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Abstract (English)

## 4473856423 : MAJOR COMPUTER SCIENCE
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/ PROTOTYPE SELECTION / MACHINE LEARNING.

GP.CAPT.THANAPANT RAICHAROEN: A DIVIDE-AND-CONQUER AP-

PROACH TO THE PAIRWISE OPPOSITE CLASS-NEAREST NEIGHBOR (POC-

NN) ALGORITHM FOR CLASSIFICATION AND REGRESSION PROBLEMS, THE-

SIS ADVISOR: PROFESSOR CHIDCHANOK LURSINSAP, Ph.D., 67 pp. ISBN 974-

17-6418-9.

This paper presents a new method based on divide-and-conquer approach to the

selection of a set of prototypes from the training data by the nearest neighbor rule. The

method aims at reducing computational time and memory space as well as sensitivity

of the order and noise of the training data. A reduced prototype set contains Pairwise

Opposite Class-Nearest Neighbor (POC-NN) prototypes, which are close to the decision

boundary and used instead of the training patterns. POC-NN prototypes are obtained

by recursively analysis and iterative separation of the training data into two regions until

each region is correctly grouped and classified. The separability is determined by the

POC-NN prototypes essential to define the locations of all separating hyperplanes. Our

method is fast and order independent. The number of prototypes and the overfitting of

the model can be reduced by the user. This method can be used to solve not only classi-

fication but also regression problems. The experimental results signify the effectiveness

of this technique and its performance in both accuracy and prototype rate as well as in

training time over those obtained by classical nearest neighbor techniques.
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CHAPTER I

INTRODUCTION

The Nearest Neighbor (NN) rule is one of the most attractive non-parametric de-

cision rules and model-free methods/instance-based learning rules for data classification

and pattern recognition since no a priori knowledge is required concerning the under-

lying distributions of the data. Because the non-parametric decision rules are highly

unstructured, they typically are not useful for understanding the nature of the relation-

ship between the features and class outcome. However, as a black-box predictor, they

can be very effective, and are often among the best performers in real problems. The NN

technique can also be used in regression and works reasonably well for low-dimensional

problems. However, with high-dimensional features, the bias-variance tradeoff does not

work as favorably for nearest neighbor regression as it does for classification. Moreover,

the original NN rule in general requires the computational load, both in time (finding the

neighbor) and space (storing the entire training data set). Therefore, reducing storage

requirements is important and still an ongoing research issue.

The remaining of this chapter will discuss problem and motivation, objective, scope

and limitations, and contribution of the dissertation.

1.1 Problem and Motivation

The Nearest Neighbor (NN) rule was originally proposed by Cover and Hart [1,

2] in 1966 and has been shown to be very effective in many applications of pattern
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recognition. One reason for the use of this rule is its conceptual simplicity which is

easy to implement. Moreover, under some continuity assumptions on the underlying

distributions, the asymptotic error rate of this rule is at most twice Bayes’ probability

of errors [1, 3]. However, the NN rule suffers from various drawbacks. Firstly, it requires

large memory space as the entire training data set has to be stored while each test pattern

is being compared with every training pattern. Secondly, it requires large computational

time to find the neighbors. Lastly, it is sensitive to noisy and/or outlier patterns.

To alleviate these drawbacks, two approaches have been introduced, namely, pro-

totype selection and prototype replacement [4]. Both approaches aim at modifying an

original training pattern (prototype) in order to reduce its size as well as to improve

classification performance. One of the first and most popularly used techniques of pro-

totype selection is the Condensed Nearest Neighbor (CNN) proposed by Hart [5]. The

main goal of the condensing method is to obtain the reduced and consistent set of proto-

types [5] to be used with the 1-NN rule without error in the training set or with the k-NN

rule without significantly degrading its performance. The condensing method proceeds

by repeatedly selecting the prototypes whenever they cannot be correctly classified by

the currently selected set. The whole process is iterated until there is no change in a

complete pass through the initial training set. However, the method does not, in general,

yield a minimal size of the consistent subset, and the final size as well as composition

of the final condensed set may depend upon the order of data presentation. Since the

development of the CNN, other methods were proposed successively, such as the Re-

duced Nearest Neighbor (RNN) rule proposed by Gates [6], an algorithm for a Selective

Nearest Neighbor (SNN) decision rule was introduced by Ritter et al. [7], and Tomek

presented the Two Modifications of the CNN by growing the condensed set using only

patterns close to the decision boundary [8]. The way in which pairs of prototypes are

selected makes the algorithm appropriate at preserving the original decision boundaries.
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Chidananda Gowda and Krishna introduced the concept of mutual nearest neighbor

neighborhood for selecting patterns close to the decision boundaries [9]. The position

of a prototype in the ordered list of neighbors of its nearest neighbor from an opposite

class is used as a way to measure the closeness to boundaries. Several theoretical results

on CNN have been obtained in [10].

Another well known technique of prototype selection is the editing method [11] pro-

posed by Wilson [12]. The main goal of the editing method is to improve the performance

by discarding outliers and possible overlapping among classes rather than prototype re-

duction. However, the drawbacks of the editing method are that it still leaves too many

prototypes in the edited set, and the complexity of computing the edited subset is very

high. Therefore, Sanchez proposed the k-Nearest Centroid Neighbors (k-NCN) in order

to identify and eliminate mislabeled, noisy and atypical training patterns [13]. Several

editing experiments are carried out and comparative results are presented in [14]. The

exploration and exploitation of the synergy among the NN editing and condensing meth-

ods in order to facilitate the use of NN techniques in real-world applications was studied

in [15].

For the prototype replacement approach, one of the first methods, proposed by

Chang [16], repeatedly merges the two nearest neighbors of the same class as long as

this merger does not increase the error rate on the training set. One drawback of this

method is that it may yield the prototypes that do not characterize the training set well

in terms of generalization [17].

In order to obstruct the undesirable property of the order dependence of presenta-

tion data, several attempts, for example in [18, 19], were suggested to obtain selected

prototypes that are less sensitive to this property. However, most improvement of NN

methods cannot avoid overfitting for noisy and/or overlapping data, and do not consider

any statistical properties of the training data.
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This dissertation focuses on developing a new method for obtaining a set of selection

prototypes from the training set for the nearest neighbor rule. Unlike all of the above

methods, the proposed method is based on divide-and-conquer approach. That is the

analogy to partition original training patterns into smaller regions by finding POC-NN

prototypes for the regions, and then combine the POC-NN prototypes for the regions

into a set of selection prototypes.

1.2 Objective

The objective is to develop a prototype selection method for the nearest neighbor

rule, which enhances the performance in terms of accuracy rate and running time. This

method can be used to solve classification and regression problems.

1.3 Scope and Limitations

In this dissertation, the scope of work is constrained as follows:

1. For classification problem, the experimental results will be compared with the re-

sults of the classical NN rule and some prototype selection methods, i.e. the CNN,

the Two Modifications of the CNN, and the Mutual NN method. All experiments

are based on data sets of the UCI Machine Learning Repository [20], the USPS

data [21], and the Statlog [22].

2. For regression problem, the experimental results will be compared with the results

of the nearest neighbor and the linear interpolation. All experiments are based on

data sets of the sinc function, Mackey-Glass [23], Lorenz [24], Titanium [25], and

Sunspot [26] data.
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1.4 Contribution

This dissertation is proposed a new method based on divide-and-conquer approach

to the selection of a set of prototypes from the training set for the nearest neighbor rule,

which is order independent and fast. The number of prototypes and the overfitting of

the model can be reduced by the user.

1.5 Research Methodology

1. Review and study the research papers that are related to the machine learning

algorithms, especially the nearest neighbor rule.

2. Develop a new method for prototype selection based on the nearest neighbor rule.

3. Prepare data sets and set up the experiment.

4. Test against benchmark data set.

5. Compare with the other algorithms.

6. Analyze the results and summarize the outcome of study.

1.6 Organization of the dissertation

The dissertation is organized into seven chapters. Chapter II reviews the theoretical

background and the main idea of the NN rule including the prototype selection methods

related to the proposed method. Chapter III presents the proposed POC-NN method for

classification problem, including its analysis. Chapter IV describes the experiment and

evaluate the performance accordingly. Chapter V and Chapter VI present the POC-NN

method for regression problem and the experimental results, respectively. Chapter VII

concludes the research work and presents some directions for future work.



CHAPTER II

BACKGROUND AND LITERATURES REVIEWS

In this chapter, the theoretical background on the nearest neighbor rule for classi-

fication and regression problem is described. Literatures related to prototype selection

methods are also reviewed. Three previous work on the prototype selection methods

which are related to the proposed methods, i.e., the CNN, the Two Modifications of the

CNN, and the mutual NN neighbor will be discussed.

2.1 Background

In this section, the theoretical background of the Nearest Neighbor Rules is reviewed.

