CHAPTER 1I

METHOD OF ANALYSIS

2.1 Introduction

In the method proposed herein, the framed panels are first
subgtituted by equivalent orthotropic plates to form a substitute
cloged-tube structure (Fig. 1), The elastic properties of the
equivalent plates are determined by the method presented by
Mosgelhi, et al, (9). By means of certain simplifying assumptions
and the infinitesimal strain displacement relations, the gtrain
energy is then expressed in terms of the assumed axial displacement
in the cormer colurm and twisting angle, both being functions of
height, Applying the principle of minimum total potential energy
and the Ritz technique, the werping displacement and twisting
angle can be solved, The stresses in the substitute tube are
obtained from the warping displacement and twisting angle and the

internal forces in the actual structure are evaluated by integration.

The detial of the method will now be described.

2,2 Assumptions

The following simplifying assumptions are nade.
a) The material is homogenous, igotropic and linear elastic,
b) The out-of-plane effects are negligible so that only

in-plane deformations are considered,



¢) The floor slabs are assumed to be rigid in their own
planes, so that each cross section undergoes rigid body
displacements, and axial deformations in thé girders can be
neglected,.

d) Each panel consists of closely spaced columns and
spandrel beams so that it may be replaced by an equivalent
orthotropic plate.

f) The points of contraflexure may be assumed to occur
at midspans of columns and spandrel beams,

g) Deformations in the joints cen be neglected,

2.3 Formulation of the Method

2.3.1 Replacement of Framed Panels by Equivalent

Orthotropic Plates

The method of evaluation of the equivalent plate properties
used in this study follows closely that proposed by Moselhi, el at.
(9)s 1In replacing a panel of the frémed-tube by an equivalent
ofthotropic plate, we stipulate that both the individual unit of
the framed panels (Figs. 2,3) and the orthotropic plate should
undergo the same displacements when subjected to statically
equivalent applied forces.

(2) Modulus of Elasticity E_
Fig, 2 depicts a typical unit of the framed panel
under the action of an axial force P, The axial displacement

[Saf (neglecting deformation in the joint in region 2) is



DNat = P(a-a)/AE (1)
in which h = story height, d.b = beam depth,.Ac'= eross sectional
area of column, and E = modulus of elasticity of the members of
the actﬁal structure. For the equivalent plate shown by the

dotted line in Fig. 2, the axial digplacement, Zkap, is

Nep = Ph/ taB, (2
where d = bay width, t = plate thickness obtained by equating
the area of the plate to the cross sectional area of the column
for each typical unit, ZEquating the axial displacement in gc, (1)

and (2) yields the equivalent elastic modulus, Ez :
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For framed-tubes having corner columns larger than the
interior ones, we will assume that part of the cross sectional
a.rea.Acp of each corner column is required to form the equivalent
closed=tube, This area, which is assumed to be fully effective

in supporting both direct and shear stresses, is

Acp = 0.5 (t,9; + t2d2) (%)

where tl and t2 = equivalent plate thicknesses of panels 1
and 2, respectively, and dl and d2 = bay widths of panels 1 and 2,
regpectively, Ehe remaining area,.A:c, is assumed to be
concentrated at the corner and act as am axial boow whiclh ercn

toke omnly axial forces (4). This area is simply



A = A =-=A (5)

in which Acc = cross sectional area of the corner column in the

actual structure,

For the general case, the equivalent elastic moculi Ez
for panel 1 and panel 2 may be different, In such a case the
equivalent elastic modulus of the axial boom, A:c, may be assumed
to be given by the average valﬁe of those for the two panelse.

(b) Shear Modulus G __
Congider the frame segment under a lateral force
Q as shown in Fige 3+ The shear modulus of the equivalent plate
will be choszen so that the horizontal displacement of both the
typical frame unit and the equivalent plate are the same whern both

are gubjected to the same shearing force,

The lateral deflection for the frame scgment, Alf’ may be
computed as the sum of that due to bending, A b? and that due to

shear deformation in the members, A v

By = By« 48

By applying The Virtual Force Methbd, and neglecting the
deformation in the joint, one cen easily obtain the lateral

digplacement as
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in which Ib and Ic = moments of inertia of the beams and columnsg,

regpectively, Arb and Arc = reduced or effective shear area of

the beams and columns, respectively, dc

= width of column, and

G = shear modulus of the material of the actual structure,

The shear deformation of the equivalent plate, Aip, is

simply given by

Alp = /Gt

where st = equivalent

(8)

shear modulus, By equating the two

deflections in Egs. (7) and (8) one obtains

st bl b Czs (9)
- (b -a)> na-a)’
in which Czs =2 % 5
12h I 12 4" 1,
g | Ma=-a) h -d

