CHAPTER III

APPLICATION

; . ) 1
A Simplified Cluster Expansion for the Classical Real Gas

Synopsis

Mayer's expansion of ""e partition function of a

classical real gas in termg‘deifreducible cluster integrals
e /

is derived by a simoler’f.d xowe dlpect method. The two

principal features o /j“ig m?thod are the following.

4 /|
(i) The anﬁiplon Fuﬁgtlon is expanded in an infinite

/] o
product rather than a/uerleo.vAms a result the exponential

fown is obtained 1ﬂme€i&§elf “fthere is no need to sum up

.

infinite sets of draphs4__DlchnanLéﬂ graphs never enter,

(ii) The cqléyiaﬁion—lead§/é;recilv to the canonical

H-particle pertition function,' < Neither the fucacity nor the

reducible cluster integrals 'are introduced.

The first. app ~oximation (second virial coefficient)

-

In classical theory the problem of finding the equa =
tion of state of a real monatomic gzas amounts to evaluating

the configurational partition function
ARyt gtee ety g y) o
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Q;N- - [e O.r1 dl"z‘.-- N

N.G. Van Kampen, Physica, 27 (1961), 783
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The domain of this 3N-dimensional integral is determined by(
the fact that each particle may move throughout the volumev;
irrespective of the positions of the others. Hence the in-
tegral may alsq be regarded as an average over N-particle
configurations,
o =V

-au
1 e [ /od 4 : )
where ¢%2 = e ste.,and/the bar denotes the average over

N f : I ‘ v e
lfz ‘/,13 ves VN""JI,N "'"“""(311)

all positions of th: par®icles—inside V.
ey -
; 7
The ¥'s are Tuncvigns of the random variables
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Lypieee, Py and ¢%2 ~*7¥/1 agolr, = Ty —> oo It is clear
4 //

that ¢q2 and ¢g4 are g%gtistically independent, and also .

and ¢qz. Thus ' =

Yo Vo3 = Fig s =
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However, the threejfunctions Yyos ¢%3, ¢é3 are not mutually

independent. Yet one may write

p

Halishs = Wy Wy ¥, ===(3.2)
as a first approximation for low density. The rationale 70
that this equality would be correct if one of the s were
replaced with 1; but the configurations for which all three
s differ from 1 are rare if the density is low,

For products of s involving more than three parti-~

cles a similar argument applies. One is +hus led to the
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first approximation

ler” v = Y WB"' T -1,N (712)51\1(%1)

This yields the usual result for the second virial coefficient

in the following way.

(48 - = 2N(N-1)
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where ﬁ% is the Ha&Q;TE\TTT§f"T?;gQ&cible cluster integral.
Thus
B [-“f- 8| e (5.3)
LT e

This is the familiar first term in the expansion in '
powers of the density, which leads to the second virial
coefficient. It should be noted that the correct exponential
form is obtained without summing over an infinite set of

‘graphs with cumbersome combinatorial factors.
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A 2
The second approximation (order n®).

e e =

The above method of arriving at the second virial
coefficient is not new; however, our real problem is to find
the higher orders in the expansion. This will be done by
supplying successive correction factors, rather than additive
terms. These correction factors describg successively the
statistical correlations between the ¥'s, which have been
neglected in the first épproximation.

Tt is reasonabls %9 expect (and it will be verified
by the result) that the/ hexedapproximation involves three -
particle correlationg./ /Thedtriplet of particles 1,2,3 gave
rise in the first approximabion to ‘the factor (3.2). To make
up for the error committéd THeére one has to multiply by the

correction factor X

] (7. 1)

A2 13 259E =
U /
2 Vs Tas ¥

As there are (Tr)1nﬁ$ﬂets of particles, this factor has to be
3

raised to the power (%;} Writing, as usually, ¢ij =1 + fi.

one finds for'the total second order correction.factor to QN
s () (11-2)
. e R Y
1 5 3Fyp * 3 + TiofysTos

s 4 .3
, | R PRI

1

V—Z. Hence
1/N
s

Now f12 is proportional to V ', and f12f13f23 to

the configurational partition function per particle,(QN



L8

is

In the 1imit ¥ = o , which constant p, one has, in the fami-

liar notation,
- iy
oxp| 34 f42f13f23] = o [30°8,]

Collecting results, we have fé&nd as a second approximation
“ ‘ 4—"—’-’_// 3 . v v
of?) = v exp ”’I Extop | (5.5)
N 2, 1 3 2
7. il

Z J LS -
It should be noted/}hé;QWe“Werp led directly to the irreduci-

/

ble cluster 1nto~rals Qk Wf%noat the detour via the reducible

-‘“'»(
/ / il
cluster integrals bk flde reason is that the method enahles
‘u;— xxxxx Tr—r’/

one to eraluate the cangnical par+1blon function itself,

‘\

without the aid ofSkne grand canosz dal (or some alternative)
i m

formalism.