2.1.1 The Nearest Neighbor Decision Rules

Decision Rules are employed in many areas such as pattern recognition and computer

vision. They are used to determine class membership of an object based on some numer-

ical measurements for that object. Parametric decision rules determine the membership

classification based on a priori probabilities of occurrence of objects belonging to some

class Ci. In many situations, however, these distributions are unknown or are difficult

to describe and handle analytically. Non-parametric decision rules, such as the Nearest

Neighbor (NN) rule, are attractive since no a priori knowledge of the distributions is

required. These rules rely on the training set of objects with known class membership

to make decisions on the membership of unknown objects.
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Assuming there are m pattern classes, numbered 1,2,. . . ,m. Let each pattern xi be

defined in a d-dimensional feature space and let there be n training patterns. Each

training pattern is a pair (xi, yi), 1 ≤ i ≤ n, where yi ∈{1, 2, . . . , m} denotes the correct

pattern class. Let S = {(x1, y2), (x2, y2), . . . , (xn, yn)} be the training set. Given an

unknown pattern u, u is in class yj if

Dist(u,xj) ≤ Dist(u,xi), 1 ≤ i ≤ n, (2.1)

where Dist(·,·) is some d-dimensional distance metric (Euclidean distance metric is com-

monly used).

As a matter of fact, the preceding rule is more properly called the 1-NN rule since

it uses only one nearest neighbor. An obvious generalization of this is the k-NN rule,

which takes the k nearest patterns x1,x2, . . . ,xk and decides upon the pattern class that

appears most frequently in the set {y1, y2, . . . , yk}.
A key feature of this decision rule is that it performs remarkably well despite is

no explicit knowledge of the underlying distributions of the data used. Consider, for

example, a two class problem and denote the a priori probabilities of the two classes

by P (C1) and P (C2), a posteriori probabilities by P (C1|x) and P (C2|x), and the joint

probability density function by

p(x) = P (C1)p(x|C1) + P (C2)p(x|C2) (2.2)

where p(x|Ci) is the class-condition probability density function given class Ci, i = 1, 2.

In 1967 Cover and Hart [2] showed, under some continuity assumptions on the underlying

distributions, that the asymptotic error rate of the 1-NN rule, denoted by Pe[1 − NN ]

was given by

Pe[1 − NN ] = 2Ex[P (C1|x)P (C2|x)] (2.3)

where Ex denoted the expected value with respect to the joint probability density func-

tion p(X). They also showed that Pe[1 − NN ] was bounded from above by twice the
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Bayes’ errors (the error of the best possible error). More precisely, and for the more

general case of m pattern classes, the bounds proved by Cover and Hart [1, 3] are given

by:

Pe ≤ Pe[1 − NN ] ≤ Pe(2 − m

m − 1
Pe) (2.4)

where Pe is the optimal Bayes probability of error.

2.1.2 The k-Nearest Neighbor for Classification

To demonstrate a k-Nearest Neighbor analysis, let’s consider the task of classifying a

new unknown pattern xu (query point) among a number of known class label examples.

This is shown in Figure 2.1 which depicts the patterns (instances) with the symbol plus

“+” (Class C1 = 1), the symbol star “∗” (Class C2 = 2), and the query point xu inside

a black circle. The task is to predict (classify) the outcome of the query point based on

a selected number of its nearest neighbors. In other words, it need to know whether the

query point can be classified as a “+” or a “∗” symbol.
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Figure 2.1: Demonstration of the k-NN Classification
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To proceed, consider the outcome of k-NN based on 1-Nearest Neighbor. It is clear

that in this case k-NN will predict the outcome of the query point with a plus (since

the closest point carries a “+” sign). Now let increase the number of nearest neighbors

to two, i.e., 2-NN. This time k-NN will not be able to classify the outcome of the query

point since the second closest point is a star, and so both the “+” and the “∗” signs

achieve the same score (i.e., win the same number of votes). The number of k should

be odd in order to avoid a tie vote. If the number of nearest neighbors increases to

five (5-NN), a nearest neighbor region, which is indicated by the circle shown in the

Figure 2.1, is obtained. Since there are 2 “+” and 3 “∗” signs in this circle, k-NN will

assign a “∗” sign to the outcome of the query point.

2.1.3 The k-Nearest Neighbor for Regression

In this section, the concept of k-Nearest Neighbors is generalized to include regression

problems. Regression is the process of estimating a real-valued function based on a finite

set of samples. The output of the system in regression problems is a random variable

that takes on real value. The k-Nearest Neighbors technique can be viewed as a form

of local risk minimization. In this method, the function estimates derive from taking a

local average of the data. Locally is defined as the k data points that are nearest to the

estimation point.

Consider the schematic shown in Figure 2.2, where a set of points (× Symbol) are

drawn from the relationship between the independent variable x and the dependent

variable y (sine curve). From the given set of training patterns (known as instances),

the k-Nearest Neighbors method is used to predict the outcome of x (also known as

unknown testing point or query point).
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Figure 2.2: Demonstration of the k-NN for Regression

For 1-NN method, the training set (× symbols) is search and located the one closest

to the query point x. For this particular case, this happens to be x4. The outcome of

x4 (i.e., y4) is thus taken to be the answer to the query point x (i.e., y=y4).

Next, let consider the 2-NN method. In this case, we locate the first two closest

points to x, which happen to be y3 and y4. Taking the average of their outcome, the

solution for y can be obtained by y=y3+y4

2
.

The above demonstration can be extended to any arbitrary number of nearest neigh-

bors k. To summarize, in a k-NN method, the outcome y of the query point x is taken

to be the average of the outcomes of its k-Nearest Neighbors.

2.2 Literature Review

This section reviews some popularly used prototype selection techniques for the

condensed set using only patterns close to the decision boundary, which will be compared

with the proposed technique.
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2.2.1 The Condensed Nearest Neighbor (CNN) Rule

In 1968, Hart was the first to propose an algorithm for reducing the size of the stored

data for the nearest neighbor decision rule called the Condensed Nearest Neighbor (CNN)

Rule [5]. As a matter of fact, this is not a new decision rule since it still chooses the class

of the nearest neighbor. Rather, the word condensed refers to a procedure for choosing

a subset of the sample set or the training set S (set of samples or patterns with known

class label). Its purpose is to reduce the size of the original data set S by elimination

of certain samples without significantly affecting the performance of NN classification.

Hart defined a consistent subset of the data as one that classified the remaining data

correctly with the 1-Nearest Neighbor rule. Let SCNN be a consistent subset of S, and

initially be empty. The algorithm for constructing SCNN proceeds as follows:

Function CNN (S: Dataset)

1. A sample (mostly used the first) pattern is copied from S to SCNN .

2. SCNN is used as the training set to classify each pattern of S, starting with the first

sample pattern. This is repeated until one of the following two cases arises:

2.1 every pattern in S is correctly classified, in which case, the process terminates;

Return SCNN .

2.2 one of the patterns in SCNN is classified incorrectly, in which case, go to 3.

3. Add the pattern from S that was incorrectly classified to SCNN .

4. Go to 2.

There are one things that must be noted about this algorithm. The number of nearest

neighbors to be considered k is not mentioned. Hart [5] mentioned k �= 1 as being a

possibility for future research. However, this suggestion contains a fundamental flaw.

The number of k should be the odd number in order to guarantee a unique solution.
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Figure 2.3: This example shows CNN is dependent on the order of presentation of

data. x
(1)
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2 is the first and second pattern of class 1 (S(1)), respectively.: (a)

x
(1)
1 = (1, 2)′; (b) x

(1)
1 = (2, 1)′

It is clear that CNN has the following properties. First, SCNN is a subset of the

original set S, so that SCNN is much smaller than S and thus computationally much

better suited for NN classification. It requires less storage and computations. Second,

SCNN is a consistent subset of S which classifies (1-NN rule) all samples in S correctly,

so that NN classification with SCNN is very similar (although not necessarily identical)

to NN classification with S. This is especially true when S is a good “representative”

(which means that the number of samples and their distribution approximate the “true”

underlying probability distribution by “good” relative frequency).

The disadvantages of the CNN are that, firstly, it is dependent on the order of

presentation of S since it processes samples from S randomly by choosing the first sample

pattern from S and copying to SCNN . Secondly, SCNN contains patterns which define a

boundary on SCNN but not on S (i.e., patterns not essential in S become boundary points

in SCNN ). The examples of CNN when reordering training patterns show in Figure 2.3.

The condensed prototypes are enclosed in square symbols “�”. The ideal method of

reduction of S would work essentially as CNN but would only use points close to the

decision boundary to generate SCNN .
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2.2.2 The Tomek’s Modification of the CNN

Since CNN may keep too many points that are not near the decision boundary, Tomek

proposed the Two Modification of CNN [8] in which a preliminary pass of S is made to

select an order-independent special subset of S that lies close to the decision boundary.

After this pre-processing step his method proceeds in the same manner as CNN instead

of moving to SCNN data samples from the complete S. Only data points from the selected

subset of S, called C, are used. Let S be a training set of n patterns composing of two

subsets S(1) and S(2) whose sizes are |S(1)| = n(1) and |S(2)| = n(2). Both S(1) and S(2)

are in different classes, namely, class 1 and 2, respectively, and S(1) ∩ S(2)=∅. It is

assumed x
(1)
i , i = 1, . . . , n(1) and x

(2)
j , j = 1, . . . , n(2) are the patterns in S from class 1

and 2. The algorithm to pre-select the special subset of C proceeds as follows:

Function Tomek’s Modification of CNN (S: Dataset)

1. Initialize: C = ∅.

2. For 1 ≤ i ≤ n(1) Do

3. For 1 ≤ j ≤ n(2) Do

4. z = 1
2
(x

(1)
i +x

(2)
j ).