+ T 5 + (10)
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2.3.2 Total pPotential Energy

Due to symmetry, the total strain energy, U , stored in the

structure (Fig. %) may be expressed as

U = 27, +20,+ 4T (11)

in which U1 and U2 = strain energy stored in panels 1 and 2,
regpectively, and Uc = gtrain energy stored in the concentrated

o _
area Acc at the corner of ecquivalent tube,

For the state of plane stress in each panel, the strain

energy, Ul’ U, and Uc are given, regpectively, by

g
q
[
U1 p %[ (éx €x A éz(z +sz \{xz) tl i (3]
o=c
Y
U, =% (¢y€y+Cz€z+Tﬂ Zl;z) ty dy dz (13)
o=b q | »
U =% | AL G .€, ds (1)
(o]

in vhich x, y, 2z = Catesian coordinates, 2¢ = length of the shorter
panel (panel 1), 2b = length of the longer pancl (panel 2), H =
total height of the structure, €x,"€ o EZ = unit normal strains

in %, y and z directions, (’x’é ’éz = normal stresses in x,y

and = directions, sz and b,yz = unit shearing strains in panels 1

and 2, regpectively, sz and Tyz = corresponding shear str--~ses,
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E; and Cg = axial strain and axial stress at the corner of equivalent

tube,

‘The strain energy due to the normal strains in the horizontal
direction is negligible because of the high in-plane stiffness of

the floor sladbs, Consequently Zgs. (12) and (13) reduce to

Hf c
U1 “'% ,/ij[.(cé 6; +7;z a;z) % x. ox (15)

H b

v, = % (qm e'z +’};z Xyz ) t, dy dz (16)
o=b"

Furthermore, due to restraint provided by the rigid floor slabs,
the cross section of equivalent tube moves as a rigid body in
their own plane, Thus, for a small angle of twist 0, a point

whose coordinates are (X, Y, Z) will experience the foilowing

displacements
u(X; Y, 2) ==Y:Q(2) (17)
v(xX Y 2)= X-0(2) (18)

in which u and v = displacements in the x and y directions,
regpectively, In addition, this point will also be displaced
longitudinally, Therefore, the displacement of each cross section
of the tube is completely defined by the warping disblacement,

w (x, y, 2), and by the twisting angle, O (z). In view of the
strain - displacement relationships
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dw  ov)y 2w D0
x}z" (oy+'az— 98 + ez (21)

in which s = peripheral line aiong the equivalent tube, with the

pesitive direction shown in Fig. %4.

Since the material is linear elastic, the corresponding

normel and shearing stresses at any point are

¢, =& 1%y (22)
Tea = %[ 2% Siorien (23)
T, = Gl B¥re22 (24)

in which G1 and G2 = equivalent shear modulus of the panel 1

and ;;anel 2, respectively.

Substituting Eqs. (19, 20, 21) and (22, 23, 24) into

Eqs. (15, 16, 14) yields

U1=%fj El(—%—z) +G1(-g—:+b3—g)2 tds dz  (25)
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where B, and E2 = elastic modulus in panel 1 ard parel 2,
: *
respectively, and v, and Ec = axial displacement and elactic

modulus at the cormer of the equivalent tube, respectively.

In view of Egqs. (25, 26, 27) and Eq. (11), the total

strain encrgy, U, can be written in the more compact form as
( 3 ¥

2 2
2 1 ¢ OW oW PAY)
u=%| | B(3%)+ 6 (SE+p5y) tds|a
: 2
¢ dw | /
2 *
+(B)* % e B ( az") az (28)

in which 5) = the perpendicular distance from origin, 0, which
is the 'twist center of the cross section, to the tangential

segrent dse

The potent al energy of external load, V, is given simply

a8
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in which T = torque per unit length along the height.

The total potential energy of the structure, 779, which
js the sum of the strain energy and potential energy of

external load, takes on a minimum value at stable equilibriunm,

1eCo

TTP =20, +270, + 4 U, +V = Minimum (30)

2,3.3 Approximate Solutions by Ritz Methoc

4In order to make the proposed method simple and general
enough so that framed-tubes with dny variation of story properties
along the height of the structures can be analysed, we will
employ the Ritz method to solve for the approximate displacement
functions, The displacement fields that are employed in this
study are based on the abservations of the solutions obtained by
using the computer program (ETABS, Ref. 11) and the results

presented by Coull and Bose (8).

