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CHAPTER II

THEORETICAL CONSIDERATIONS AND CALCULATIONS

2.1 Principle of the Wilson GE Matrix Method”

-

The method is used to analyze problems in molecular vibrations,
The first step is to derive expressions for the kinetic and potential
energies in terms of some convenient set of co-ordinates, usually

internal co-ordinates, R.

A general quardratic field has the form

2V =

=\

PR cesenssl(l)
)7 S

where R, and R& are internal co-ordinates and fi j = 32V/ aBi aRj .

The above equation can be written in a matrix form

oV = T U . 2}

For small displacements of the atoms the kinetic energy T is given

by a similar expression, involving the time derivatives of the co-ordinate

Ry= (8B /IT)
2T=15«/¢IRor2T= c::::r—“ (3)

The M matrix is a function of the atomic masses and geometry of the
molecule; when these parameters are known, their determination is

straight forward but tedious. Partly for this reason, the kinetic
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energy is often characterized by an alternate equation involving

the momenta P, conjugatc to the co-ordinates R:

2T = PéP or 27 = [} (4)

The G matrix is evidently related to M matrix; by making use of

the definition of the momenta

P=MR or U A U (5)
to substitute for P in (4), it is easy to show that
M=I or M= G.l (6)

where I is identity matrix, and equation (6) shows that M and G are
inverse matrices.

Since, in general, theié will be non=-zero cross terms‘in the
expression for both V and T, the co-ordinates, R, must be transformed

into a new set of n displacement normal co-ordinates Q through

the relation

R=1Q, (7)
Q being a column vector. By appropriate choice of L, both the poten=
tial and the kinetic energy can be written as

2V

dAQ (8)

27 QQ (9)
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whereAis a diagonal matrix of the frequency parameter Ak. Using
(7) to substitute for R in equations (2) and (4), and comparing the
result with (8) and (9), we find:

/

LFL= A
and

/

LML = T
combining these two equations gives:

FL = MLA (10)

On multiplying (10) by G = M'l, we obtain:

GFL =LA (11)

The secular equations which specify the acceptable values of the

diagonal element 1} of /A may be written as:

lF - AM| = 0 (12)
and
lGFm Az]= O | (13)
The force constants, F and the frequencies, A can =~ thus be solved

by using (12) and (13).

The computation can be simplified further by introducing sym=
metry co-ordinatec Se . Let the internal co-ordinates R be trahs-
formed by:

S = UR (14)




e
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where U is an orthogonal matrix (U U = I) whose elemcnts must satisfy

the following,

1
=

(normalization)

=M™
<
a
"
o

jk 1k ~ (orthogonality)

Furthermore, the symmetry of the molecule must ﬁe taken into consi-
deration in constructing the U matrix, The new sets of co-ordinates,
Sl’ 82, $6w sy Sj thus obtained are linear combinations of internal

co-ordinates and are called (internal) symmetry co-ordinates.

In order to set up ' e secular equation in terms of symmetxy

.

co-ordinates, it is necessary to convert the kinetic and potential

energies in terms of these co=ordinates, and these may be written as,

i /
2V #RPR = S%8 (15)
S . o/ -§ o .
o7 = Reltra 8778 (16)

5 % . 4
where Fand § characterize V and T in terms of the symmetry co-
ordinates, then the necessarv relations are easily obtained by sub-

sutituting from (14) in (15) and (16). They are

i . /
7 =vlprurt= ury (a7)

5

/
UGU (18)

il

Solution of the secular equation
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SFL =L A ef.(11) (19)

will now give the transformation matrix J; that defines the
normal co-ordinates in terms of the symmetry co-ordinates:

S = L Q (20)

To obtain the normal co-ordinates in terms of the original in-
ternal co~-ordinates, we must combine (14) and (20) to obtain:
R = Ig= U Xq=U4%Q
Equation (19) can be rewritten as before
|§“5 - AI| = 0 ef, (13) (21)

2.2 The Urey-Bradley Force Field (UBFF)

This assumption was made by Urey and Bradley3 who propose

the use of a mixed potential function, that is, a function which
is basically of the valence force type, but which includes, in

addition, some central force terms between nonbonded atoms.