5. For 1 ≤ k ≤ n(1) Do

6. If Dist(x
(1)
k , z) ≤ Dist(x

(1)
i , z) Then Goto 13.

7. End

8. For 1 ≤ l ≤ n(2) Do

10. If Dist(x
(2)
l , z) ≤ Dist(x

(1)
i , z) Then Goto 13.

11. End

12. C = C ∪ {x(1)
i ,x

(2)
j }.

13. End

14. End

15. Return C.
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The algorithm to pre-select the C consists of keeping all pairs of points belong to

different classes and the diametral sphere determined by x
(1)
i and x

(2)
j does not contain

any points of S in its interior. Such a pair are often called Tomek links [8]. Clearly, pair

of points far from the decision boundary will tend to have other points in the interior of

their diameter sphere. It is claimed [8] that the resulting C is a consistent set. However,

Toussaint demonstrated a counter-example in [17]. Therefore, in the case of Tomek’s

algorithm the consistency is not guaranteed.

2.2.3 The CNN Rule using the concept of Mutual Nearest

Neighborhood

Chidananda Gowda and Krishna have introduced the concept of mutual nearest

neighborhood and a new similarity measure called the Mutual Neighborhood Value

(MNV). The MNV value between any two patterns of a set is the sum of conventional

nearest neighbor ranks of these two patterns with respect to each other.

Let S be a training set of n patterns, xi, 1 ≤ i ≤ n be an element of S. Suppose

xj is the pth nearest neighbor of xi, and xi is the qth nearest neighbor of xj . Then,

the MNV between xi and xj is defined as p+q. That is, MNV(xi ,xj)=p+q, where p,q

∈ {1, 2, . . . n − 1}, and 0 when i=j. The Gowda and Krishna’s algorithm (GKA) for

selecting a subset of patterns in a modified CNN is as follows:

Function Stage 1 of GKA(S: Dataset)

1. For 1 ≤ i ≤ n Do

2. Find the nearest neighbor yi from the opposite class of xi.

3. Calculate MNV(xi) by a number of patterns from the same class as xi that

lie closer to yi than xi.

4. End
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5. Order the n patterns according to MNV in ascending order.

If the MNV’s of some of the patterns are identical

Then order such patterns according to distances in ascending order.

6. The CNN algorithm is applied to the ordered set SORD

Return SCNN = CNN(SORD).

When deletion of a pattern in the condensed subset produces no change in the classi-

fication of any member of the complete training set, the deleted pattern may be excluded

from the condensed set [6]. This idea is used to make a further reduction in the num-

ber of patterns constituting the modified condensed set. The final contents of SRNN

constitute the second modified condensed set.

Procedure Stage 2 of GKA(SCNN : Dataset)

1. SRNN = SCNN

2. Remove the first pattern from SRNN .

3. Use SRNN to classify all the patterns in SCNN :

3.1 If all patterns are classified correctly

Then Goto 4.

3.2 If a pattern is classified incorrectly

Then return the pattern that was removed and Goto 4.

4. If every patterns in SRNN has been removed once (and possibly replaced)

Then Stop.

Else Remove the next pattern and Goto 3.



CHAPTER III

THE METHODOLOGY OF POC-NN FOR

CLASSIFICATION PROBLEM

This chapter gives details about the proposed method, the Pairwise Opposite Class-

Nearest Neighbor (POC-NN) for prototype selection in order to solve classification prob-

lem. The idea is to isolate a subset of the training set that suffices for nearest neighbor

predictions, and throw away the remaining data. Intuitively, it seems important to keep

the training points (patterns) that are close to the decision boundaries and on the correct

side of those boundaries, while some points far from the boundaries should be discarded.

The bottom line of this idea is to find a POC-NN pattern for a given two-class training

data set and then the remaining patterns can be discarded.

3.1 An Algorithm for Finding POC-NN Pattern

Let S be a training set of n patterns composed of two subsets S(1) and S(2) whose

sizes are |S(1)| = n(1) and |S(2)| = n(2). Both S(1) and S(2) are in different classes, namely

class 1 and class 2, respectively, and S(1) ∩ S(2)=∅. The algorithm to find a POC-NN

pattern is given as follows:
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Function FINDING-POC-NN (S: Dataset)

1. Let S(1) and S(2) be two training sets belong to classes 1 and 2,

whose sizes are n(1) and n(2), respectively.

2. If n(1) >= n(2)

Then

3. xm = mean of S(1).

3.1 Let xp2 ∈ S(2) be the nearest pattern to xm.

3.2 Let xp1 ∈ S(1) be the nearest pattern to xp2.

Else

4. xm = mean of S(2).

4.1 Let xp1 ∈ S(1) be the nearest pattern to xm.

4.2 Let xp2 ∈ S(2) be the nearest pattern to xp1.

Endif

5. Return (xp1,xp2) as a POC-NN pattern.

Figure 3.1(a) shows an example of how finding POC-NN algorithm works. There are

two classes, 1 and 2. Each pattern in class 1 is denoted by the symbol “+” and each

pattern in class 2 is denoted by the symbol “∗”. The mean of patterns (xm) in class 1

is denoted by the symbol “�”. The POC-NN prototypes (xp1,xp2) are enclosed in circle

symbols “©”. This POC-NN prototype is performed during the training process and

all considered patterns in all classes are considered as the training patterns. The iden-

tical POC-NN patterns as prototypes are always obtained independently from different

reordering of the training patterns. Moreover, the POC-NN patterns have a desirable

property similar to the Support Vectors [27, 28] which induce the optimal separating

hyperplane. This is because if all the training vectors are linearly independent, the

two closest patterns of opposite classes are support vectors. This proof can be found



18

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

X1

X
2

    

S(1) = Class 1 S(2) = Class 2

X
m

X
p1

X
p2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

X1
X

2

    

S(1) = Class 1 S(2) = Class 2

(a) (b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

X1

X
2

    

S(1) = Class 1 S(2) = Class 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

X1

X
2

    

S(1) = Class 1 S(2) = Class 2

(c) (d)

Figure 3.1: This example shows how to select the prototypes: (a) POC-NN; (b)-(d)

CNN when reordering training patterns.
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in [29]. However, the POC-NN algorithm is not guaranteed to find these support vectors.

Figure 3.1(b) and (c) show the prototypes created by the CNN method [5] which does

not guarantee the optimal solution. The condensed prototypes are enclosed in square

symbols “�”. The obtained prototypes strongly depend on the order of presentation

of the training patterns. In this case, it depends on the first pattern of each class.

Figure 3.1(d) also shows the prototypes by using the CNN method which creates the

problems of redundant prototypes and also slow convergence.

Once POC-NN prototypes are found, a separating linear hyperplane is generated and

orthogonally placed in the middle of the distance between these POC-NN prototypes.

This hyperplane acts as a decision boundary (similar to a Voronoi Diagram). The

boundary of each region is defined by the corresponding hyperplane generated by POC-

NN prototype lying in each region. The following describes the detail of prototype

selection by POC-NN algorithm.

3.2 The POC-NN Algorithm for Two-Class Classification

Problem

In this section, the proposed algorithm for two-class classification problem is pre-

sented and in the later subsection, the proposed algorithm is extended to cover multi-

class classification problems.

Prototype Selection by POC-NN Algorithm for Two-Class Classification

Let S be a training set of n patterns composing of two classes, and POC-NN-SET

initially be an empty POC-NN prototypes set.
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Function SELECTING-POC-NN (S: Dataset)

1. Find a POC-NN prototype in S by using

(xp1, xp2) = FINDING-POC-NN (S).

2. Determine the center point c =
xp1+xp2

2
.

3. Create a separating hyperplane H: {x|w · x − b = 0},
where w =

xp1−xp2

||xp1−xp2|| and b = w · c.

4. Save (xp1, xp2) and corresponding H into the POC-NN-SET.

5. Divide all patterns of S into two regions, namely R1 and R2, where

R1 = {xi ∈ S|w · xi − b ≥ 0}, and

R2 = {xi ∈ S|w · xi − b < 0}, ∀i,i = 1, . . . , n.

6. Find any misclassification in both regions.

7. If any misclassification exists in region R1

Then

8. Consider all data in this region R1 as a new data set

Call SELECTING-POC-NN (R1).

Endif

9. If any misclassification exists in region R2

Then

10. Consider all data in this region R2 as a new data set

Call SELECTING-POC-NN (R2).

Endif

11.If no more misclassification exists

Then

12. Return POC-NN-SET as a set of selected prototypes.

Stop.