With the equivalent tube regarded as a thin walled
structure, a linear veriation of the axial displacement along the

cross section is a good approximation, Thus

sy 50 = | v (2 (31)

in which o, ® axial displacement at the cornmer of the equivalent

tube, whose variation along the height is taken as

wc(z) = A sin 7—T2-§ + B(cosﬂ—g - 1) + C(ecos 27T§ - 1) (32)
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where § = height parameter = and A, B, C = undetermined

o 12
q ?

constants,

Two types of functions have been tried for the twisting

angle, For the general case, a polynomial approximation may be

employed,

Thus

0 =K ¢ +Bf? 4K’ (33)

in which € = angle of twist, and K, Ky K3 = undetermined

constants,.

For the special case of a framed-tube of uniform properties
along the height and subjected to a uniformly distributed
torque, the following simpler approximation for the twisting angle

has been found to be satisfactory:

O =K sin g§ (3%)

002146

(-l

with K being the undetermined constant,

It should be observed that the assumed displacement
functions (w, § ) satisfy the geometric boundary conditions, i.e.
they both vanish at the base, Furthermore, the assumed

displacement fields give rise tc zero axial stress at the free end,

For the specialcase of) framed-tube of uniform propertiesalong

the height and subjected to a uniformly distributed torque, a
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simple solution can be derived, Substituting the assumed displacement
functions from Eqs. (31), (32) and (%4) into Egs. (25), (26), (27)

and (29) and integrating leads to

&

2 ' g
sn o T HAY S e T A S L
1 15 i = A" + + '3

+

W72 Byhe 3 65EL o L s ST e T
TR ey maEag U e * it

7T2 B t b Gétgﬁ o fo'Eztzb 362t2H s
B A 4| = B

N
(=]
N
]
———,
ol
l‘}‘..‘

AT 2 Bgtoh  3G6H | sTl'E th gy Gyt
*( 3 - e S - y Loy %% "o AP

K E -
+ ( Gzzzﬁ ) ( 397 EgboP , 128 Gyt H ) a

’*53,15nb

22 3 15

+Gtc(“__s_3_5z, ) TZ’2 Gztcsz2(36)



17

* %7
A B i 2 2 2
AT "TV—%— 22T R ol -8l ap ??ﬁ“’ (37)

ToHK (38)

where To = uniformly distributed torque per unit length along the
height, By introducing Bgs. (35), (36), (37) and (38) into Eq.
(30), and setting to zero the partial derivative of ’T; with

respect to each underterminecd constant we obtain
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in which F1 = 'ig ( 2.2 g c (&3.2)
Gltlb 5 62t2c
t.b - G t c
P, = 22 ( S (43.1)
Gltlb + G2t ¢

Egs. (39) = (42) can be easily solved for the undetermined
constants. Observe that the coefficiont natrix for Dgs.(40)=(42)

iz symnmetric.
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243.5 Internal Forces in the Actual Structure

The distribution of stresses in the equivalent continuous

systen can be evaluated by using Eqss (22), (23) and (24) as

follows:
4 " lov B |aw
f - f L = 2 &
Mt ( c) g ‘ 3 ) i
oz c)c

116, (45)
EC

o, - (]2 ] o

A a, .00
sz = 4 : i } (%7)
Tyz - G‘2 _:ll')— Wewsc —;—;—g- (48)

where C’/c = axial stress in the corner columm, Gl and 62 = axial

stresses in panel 1 and panel 2, respectively.

The internal forces in each member of the actual siructure
can be evaluated by nultiplying the ctress at the centroid of
thot nenmber with the equivalent tributory plate area. The results

are
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Axial force in colurm at level z; :

By oA [ Gc } 25 Sy
A
P (x) = 4,4 | Gy (x5, B £) 4 (50)
: £ " &
:
Py(vy) =t | Gy (er 330 ) 5 (51)
ik .58 |

where Pc’ Pl and P2 = colurm axial force in the corner, panel 1
and Panel 2, respectively, and z, = height from the base to the

" point of contraflexure of the colutms,

Shear force in column at level z;

]
Qg = 44 sz(g‘) R (58)
J é‘ & ﬁi :
T 3
Q. = A1 yE(l) e (53)
T
Q, = 0.59 (54)



where Q, and Q2 = column shearing force in panel 1 and panel 2,
regpectively, and ch and ch = corner colurm sheéaring force in

panel 1 and panel 2, respectivelyy

Shear force in spandrel beam at level zj :

- -

vV, = t.h sz(g) .
z, (56)
: o -J§

e
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: T.
V., « % hi'‘yet &)
2 2 §J

(57)

where‘Vi and'V2 = shear force at points of contraflexure in the

- gpandrel beams in panel 1" and panel 2, respectively, and z, =

J
the height from the base to the floor level,

Bending moments in the spandrel odeams and columns,‘at the
face of a column and a spandrel beam, are approximately obtained
by multiplying the corresponding shear force by the distance from

the point of contraflexure to the section under consideration.
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