nucleus and	
	amvodala nucleus.	56-57

PLATE		PAGE
. 8	Photomicrographs of HRP-labeled	
	cells in the interpeduncular nucleus,	
	paraventricular nucleus and substantia	
	nigra.	58-59
9	A summary diagram of the present	
	finding on the afferent connections	
	to the nucleus accumbens.	60 - 6]

ABBREVIATIONS

AC	•	Aqueductus cerebri (Sylvii)
abl	-	Nucleus amygdaloideus basalis, pars
		lateralis
abm	= -	Nucleus amygdaloideus basalis, pars
		medialis
acc	=	Nucleus accumbens
aco	-	Nucleus amygdaloideus corticalis
alp	=	Nucleus amygdaloideus lateralis, pars
		posterior
am	=	Nucleus amygdaloideus medialis
CAA	=	Commissura anterior, pars anterior
СС	=	Corpus callosum
CE	-	Cortex entorhinalis
ср	-	Nucleus caudatus putamen
CSDV	=	Commissura supraoptica dorsalis, pars
		ventralis (Meynert)
d	=	Nucleus Darkschewitsch
dr	=	Nucleus dorsalis raphes
F	=	Columna fornicis ,
FH	-	Fimbria hippocampi
FL	-	Fasciculus longitudinalis
FLM	=	Fasciculus longitudinalis medialis
FMP	=	Fasciculus medialis prosencephali
FMT	=	Fasciculus mamillothalamicus

FPT	=	Fibrae pontis transversae
HI	=	Hippocampus
H ₁	=	Forel's Field H ₁
H ₂	=	Forel's Field H ₂
i	=	Nucleus interstitialis (Cajal)
ip	=	Nucleus interpeduncularis
LM	=	Lemniscus medialis
lh	-	Nucleus habenulae lateralis
mh	-	Nucleus medialis habenulae
ml	=	Nucleus mamillaris lateralis
mr	=	Nucleus medianus raphes
os	=	Organon subfornicale
р	=	Nucleus pretectalis
PC	=	Pedunculus cerebri
pf	=	Nucleus parafascicularis
pm	=	Nuclei pontis, pars medialis
pt	-	Nucleus parataenialis
pv	-	Nucleus paraventricularis
p III	-	Nucleus principalis n. oculomotorii
r	= 1	Red nucleus
re	=	Nucleus reuniens
rh	=	Nucleus rhomboideus
S	=	Subiculum
SM	=	Stria medullaris thalami
SNC	, = ·	Substantia nigra, zona compacta
SNR	=	Substantia nigra, zona reticulata
so	_	Nucleus supraopticus

Nucleus subparafascicularis spf sut Nucleus subthalamicus Nucleus anterior dorsalis thalami tad Nucleus anterior medialis thalami tam Nucleus anterior ventralis thalami tav Nucleus tractus diagonalis (Broca) td Nucleus lateralis thalami tl Nucleus lateralis thalami pars posterior tlp Nucleus medialis thalami tm tml Nucleus thalami, pars lateralis tmm Nucleus medialis thalami pars medialis TO Tractus opticus TOL Tractus olfactorius lateralis Nucleus tegmenti pontis tp Nucleus postereomedianus thalami tpm Nucleus posterior thalami tpo Nucleus reticularis thalami tr Nucleus ventralis thalami tv Nucleus ventralis thalami tvd dorsomedialis Nucleus ventralis medialis thalami tvm magnocellularis

Nucleus medialis thalami

parvocellularis.

tvp