Endif
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Figure 3.2 shows an example of how the algorithm works for non-linearly separable

problems. The initial separating line (H1) created by a POC-NN (xp1 , xp2) is shown in

Figure 3.2(a). However, this line still creates misclassified training patterns lying on the

right side of this line. All the training patterns lying on this side are considered as a

new data set. The second line (H2) as shown in Figure 3.2(b) is introduced to resolve

the previously misclassified patterns. After performing the algorithm, a set of selecting

prototypes corresponding to the POC-NN-SET consisting of two pairs of {(xp1, xp2)} is

obtained. The patterns from S(1) are separated into two regions (region 1 and region

2). Each region has a prototype ({xp1}) representative class 1. The patterns from S(2)

are not separated, however, as they enclose two prototypes ({xp2}) representative class

2. The identical POC-NN patterns are always obtained and determine the optimal sep-

arating hyperplane, since the margin(distance) between two closest patterns of opposite

classes is maximum for the local region which induces good generalization. Therefore,

the proposed algorithm is too stringent to arrive at a “good” separating hyperplane.
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Figure 3.2: This example shows POC-NN separating hyperplanes: (a) initial separating

line (H1); (b) second separating line (H2).
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3.3 Reducing Complexity and Sensitivity to Noise

In order to reduce the complexity and sensitivity to noise as well as to avoid overfitting

for overlapping data, the separating condition is relaxed. A separating hyperplane can

be considered as a slab of width alpha (α), called acceptance interval. All patterns lying

within the acceptance interval of the slab are considered as correctly classified patterns,

and conversely considered as noisy and/or outlier patterns which can be ignored or

discarded. The acceptance interval (α), is defined as follows:

Suppose S be a training data set of n points with two classes and xi ∈ S.

Definition 3.1. Let {x|w ·x− b = 0} be a hyperplane (H). α is an acceptance interval

if |w · xi − b| < α, and α > 0 such that any xi that falls inside α is assumed to be

correctly classified.

The acceptance interval is proportional to the distance d between two POC-NN

prototypes, and is defined a priori to the training process. In other words, α is defined

as αr × d for 0< αr <0.5. This αr is called α-ratio.

These α values for each hyperplane are not necessary the same values, but they

depend on α-ratio and the distance between corresponding POC-NN prototypes.

Figure 3.3 shows an example of an acceptance interval α defined by giving the α-

ratio 1:5 or 0.2 (a), and 1:10 or 0.1 (b) and (c). In Figure 3.3(a), the algorithm will stop

after one iteration and generate two POC-NN prototypes. Each POC-NN is a prototype

representative of each class, even though there are three misclassified patterns lying

within the acceptance interval. They are considered as noisy and/or outlier patterns

which are ignored. There are only two instead of three misclassified patterns as with the

case in Figure 3.3(b). Figure 3.3(c) illustrates the case where one misclassified pattern is

still present. The algorithm therefore continues and generates two additional POC-NN

prototypes.
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Figure 3.3: All points lying inside of the slab with radius alpha (α) are considered as

noisy patterns. The ratio between an α value and the distance between corresponding

POC-NN prototypes is pre-defined by the user. (a) α-Ratio is equal to 1:5(0.2). (b,c)

α-Ratio is equal to 1:10(0.1).
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3.4 Analysis of the POC-NN Algorithm

Some interesting consequences in selecting POC-NN prototype are worth discussing.

Given a training set S of n patterns (n >1) in d dimensions composing of two subsets

S(1) and S(2), whose sizes are n(1) and n(2). Both S(1) and S(2) are in different classes,

namely, class 1 and class 2, respectively, and there never exist two patterns with different

class label on the position (S(1) ∩ S(2)=∅).

Property 1. The selecting POC-NN algorithm converges after p iterations, where p is

the number of POC-NN patterns having the values between 1 and n-1.

Proof. Let start the proof with n(1) and n(2) = l, so these two patterns are POC-NN

pattern to each other and its hyperplane can be constructed to make them linearly

separable. If one add a new pattern into this space, one always has two cases:

Case 1: A new pattern lies on the correct side, so all data are still linearly separable

and correctly classified. The algorithm stops after one iteration.

Case 2: A new pattern lies on the wrong side. Here, one need to consider only the

data lying on that side. A new pattern will become a new POC-NN pattern and a new

hyperplane that makes these data linearly separable, is introduced. The algorithm will

stop after two iterations.

If one gradually add a new pattern until there are n patterns of training set S, one

still always have two cases as before. The algorithm will stop after n-1 iterations.

On the contrary, assuming that the algorithm does not converge. This would only be

possible if no hyperplane could be constructed. But note that the hyperplane cannot be

constructed if the nearest patterns of the two classes in data group cannot be found. It

would only be possible if the data group has only the same class data and that is also the

stopping condition of the algorithm. This is a contradiction and hence non-convergence

does not occur. �
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The consequence of this property yields that all training patterns are separated into

regions of correctly classified classes after convergence. Therefore, a set of patterns in

each region is a consistent set. However, the whole set of the selected POC-NN proto-

types may not be a consistent set. This proof can be shown by giving a counterexample

that the obtained set of prototypes generated by the proposed algorithm does not give

100 % accuracy on the training set by using 1-NN rule. Similar to the Tomek’s algo-

rithm, the consistency is not guaranteed. A counterexample has been shown in [30].

However, there is no theoretical evidence on how the consistency of the condensed set

relates to the generalization abilities. It may have an arbitrarily poor performance when

applied to unseen patterns as shown by some experimental examples in Section 4.

Property 2. The time complexity of the selecting POC-NN algorithm is O(dn2p).

Proof. The upper bound of the time complexity is derived step by step in the follow-

ing analysis. In step 1 of the selecting POC-NN algorithm, calculations for finding a

POC-NN prototype take in worst case O(dn2), and O(dn) in steps 5 and 6. The time

complexity is bounded by O(dn2 + dn) after one iteration. If the algorithm does not

converge, step 1 of the algorithm will continue with at most (n− 1) patterns. The time

complexity is bounded by O(d(n−1)2 +d(n−1)) after two iterations. From property 1,

the algorithm converges after p iterations. Therefore, the total time complexity after p

iterations is bounded by O(dn2 + dn)+O(d(n− 1)2 + d(n− 1))+· · ·+O(d12 + d1) which

is equal to O(dn2p). �

In comparison with Condensing and Editing NN algorithm, the complexity of com-

puting the condensed subset and edited subset are O(dn3) and O(d3n�d/2� ln n), respec-

tively [17, 3]. Both time complexities are higher than POC-NN’s. In addition, the com-

putational complexity of both Tomek’s algorithm [8] and Gowda-Krishna’s algorithm [9]

which attempt to keep only prototypes close to the decision boundary is considerably
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higher than the original CNN algorithm. In case of Tomek’s algorithm, only the step

for finding a special subset, called Gabriel Neighbors [30], already takes O(n3) time. For

large n such as that in OCR applications shown by USPS data [21] experimental exam-

ple in Section 4, it is not feasible. Gowda-Krishna’s algorithm takes longer time than

Tomek’s algorithm in some cases as shown in [9] since it requires a pre-process for finding

Mutual Neighborhood Value (MNV) of each pattern to order the patterns according to

MNV, and a post-process for reducing the number of condensed set of prototypes.

Property 3. The selecting POC-NN algorithm is order independent.

Proof. The training set can have n! permutation orders of how to present the data. In

steps 3 and 4 of finding a POC-NN pattern algorithm, the centroid or mean of a set of

points (patterns) is calculated. The addition remains invariant to the order of the data

elements. Thus, the mean operation is order independent. Finding the nearest point to

the centroid is also order independent since the centroid and the distance between the

centroid and all points from different classes are fixed values. The shortest distance is

found and the corresponding point is selected as the representative prototype. If there

is a tie between two or more points for the closest distance from the centroid, the point

with the smallest feature mean value is selected. If this is the same, the point with

the smaller value of feature 1 is selected. If this is still the same, the point with the

smaller value of feature 2 is selected, and so on. Thus, the distance measured is order

independent and the minimum of these distances remains the same no matter what the

order of the presentation data is. The other steps in the algorithm are obviously order

independent, thus the selecting POC-NN algorithm is order independent. �
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3.5 Algorithm for Multi-Class Classification Problem

In this section, the proposed algorithm is extended for multi-class classification prob-

lem by using a combination of many two-class classifiers into a multi-class classifier. In

contrast to the standard approach to the m-class problem by a ’one-against-rest’ (1-v-r)

like scheme, an alternative approach, so called ’one-against-one’ (1-v-1) scheme, with

pairwise classification having m(m−1)
2

binary classifiers is used.

’one-against-one’ (1-v-1) scheme

All m-class training data are classified into pairwise two-class training sets and per-

form the selecting POC-NN algorithm on each two-class training set. It is possible that

the same pattern becomes a POC-NN prototype more than once as it has been selected

by another combination of pairwise two-class training set. However, it is still the same

representative prototype for its class.

Suppose having a training set S with m classes and there never exist two or more

patterns with different class on the same position, such that S = S(1) ∪ . . . ∪ S(m) and

∅ = S(1) ∩ . . . ∩ S(m).

1-v-1 POC-NN Algorithm for k-Class Classification

1. Initialize: q = 0.

2. For 1 ≤ i ≤ m Do

3. For i + 1 ≤ j ≤ m Do

4. q = q+1.