4

This potential has been best used by Simanouti” in the case

of tetrahedral molecules in the evaluation of potential constants.

The Urey-Bradley potential Function is expressed as,

4
= > g 2
vV = & g_Ki ry [.\ri+ % K, ( A ri)

% Fy’ Wt _ 2
* FlFLsis ® ®ag t ) By (g Bas))

¥ A ‘
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where ©r's are the bond lengths, o 's the bond angles, g's the

distances 'between atoms not bonded directly, and r represents
(:r: )% K, K, H, H, F and F are the force consta.nts, the last

two oI‘ which are the repulsion constants between nonbonded atoms.
The constants with primes are linear terms and those without
are guaddatic terms.
Using the relation
2 o

q,.. = r +r =2rr COB K
i - % 3 ij i’
q.. can be expressed in terms of Ar;, Ar, and A o « Finally,
ij i J ij

by assuming that all the bond angles are tetrahedral in the equi-
librium positionad substituting the value of ry and Qg the potenw

tial energy can be expressed as follows:

, 4
— 4 2
= % 3 [K_'.+F +2F.,] Ar
i=1 l ij 4 :

gl - 0] (ayseny)

i¢d
Z ’
+ 5 {_3 i3+2Fj} ( Az Azx)
Y27 +2F; (A e D\
"E LT ﬁ"s ] (8 Cupey
+ e LG R3) (1 eyy) () (Bee) |

(1)
To express the vibrational kinetic energy with the valence

force co-ordinates, Shima.nouchi4 uses the method developed by

Wilson5 and for the four frequencies, A,E, and two F's, of MX4

molecules, the following & and G matrices are obtained:



9A = /“x,

F, = K+4F,

gE = 3/‘}{ ', “

Gy = H=1F+1F,
|
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(11)
(111)

(1v)
(v)

(v1)

(vi1)

where /ﬁ X and /,; M are the reciprocals of the masses of the X atom

and M atom, respectively.

From above, the secular equations for the three types of

vibration ares

for A; type:
A= G0 A
for E type:
Ay = 9E z:
and for F2 vibrations they are:

' o
k3+)&h= Trace sz J'Fa

and 1314 = l?rz“‘}‘pzi

(viiI)

(1X)

(%)

(x1)
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2,3 The Teller = R.edlich6 Product Rule

et s 52

This rule relates the product of the frequencies of a given
symmetry of a molecule to the product of the corresponding fre-
quencies of same isotopically related molecule. The ratio is a
function of the molecular geometry and the nuclear masses. It
depends on the numbers of rotations and translations belonging to
the symmetry species. It also depends on whether or not the co=-
ordinates of the isotopic nuclei generate a representation of the
symmetry species. Moreover, it is assumed that the change in mass
will not alter the numerical values of the force constants. On
this assumption, the product rule should hold rigorously for the
zero-order frequencies UJi and at least to a good approximation
for the observed fundamental?® ; (or, in other words, the first

vibrational quanta) for any mass differences.

In case of the tetrahedral MX4 molecule, the product rule
formulae quoted by Herz‘berg7 are:s for the totally symmetric

and for the doubly degenerate vibrationg,

e (1) .
&71' " 4 = Ay (x11)
2 W, (1)
By

and for the two triply degenerate vibrations,

S (1) (@) /(i) A
\)()3 u)4 _ m—%. LIy + 4 m( ) . 'EE St
w w m l)'Y mx + 4 my m%)
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where the superscript (i) refers to the isotopic molecules, () is

the frequency, and m the mass.

It is . noteworthy that according to equation (I) no isotope
shift occurs in u)l and 0)2 if only the central atom is replaced

by an isotope since in these vibrations the M atom does not move.




	Chapter II Theoretical Considerations and Calculations
	2.1 Principle of the Wilson Gf Matrix Method
	2.2 The Urey-Bradley Force Field (Ubff)
	2.3 The Teller-Redlich Product Rule