5. Sq = S(i) ∪ S(j).

6. POC-NN-SETq = SELECTING-POC-NN (Sq).

7. Endfor

8. Endfor

9. POC-NN-SET for m-Class =
⋃q

l=1 POC-NN-SETl.
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Figure 3.4 shows an example of how 1-v-1 POC-NN Algorithm for m-Class Classification

works (m=3). Each pattern in classes 1, 2, and 3 is denoted by the symbol “+”, “∗”, and

“×”, respectively. Figure 3.4(a) shows the final prototype in POC-NN-SET illustrated

by symbol “©”. The final prototype in POC-NN-SET consists of all prototypes in

POC-NN-SET1, POC-NN-SET2, and POC-NN-SET3 shown in Figure 3.4(b), (c), and

(d), respectively.
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Figure 3.4: This example shows how 1-v-1 POC-NN Algorithm for k-Class Classification

works: (a) The final POC-NN-SET set; (b) POC-NN-SET1 set (q=1); (c) POC-NN-

SET2 set (q=2); and (d) POC-NN-SET3 set (q=3).
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After performing the proposed algorithm for each two-class pair, POC-NN proto-

types are obtained representative for each class. The time complexity for multi-class

classification will increase to O(m(m−1)
2

(dn2p)), where m is the number of classes, d is

the number of dimensions, n is the number of patterns with two classes, and p is the

number of POC-NN prototypes.



CHAPTER IV

EXPERIMENTAL RESULTS FOR PATTERN

CLASSIFICATION

This chapter presents the data sets and experimental results. Moreover, the per-

formance in accuracy and prototype rate as well as in training time of the proposed

algorithm is evaluated and compared with others Nearest Neighbor techniques.

4.1 Data sets

The proposed algorithm is tested and evaluated on a number of standard benchmark

classification data sets, both artificial and real. These data sets are taken from UCI

Repository of machine learning databases [20] except for the first and second ones which

are the USPS data [21] and DNA from Statlog [22]. The properties of the data sets are

given in Table 4.1. In the first four data sets, the training and test sets are separated.

In the others part from the first four, the original data sets are separated into training

and test sets (2:1 ratio) by using the following criteria. The first pattern belongs to the

test set, the second and third patterns belong to the training set, the fourth pattern

belongs to the test set, and the fifth and sixth patterns belong to the training set, and

so on. Euclidean distance (L2-norm) is used to measure dissimilarity and 1-NN rule to

test the results in all experiments.
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Table 4.1: Properties of the data sets used

Data sets No. of No. of No. of trg. No. of test

features classes patterns patterns

1. USPS 256 10 7291 2007

2. DNA 180 3 2000 1186

3. Sonar 60 2 104 104

4. Vowel 10 11 528 462

5. Cancer 9 2 466 233

6. Wine 9 7 118 60

7. Liver 6 2 230 115

8. Thyroid 5 3 143 72

9. Iris 4 3 100 50

10. Spiral 2 2 129 65

4.2 Experimental Results

4.2.1 Accuracy of Classification

The results obtained from these data sets are reported in Table 4.2. The prototype

rate (PR %) computed from the percentage of prototypes to all training patterns, and

the accuracy rate (AR %) computed from the percentage of correctly predicted test pat-

terns to all test patterns obtained using POC-NN, Condensed Nearest Neighbor (CNN),

Tomek’s algorithm (Tomek), Gowda-Krishna’s algorithm (GKA), and the accuracy rate

(AR %) obtained using all prototypes (NN) are given for each data set. N/A (for not

applicable/available) in the Table 4.2 signifies that the learning scheme did not finish

training. If learning could not be completed within the time period of two weeks then it

was terminated and marked N/A, since taking time of two weeks is not feasible for the

real world application.

The results obtained by POC-NN are mostly better than the results obtained by

CNN, especially, the accuracy rates using POC-NN are better than CNN in all cases, and
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Table 4.2: The comparison results of POC-NN, CNN, Tomek, GKA, and NN

Data sets POC-NN CNN Tomek GKA NN

PR % AR % PR % AR % PR % AR % PR % AR % PR % AR %

1. USPS 28.20 93.42∗∗ 11.84 91.58 N/A N/A N/A N/A 100.00 94.37

2. DNA 60.70 74.37 44.30 72.30 N/A N/A N/A N/A 100.00 76.39

3. Sonar 59.62 86.54 57.69 86.54 43.27 90.38 52.88 87.50 100.00 92.31

4. Vowel 50.19 54.11∗∗ 19.69 47.19 20.83 51.52 18.56 55.84 100.00 56.28

5. Cancer 8.37 94.42 10.30 93.13 10.94 91.85 7.94 91.85 100.00 93.56

6. Wine 43.22 71.67 44.07 66.67 42.37 68.33 38.98 68.33 100.00 68.33

7. Liver 58.69 54.78 56.52 53.91 55.65 58.26 50.00 57.39 100.00 59.91

8. Thyroid 20.27 88.89 20.97 88.89 16.08 95.83 15.38 90.28 100.00 91.67

9. Iris 17.00 98.00 20.00 98.00 18.00 98.00 16.00 98.00 100.00 98.00

10. Spiral 56.59 95.38∗ 37.98 89.23 37.98 93.85 34.11 89.23 100.00 96.92

Best accuracy rates (AR %) among these algorithms except NN are bold-faced. Tomek

and GKA are not applicable (N/A) on USPS and DNA, because they require unaccept-

able time to run on these data. The symbols “**” and “*” indicate the statistically

significant difference to CNN at the level 95 % and 90 %, respectively.

Tomek and GKA in all cases except Sonar, Liver and Thyroid. However, the prototype

rates using POC-NN are better than the other algorithms in some cases. In the cases of

cancer, wine, thyroid and iris data, POC-NN shows better results in both accuracy and

prototype rates than the results from the CNN. Moreover, in case of Wine, POC-NN

even gives better accuracy rate than NN by using all the training set as prototypes, and

in case of Iris, POC-NN gives equally accuracy rate to NN by using all the training set as

prototypes. Even though the accuracy rate of the training data is very high, however, it

cannot guarantee to obtain a good accuracy rate of test (untrained) data. The consistent

set is not necessarily related to the generalization abilities.

From these results, the hypothesis was formulated that using POC-NN algorithm is

more effective than using CNN algorithm. To determine if this hypothesis was statisti-

cally significant, the results using a test of significance involving differences of propor-
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tions [31] were analyzed. This test showed that the level of significance of the hypothesis

is 0.05 and 0.1, indicated by symbols “**” and “*” in the Table 4.2, which provide a

95 % and 90 %, respectively, confidence level according to one-tailed proportions of the

normal curve that it is correct. For a mathematical derivation of this statistical result,

see Appendix B.

4.2.2 Computational Time

The training time is also compared required for the results shown in Table 4.2. The

less computational time is required the more efficiency for an algorithm is obtained, even

though it is carried out offline. The time comparisons are summarized in Table 4.3. All

experiments were done on the same Pentium III-1GHz computer with 256 MB RAM, and

all algorithms were implemented in MatLab version 6.5. These four different training

algorithms were implemented in different training programs to obtain the prototype for

each data set. The POC-NN algorithm has the best training time for all data sets. In

case of sonar, POC-NN’s training time is approximately 10 times faster than the CNN’s

training time, and approximately 100 times faster than the Tomek’s and the GKA’s

training time. The Tomek and the GKA algorithms require very high computational

time and are not applicable for some real world problems, such as USPS and DNA. The

time and space complexities of the proposed POC-NN method are very competitive.

4.3 Evaluate the POC-NN Algorithm

To increase statistical significance of the results on the data set whose training and

test sets are not separated, the K-fold cross-validation technique was conducted which

is one of the simplest and most widely used method for estimating prediction error [32].

The average cross-validation estimates of prototype and accuracy rate are shown in
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Table 4.3: The time comparisons of POC-NN and the others in seconds

Data sets Training Time in seconds

POC-NN CNN Tomek GKA

1. USPS 297650.00 560370.00 N/A N/A

2. DNA 10927.00 74474.00 N/A N/A

3. Sonar 8.94 90.20 925.32 882.68

4. Vowel 55.18 81.29 14045.00 2873.77

5. Cancer 23.42 84.51 826.74 498.82

6. Wine 3.29 20.15 101.51 189.63

7. Liver 4.49 38.07 620.41 1021.83

8. Thyroid 1.38 6.65 56.54 24.89

9. Iris 0.80 2.56 30.42 8.87

10. Spiral 0.66 8.77 41.81 33.12

Tomek and GKA algorithms are not applicable (N/A) on USPS and DNA, since they

require unacceptable time (more than two weeks) to run on these data sets.

Table 4.4. Compare with the results in Table 4.2, for the three-fold cross-validation

(K=3), POC-NN still shows better results in accuracy rate than the results from the

CNN in all cases, and the best results in accuracy rate among all algorithms except NN

in all cases except Thyroid and Iris. For the five-fold cross-validation (K=5), POC-NN

still shows better results in accuracy rate than the others in all cases except Cancer,

Wine and Thyroid. The Tomek’s algorithm also shows the best results in some cases.

However, it requires very high computational time. The symbols “**” and “*” indicate

95 % and 90 %, respectively, confidence interval for estimating the difference between

accuracy of POC-NN and CNN using a one-tailed paired t-test [33]. For a mathematical

derivation of this statistical result, see Appendix C.
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Table 4.4: The results comparisons of POC-NN and the other algorithms by conducting

the three-fold (K=3) and five-fold (K=5) cross-validation

K-Fold Data sets POC-NN CNN Tomek GKA NN

PR % AR % PR % AR % PR % AR % PR % AR % PR % AR %

K=3 Cancer 10.23 94.71 10.09 94.13 11.16 92.42 8.44 92.85 100.00 94.85

Wine 43.82 73.05 41.86 71.37 40.45 73.05 38.20 72.50 100.00 74.19

Liver 57.35 60.64∗∗ 59.81 58.07 57.78 57.19 50.06 57.46 100.00 58.55

Thyroid 18.15 90.25 19.53 90.24 16.05 93.49 14.42 90.23 100.00 93.96

Iris 16.00 96.00 16.00 94.00 14.67 98.00 13.00 92.00 100.00 96.00

Spiral 58.50 96.39 38.40 92.79 38.14 93.82 35.56 91.78 100.00 98.46

K=5 Cancer 9.48 93.71 11.16 94.13 10.66 93.13 9.12 92.99 100.00 94.85

Wine 42.42 71.86 40.45 73.59 37.93 73.57 36.52 73.57 100.00 75.25

Liver 58.91 60.29∗∗ 58.70 59.42 58.26 59.13 53.12 60.00 100.00 62.23

Thyroid 16.05 89.77 16.86 89.77 16.05 94.42 14.19 93.49 100.00 93.49

Iris 13.67 99.00∗ 7.50 96.33 13.83 98.67 12.00 94.00 100.00 96.00

Spiral 60.17 97.41 33.89 96.90 34.79 97.41 34.67 94.35 100.00 100.00

Best accuracy rates (AR %) among these algorithms except NN are bold-faced.

4.4 Reducing the Complexity

In order to reduce the number of prototypes, the concept of acceptance interval (α)

is considered. Table 4.5 shows the results performed on the same data sets by using

POC-NN with different α-ratio and CNN. The value of an α-ratio for each data set is

chosen in order to maintain the same accuracy rate obtained by using without α-ratio.

Most accuracy rates remain the same by reducing the number of prototypes. In many

cases, POC-NN with α-ratio gives better both accuracy and prototype rates than CNN.

In the case of DNA, Sonar, Vowel and Liver, there is a significant reduction in the

number of prototypes used. So the reduced set of prototypes is very useful. By using

the concept of acceptance interval (α), the value of α can be regulated in order to control

the complexity and to avoid the overfitting of the model.
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Table 4.5: The results comparisons of POC-NN by using without α-ratio (αr = 0) and

with different α-ratio (αr <> 0), and using CNN

Data sets POC-NN(αr = 0) POC-NN(αr <> 0) CNN

Prototypes Acc. αr Prototypes Acc. Prototypes Acc.

# % % ratio # % % # % %

1. USPS 2056 28.20 93.42∗∗ 0.25 631 8.66 89.16 863 11.84 91.58

2. DNA 1214 60.70 74.37∗ 0.05 793 39.65 73.19 886 44.30 72.30

3. Sonar 62 59.62 86.54 0.01 48 46.15 86.54 60 57.69 86.54

4. Vowel 265 50.19 54.11∗∗ 0.50 173 32.76 51.08 104 19.69 47.19

5. Cancer 39 8.37 94.42 0.01 37 7.94 94.42 48 10.30 93.13

6. Wine 51 43.22 71.67 0.01 45 38.14 71.67 52 44.07 66.67

7. Liver 135 58.69 54.78 0.40 6 2.61 54.78 130 56.52 53.91

8. Thyroid 29 20.27 88.89 0.03 22 15.38 88.89 30 20.97 88.89

9. Iris 17 17.00 98.00 0.35 15 15.00 98.00 20 20.00 98.00

10. Spiral 73 56.59 95.38∗ 0.08 72 55.81 95.38∗ 49 37.98 89.23

Best accuracy and prototype rates between POC-NN and CNN are bold-faced. The

symbol “**” and “*” indicate the statistically significant difference to CNN at the level

95 % and 90 %, respectively.

Figure 4.1 shows that the number of POC-NN prototypes and the prototype rate

depend on choosing a prior value of an α-ratio. The α-ratio can also be employed to

define the prototype rate and accuracy rate. In most cases, the accuracy and prototype

rates decrease when the α-ratio increases. However, in cases of Liver, better accuracy

rate with lesser prototype rate is obtained, even though the α-ratio is increased.
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Figure 4.1: Prototype Rate (PR %) and Accuracy Rate (AR %) as a function of α-ratio



CHAPTER V

THE METHODOLOGY OF POC-NN FOR REGRESSION

PROBLEM

In this chapter, POC-NN algorithm is generalized so that it can handle regression

problems. The idea is to find a subset of the original sampling set that suffices for linear

interpolation, and throw away the remaining data. Intuitively, it seems reasonable to

keep the original points (patterns) that are used for building the linear interpolation

line, while some points lying on or near this line should be discarded.

5.1 Finding POC-NN Patterns Algorithm for Regression

Considering n samples of a given data set S of

X = {x1, . . . ,xn},xi ∈ �d (5.1)

and their corresponding function value

Y = {y1 = f(x1), . . . , yn = f(xn)}, yi ∈ �, (5.2)

where � denotes real number.

Before finding prototypes for regression problem for a given data sampling set S

with dimension d, all sampling data set S have to be separated into two parts (classes),

namely, class 1 and class 2. The criteria through simple odd and even sampling number

of data is used to obtain a new data sampling set S ′ with dimension d+1, where
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S ′ =




S(1) = {(xi, yi)}, if i is odd,

S(2) = {(xj , yj)}, if j is even.
(5.3)

The algorithm to find the Pairwise Opposite Class-Nearest Neighbor for regression

is given as follows:

Function FIND-POC-NN-R (S ′: Dataset)

1. Let S(1) and S(2) be a training set defined by Eq. (5.3),

and d+1 be the dimension of S ′.

2. Let x1 ∈ S(1) be the first element.

3. Let xp2 ∈ S(2) be the nearest pattern to x1.

4. For 1 ≤ i ≤ d do

5. Z = {xp1i
|xp1i

∈ S(1) and let xp1i
be the ith nearest pattern to xp2.}

6. End

7. Return (Z,xp2) as POC-NN prototypes.
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Figure 5.1: This example shows how to find the prototypes for regression.
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Figure 5.1 shows an example of how algorithm for finding POC-NN prototypes for

regression works. A given 11 data sampling set S is a one dimension sine function. Data

set S is separated into S(1) and S(2). Each pattern in S(1) and S(2) is denoted by the

symbol “+” and “×”, respectively. The POC-NN prototypes (xp11 ,xp2) enclosed in circle

symbols “◦”.

Once POC-NN patterns are found, a separating hyperplane is generated and placed

in between these POC-NN patterns. This hyperplane has a very nice characteristic for

both classification and regression problems. It acts as a perceptron for local classification

and as a functional approximator for local sampling data locating near these POC-NN

prototypes. This characteristic is so simple, however, it is useful for both problems. In

case of dimension (d) is greater than one, it is necessary to find d+1 numbers of POC-NN

prototypes (xp11 ,xp12,...,xp1d
,xp1d+1

,xp2) and a separating hyperplane which is generated

and placed among all (d+1) POC-NN prototypes.

5.2 The POC-NN Algorithm for Regression Problem

The algorithm for selecting POC-NN patterns as a selected (compressed) data set

for regression is as follows. Initially, let S be a sample set with dimension d, and S ′

be a training set defined by (5.3), and POC-NN-SET initially be an empty POC-NN

prototypes set for regression problem.
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Function SELECT-POC-NN-R (S ′: Dataset)

1. Find POC-NN prototypes in S ′ by using (xp1i
,xp2) = FIND-POC-NN-R (S ′).

2. Create a hyperplane H: {x|w · x − b = 0},
xi ∈ S ′ connecting all of d+1 POC-NN prototypes.

3. Save all d+1 POC-NN prototypes and corresponding H into the POC-NN-SET.

4. Divide all patterns xi of S ′ into two regions, namely R1 and R2, where

R1 = {xi ∈ S ′|w · xi − b ≥ 0} and

R2 = {xi ∈ S ′|w · xi − b < 0}.
5. Find any misclassification in both regions.

6. If any misclassification exists in region R1

Then

7. Consider all data in R1 as a new data set

Call SELECT-POC-NN-R (R1).

End

8. If any misclassification exists in region R2

Then

9. Consider all data in R2 as a new data set

Call SELECT-POC-NN-R (R2).

End

10.If no more misclassification exists

Then

11. Return POC-NN-SET as a set of selected prototypes.

12. Stop.

End
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Figure 5.2 shows an example of how the selecting POC-NN algorithm for regression

works. The initial connecting line (H1) created by POC-NN (xp11,xp2) is shown in Fig-

ure 5.2(a). However, this line still creates misclassified training patterns on the right side

of the line. All training patterns on this side are considered as new data sets. The sec-

ond (H2), third (H3), and last (H4) as shown in Figure 5.2(b), (c), and (d), respectively,

are introduced to resolve any previously misclassified patterns. After performing the

algorithm, a set of selecting prototypes corresponding to the POC-NN-SET consisting

of four pairs of (xp11 ,xp2) is obtained. The number of sampling data is reduced from

11 to 8. Only the eight POC-NN prototypes and their corresponding hyperplanes are

used as the reconstruction values of the training samples and approximation values of a

function. The final result shows in Figure 5.3(a).

5.3 Approximating Algorithm by POC-NN

To reconstruct the value of the original data and also estimate the value of an

untrained sample xu, the Nearest Neighbor (NN) rule is used by measuring the nearest

distance between xu and the set of all POC-NN prototypes whose dimension must be

reduced from d+1 to d. Let xu ∈ �d be an untrained data pattern, and xp ∈ �d be

a POC-NN prototype whose dimension is reduced from d+1 to d. The detail of this

algorithm is as follows:

Approximating Algorithm

1. For each point xu Do

2. Identify the nearest POC-NN prototype (xp) to xu and

its corresponding hyperplane H as a function approximator f̃ .

3. Calculate the reconstruction/approximation value by yu = f̃(xp).

4. End
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Figure 5.2: This example shows how the proposed algorithms works: (a) initial connect-

ing line (H1); (b) second connecting line (H2); (c) third connecting line (H3); and (d)

last connecting line (H4).

Figure 5.3 shows the approximated function drawn by the solid line using POC-

NN, classical 1-NN, linear interpolation, and linear regression algorithm which is a least

square error curve fitting when the degree of the polynomial is equal to 1. The proposed

approximated function looks more similar to the original sine function than the 1-NN’s

approximated function, even though POC-NN uses fewer patterns to generate the ap-

proximated function. The linear interpolation draws straight lines connecting all data

points that creates plots for projecting intermediate values along the lines.
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Figure 5.3: This example shows approximation function performed by: (a) POC-NN;

(b) 1-NN; (c) Linear Interpolation; and (d) Linear Regression.

5.4 Reducing Complexity

In order to reduce the number of POC-NN prototypes, the concept of acceptance in-

terval α is applied. The idea is analogous to an acceptance interval α for the classification

problem. A separating hyperplane can be considered as a tolerant line or soft margin.

All patterns lying within the soft margin are considered as lying on the hyperplane, and

treated as correctly classified patterns, which can be ignored or discarded. A desired

margin interval (α) is pre-specified by the user. By using the concept of soft margin

(α > 0), different small values of α can be set in order to control the complexity and

the number of POC-NN prototypes used for compressing data. Generally, the prototype

and accuracy rates decrease when the value of α increases.



CHAPTER VI

EXPERIMENTAL RESULTS FOR REGRESSION

This chapter presents the data sets and experimental results for regression. Besides,

the performance in both accuracy rate and training time of POC-NN is evaluated and

compared with 1-Nearest Neighbor (1-NN) and Linear Interpolation techniques.

6.1 Data sets

All algorithms are tested and evaluated on a number of standard regression data sets

of benchmarks, both artificial and real.

The classical standard one dimensional and two dimensional sinc|x| function are

defined as follows:

The one dimensional function

f(x) = sinc|x| =
sin|x|
|x| (6.1)

is considered on the basis of a sequence of 128 measurements without noise on the

uniform lattice.

The two dimensional function

f(x, y) = sinc =
√

x2 + y2 (6.2)

is considered on the basis of a sequence of 1,681 measurements without noise on the

uniform lattice.
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The well known chaotic time series, the Mackey-Glass, is described by the delay-

differential equation [23]:

dx(t)

dt
= −0.1x(t) +

0.2x(t − ∆)

1 + x(t − ∆)10
, (6.3)

with parameters ∆ = 17 and 30. These two time series are denoted by MG17 and MG30.

The time series of the Lorenz differential equation [24, 34] are also considered. More-

over, the two real world data sets, the Titanium [25] and the Sunspot [26, 35] series from

1700-1799, are used in the experiments.

The properties of the experimental data sets are given in Table 6.1. The original

sample sets are also separated into training and test sets (2:1 ratio) by using the same

criteria as in the classification.

Table 6.1: Properties of the data sets used for regression problem

Data sets No. of No. of trg. No. of test

dimensions patterns patterns

1. Sinc 1d 1 85 43

2. Sinc 2d 2 1120 561

3. MG17 1 133 67

4. MG30 1 133 67

5. Lorenz 1 200 100

6. Titanium 1 32 17

7. Sunspot 1 66 34

The Percent Root Mean Square Difference (PRD) is an important performance index

parameter of any regression or function approximation algorithm. PRD is defined by

Eq. (6.4).

PRD = (

√√√√ n∑
i=1

(xi − x̃i)2/

n∑
i=1

(xi)2) ∗ 100, (6.4)

where xi and x̃i are samples of the original and reconstructed/estimated data sequences,

respectively. Small value of PRD shows the success of the algorithm.
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6.2 Experimental Results

6.2.1 Accuracy of Approximation

To compare the results performed by POC-NN algorithm and classical 1-NN algo-

rithm, all original samples were trained on the training set of patterns by using α = 0,

and ran on the test set.
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Figure 6.1: The one-dimensional sinc function: (a) PRD=2.30 by using POC-NN with

PR=72.94(62/85); and (b) PRD=13.91 by using 1-NN with PR=100. The approximated

function by using: (c) POC-NN; and (d) 1-NN.

The one-dimensional sinc function

Figure 6.1(a) shows POC-NN patterns enclosed in circle symbol “◦”. 62 POC-NN

patterns were obtained from 85 original training patterns depicted by symbols “×”
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(PR=72.94) which brings the approximation ability of PRD to 2.30 after running on 43

test patterns. The estimated test patterns are depicted by the symbol “·”. Figure 6.1(b)

shows the results performed by the 1-NN which obtained the PRD to be equal to 13.91.

POC-NN’s results show better results than 1-NN method in both, accuracy rate (PRD)

and prototype rate (PR). Figure 6.1(c) and (d) show the approximated function in solid

line from POC-NN and 1-NN algorithms, respectively.
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Figure 6.2: The two-dimensional sinc: (a) PRD=83.68 by using POC-NN with

PR=54.46(610/1120); (b) PRD=203.49 by using 1-NN with PR=100.

The two-dimensional sinc function

Figure 6.2(a) shows the estimated test patterns depicted by the symbol “·” using

POC-NN. 610 POC-NN patterns were obtained from 1120 original training patterns

(PR=54.46) which brings the approximation ability of PRD to 83.68 after running on

610 test patterns. Figure 6.2(b) shows the results performed by the 1-NN which yielded

the PRD to be equal to 203.49. POC-NN’s results are better than the 1-NN method in

both accuracy rate (PRD) and prototype rate (PR).
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Figure 6.3: The Mackey-Glass 17 data set: (a) PRD=16.56 by using POC-NN with

PR=79.70(106/133); (b) PRD=18.14 by using 1-NN with PR=100.
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Figure 6.4: The Mackey-Glass 30 data set: (a) PRD=14.49 by using POC-NN with

PR=93.23(124/133); (b) PRD=16.37 by using 1-NN with PR=100.

The Mackey-Glass data

Figure 6.3(a) shows POC-NN patterns enclosed in circle symbol “◦” and the esti-

mated test patterns depicted by the symbol “·” using POC-NN algorithm. 106 POC-NN

patterns were obtained from 133 original Mackey-Glass 17’s training patterns depicted

by the symbol “×” (PR=79.70) which brings the approximation ability of PRD to 16.56

after running on 67 test patterns. The estimated testing patterns are depicted by the

symbol “·”. Figure 6.3(b) shows the results performed by the 1-NN which obtained the
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PRD to be equal to 18.14. POC-NN’s results show better results than 1-NN method in

both, accuracy rate (PRD) and prototype rate (PR).

Figure 6.4 shows the results performed on the Mackey-Glass 30’s data set. POC-NN’s

results still show better results than 1-NN method.

The Lorenz data

Figure 6.5(a) shows the POC-NN patterns enclosed in circle symbol “◦” and shows

the estimated testing patterns depicted by the symbol “·” using POC-NN algorithm.

146 POC-NN patterns were obtained from 200 original training patterns depicted by

the symbol “×” (PR=73.70) which brings the approximation ability of PRD to 21.42

after running on 100 test patterns. The estimated testing patterns are depicted by the

symbol “·”. Figure 6.1(b) shows the results performed by 1-NN, which obtained the

PRD to be equal to 26.51. POC-NN’s results are better than 1-NN method in both,

accuracy rate (PRD) and prototype rate (PR).
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Figure 6.5: The Lorenz data set: (a) PRD=21.42 by using POC-NN with

PR=73.70(146/200); (b) PRD=26.51 by using 1-NN with PR=100.
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The Titanium data

Figure 6.6(a) shows the estimated testing patterns depicted by the symbol “·” using

POC-NN algorithm. 28 POC-NN patterns were obtained from 32 original training pat-

terns depicted by the symbol “×” (PR=87.50) which brings the approximation ability

of PRD to 8.11 after running on 17 testing patterns. The estimated test patterns are

depicted by the symbol “·”. Figure 6.6(b) shows the results performed by 1-NN, which

obtained the PRD to be equal to 12.20.
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Figure 6.6: The Titanium data set: (a) PRD=8.11 by using POC-NN with

PR=87.50(28/32); (b) PRD=12.20 by using 1-NN with PR=100.

The Sunspot data

Figure 6.7(a) shows the estimated test patterns depicted by the symbol “·” using

POC-NN algorithm. 62 POC-NN patterns were obtained from 66 original training pat-

terns depicted by the symbol “×” (PR=93.93) which brings the approximation ability

of PRD to 20.65 after running on 34 test patterns. The estimated test patterns are

depicted by the symbol “·”. Figure 6.7(b) shows the results performed by 1-NN, which

obtained the PRD to be equal to 26.65.
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Figure 6.7: The Sunspot data set: (a) PRD=20.65 by using POC-NN with

PR=93.93(62/66); (b) PRD=26.65 by using 1-NN with PR=100.

All above comparisons of POC-NN, 1-NN, and the Linear Interpolation techniques

obtained on these data sets are summarized in Table 6.2. POC-NN’s results show better

results than the 1-NN method in both, accuracy rate (PRD) and prototype rate (PR)

in all cases, and also better results than the Linear interpolation in case of the Sunspot

data.

Table 6.2: The comparison results of POC-NN, 1-NN, and Linear Interpolation

Data sets POC-NN NN Linear

PRD % PR % PRD % PR % PRD % PR %

1. Sinc 1d 2.31 72.94 13.91 100.00 1.31 100.00

2. Sinc 2d 83.69 54.46 203.49 100.00 4.1192 100.00

3. MG17 16.56 79.70 18.14 100.00 9.25 100.00

4. MG30 14.49 93.23 16.37 100.00 9.54 100.00

5. Lorenz 21.42 73.00 26.51 100.00 6.00 100.00

6. Titanium 8.11 87.50 12.20 100.00 6.00 100.00

7. Sunspot 20.65 93.94 26.65 100.00 22.20 100.00



53

Table 6.3: The time comparisons of POC-NN, 1-NN, and Linear Interpolation in seconds

Data sets Time in seconds

POC-NN 1-NN Linear

Train Test Total Train Test Total Train Test Total

1. Sinc 1d 0.49 0.05 0.54 - 0.05 0.05 - 0.06 0.06

2. Sinc 2d 2.96 0.20 3.16 - 0.22 0.22 - 0.24 0.24

3. MG17 0.65 0.06 0.71 - 0.07 0.07 - 0.09 0.09

4. MG30 0.71 0.08 0.79 - 0.09 0.09 - 0.11 0.11

5. Lorenz 0.54 0.09 0.63 - 0.11 0.11 - 0.12 0.12

6. Titanium 0.22 0.06 0.28 - 0.07 0.07 - 0.11 0.11

7. Sunspot 0.34 0.06 0.40 - 0.06 0.06 - 0.12 0.12

6.2.2 Computational Time

The training and testing time required for the results shown in Table 6.2 are also

compared. The time comparisons are summarized in Table 6.3. The POC-NN algorithm

requires longer training time, but yields the best testing time for all data sets.

6.3 Evaluate the POC-NN Algorithm for Regression

To estimate the difference between accuracy, a three-fold cross-validation and five-fold

cross-validation were also conducted to arrive at the average cross-validation estimate

of PRD. The performance comparisons among POC-NN and other methods are sum-

marized in Table 6.4. The symbols “***”, “**” and “*” indicate 99 %, 95 % and 90

% confidence interval for estimating the difference between accuracy of POC-NN and

1-NN using one-tailed paired t-test [33], respectively.



54

Table 6.4: The comparison results of POC-NN, 1-NN, and Linear Interpolation

K-Fold Data sets POC-NN 1-NN Linear

PRD % PR % PRD % PR % PRD % PR %

K=3 1. Sinc 1d 2.46 75.78 13.96 100.00 1.31 100.00

2. Sinc 2d 151.38 45.33 203.49 100.00 4.12 100.00

3. MG17 16.85 81.01 19.15 100.00 9.78 100.00

4. MG30 18.12 96.00 17.51 100.00 9.92 100.00

5. Lorenz 26.80∗ 72.67 27.96 100.00 7.59 100.00

6. Titanium 25.48∗∗ 67.42 15.89 100.00 5.65 100.00

7. Sunspot 37.13∗∗∗ 73.99 26.65 100.00 22.20 100.00

K=5 1. Sinc 1d 4.42 76.96 13.91 100.00 1.30 100.00

2. Sinc 2d 83.68 54.46 203.49 100.00 4.11 100.00

3. MG17 21.74 73.25 19.14 100.00 9.73 100.00

4. MG30 18.61 74.00 17.52 100.00 9.92 100.00

5. Lorenz 23.19∗ 72.33 28.02 100.00 7.52 100.00

6. Titanium 11.96∗∗ 68.36 15.59 100.00 5.53 100.00

7. Sunspot 33.23∗∗ 67.50 38.41 100.00 18.78 100.00

6.4 Reducing Complexity for Regression

In order to reduce the number of prototypes, the concept of acceptance interval (α)

is also considered. The value of α can be regulated in order to control the number of

POC-NN patterns. For regression problem, the data can be normalized before applying

acceptance interval (α). Figure 6.8 shows the number of POC-NN prototypes and proto-

type rate in relation to α-ratio. The α-ratio can also be employed to define the prototype

and accuracy rates, and the approximation accuracy of a function. Obviously, this can

reduce the number of POC-NN prototypes, which lead to data compression that is the

process of eliminating redundancies in a given data set. Redundancy commonly exists

whenever neighboring data samples are statistically dependent or there is a represen-

tative prototype used by redundant samples without significant error. Since POC-NN

considers all patterns lying within acceptance interval as redundant data samples.
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Figure 6.8: Prototype Rate (PR %) and Accuracy Rare (AR %) as a function of α-ratio.



CHAPTER VII

CONCLUSION AND FUTURE WORK

7.1 Conclusion

A new POC-NN method based on divide-and-conquer approach to prototype selec-

tion has been proposed. For a finite number of training data, POC-NN algorithm always

converges with all patterns correctly separated into the regions of classified classes. The

time complexity required to execute POC-NN algorithm is in the order of O(dn2p),

where d, n, and p is the number of dimension, training patterns, and POC-NN patterns,

respectively. POC-NN method is fast as well as simple. Moreover, it can overcome some

undesirable properties of order dependence and sensitivity of noisy data. The proposed

method can be used to solve classification and regression problems. The prototype and

accuracy rates can also be regulated by a user-defined parameter, i.e., the acceptance

interval ratio (αr). The prototype and accuracy rates so obtained have been compared

with CNN, Tomek, GKA, and NN with all the training patterns. For most classification

results, the proposed method showed better performances in both prototype and accu-

racy rates than those from others. For all the above mentioned classification results, the

proposed method showed the best training time. For the regression results, the proposed

method showed better performances in both prototype and accuracy rates than the re-

sults from the classical 1-NN method, and also better than the Linear interpolation in

case of the Sunspot data set.
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7.2 Future Work

Increasing the accuracy rate and decreasing the prototype rate of POC-NN are still

open issues, which need a thorough investigation. The Nearest Neighbor Rule relies on a

metric or distance function between patterns. So far the Euclidean metric in d dimensions

as the basis of decision criterion have been assumed, and alternative measures of distance

with POC-NN algorithm can be investigated in the experiment and result inference.

POC-NN method is based on the binary classifier and the prototype selection method.

One can replace the ’one-against-one’ (1-v-1) scheme with the other kinds of multi-class

scheme to implement a new multi-class classifier. Moreover, the set of prototypes can

be rendered adaptive and used as prototype replacement method.

The relationship between αr and the average distance among data, as well as its vari-

ance, was not studied here. The value of αr should be locally adaptive, according to the

distribution nature of the data. This issue is essential and worth furthers investigation.

When the NN rule is carried out in high-dimensional feature space, the nearest neigh-

bors of a pattern can be very far away, causing bias and degrading of performance. This

is commonly referred to as the curse of dimensionality. The reduction of dimension

should be investigated in order to apply the proposed algorithm on real world applica-

tions in the areas of classification and regression problems.
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Appendix II

A mathematical derivation of the statistical result

(one-tailed proportions of the normal test)

Let AR1 and AR2 denote respectively the proportions of accuracy rates of the POC-

NN and CNN algorithm, for instance, USPS data set, AR1=0.9342 and AR2=0.9158.

Furthermore, let n denote the sample size, which is 2007 in this case, and begin by

calculating the average proportion of accuracy rate, AR = 0.9342+0.9158
2

= 0.9250.

Now the standard deviation is determined, σs, of the difference of proportions, P1-P2:

σAR1−AR2 =

√
2AR(1 − AR)

n
=

√
2 × 0.9250(1 − 0.9250)

2007
≈ 0.0083, (B.1)

and normalize to standardized variable Z:

Z =
AR1 − AR2

σAR1−AR2

≈ 2.21. (B.2)

Finally, a table of one-tailed proportions of the normal curve [31] is used, which gives

the level of significance given a standardized variable, Z. The level of significance of the

hypothesis is found to be approximately 2.21, which yields a 98.64% confidence level.



Appendix III

A mathematical derivation of the statistical result

(one-tailed paired t-test)

For estimating the difference between accuracy rates of two learning methods, let Ȳ

denote the mean difference in accuracy rates from all disjoint subsets. Ȳ is the estimate of

the difference between the two learning algorithms [33]. The approximate N% confidence

interval for the difference estimation using Ȳ is given by

(Ȳ − tN,K−1SȲ , Ȳ + tN,K−1SȲ ), (C.1)

where Ȳ is the sample mean defined as

Ȳ =
1

K

K∑
i=1

Yi, (C.2)

K is the number of fold cross-validation, and Yi is the difference in accuracy rate between

two learning methods from the ith subset, and SȲ is the estimated standard deviation

of the sample mean defined as

SȲ =

√√√√ 1

K(K − 1)

K∑
i=1

(Yi − Ȳ )2. (C.3)
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