The total expansion of the partition function

In order to find the term of degree k-1 in the density
P, consider a group of k particles 1,2,...,k, and take all
factors ¥ whose subscripts are taken from this group. The

correction factor to be computed is

I A S
-‘...-1_2,.11.’1 3 i 7‘%{—1 Lk
D

where the denominator D is the previous approximation to the
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same product., Vrite the numerator in terms of f's and expand

q : ST i
—D~(1 .f12)(1+f13)..‘(1+fk_1,k7—--5{1+f_12+. ..+f12f135..fk_1’}{}

e (55

’

The several terms.in this expansion may be arranged in three

-

classes
(i) terms involving less than k particles ;

(ii) terms that involve all k particles but are reduci-

ble (in the sense that they factorize, each factor involving

;//.////

less than k particles)y,”//
(iii) irredufébig/terms involving all k particles.
All terms oftgiaSSés\(i) and (ii) belong to lower

b
approximations and aré‘therefore also present in D. The terms

~(11)

e
of class (iii) are necegsarily of. order V There are

also correspondimg@f;fﬁé*Iﬁ.D, that’/is, terms made up with
[ M

the same factors £ but erroneously treated as reducible. It

4 -k

1s clear that such, terms_are of jorder V or smaller., In
general, each term in D is identical with a term of class (i)

or (ii) in the numerator, or else O(V—k). Hence (3.6) becomes

4 5

v oy, ea(3.7)

B

1 P PAPEIRE

+ 2
(k) ,

where the summation extends over all irreducible k-particle

terms. This is just the usual irreducible cluster integral:
L o , M
B (YR ib:i}- 3 N
(k) “12713 2 S VI (3.8)

The total correction factor to the configurational partition
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to the power

The result is

oxp |

3 (Y
N \k/

particle, (QN)1/“

:
k=1
N

ot o
o

i <H k=1 ﬁk_,l ,
_}‘

v, =

50

, is obtained by raising (3.6)

Combining these correction factors with the first approxima-

tion (3.3) one obtaingthe TamiZiar result
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If we

-
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v exn/[NE p1'k+1]

VBourier Transform
N T an

] —

begin with 'the ‘complex 'exponential

Fourier series,’

f(x)

o inmx/1
= 2 C_a
N=—co’
DN fll £(x) inmx/1
o1 dx
~1

and substitute Cn into £(x), we obtain

£(x)

v

o0
2
N===00 ‘1

. i _
co; . x -]
_ {g__ﬁ]'f(x) ,inm/1 dy} i1 g

=g o8

~1

[%—,_— 1[1 £(x) o TS/ 1 dx] e

v/

———(3.9)

——==(3,10)

form of a
~—==(3,11)

P

~—-=(3.12)

inmx/1



51

Now let us denote the frequency of the general component by
_ o

P, = 1

and the difference in freguency between consecutive harmonics

by
28 ©qF
Ap y -:-L- W S
Then f(X) can be written ‘$//}?&?\§
| N\ T 7aN )
o [ 1 2 115 ﬁx 'l ~ip % \glis &
el 1 zﬁA S ‘
f(X)— z_ o f(X) e ﬁdx_ 5} \Qw
N=e00 ; :
/)| s

In this form{f(/x) ;apbears as the sum of the produc bs
)1 %)
m&'fé’ the value of the function of p,

of the 1nf1n1te51mal /Ap ti

o il T,
L e(x) eﬁ'?,"’ dJJ "lpx
2m ;mw;r/
QAFETTY D)
X : e
at a point i< % in eagch-interval A (,?h@ limit of such a sum
definite integral, and thus,as, I ~—> o and £(x) becomes

is a

aperiodic, we caniwrite

2 = [ [26 o ax

e 0O

-

J o TP dp =——=(3,13)

This is one Torm of what is called a Fourier integra
ourier integral can be written in various forms.

i % ¢
ne 1

instance we can write

1 ‘ y -
T /w f(p) e X gp
o

For
——em(3.104)

£(x) =

where
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£(p) = /mf(X) oTP* ax
Joar

—

Equation (3.14) and (3.,15) are known as Fourier

52

——em(3.15)

transforn

pair.

Tn the case of 3-dimensions, we have the

relasions: -

£(3)

Theorem If u(r) = :

QI

=
R I
Proor Let a ' =
s u(QHULALG = [14m —%e"o‘r
a» 0
Use spherical coordinate
= 2 4in 6 ar a6 ad

dr = b g sin

A(p) = =y,
(em>/? |

proy Rl

o} o}

%

—~
N
-

fo? - Wa. iprcos6 14
re dr/ =€ sin6abd ad
"o

T
2 ~ar dr] a_iprcos®

following

—==(3.16)

(¢

a(~-cos6)
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3/2
(o) ] iprz
By (?-Tr) \ . ‘Li‘ (ip_.a)r - "(ip""a)l‘q .
o= --"*““37‘2'(8./ lim ip L e - B ar
(27) o+ Q o
| r (i'O"‘OC)I' —(ip—}-a)l’a -’OO
= k0 i3 “'Le e -ip
(2"7\375(&) aig ip L (ip~-a) (ipra) . 5
Ny Q‘%(a).; 14m _.g}%}
(27T) r \"b-A- 040 Do
i(p) = BTG\ (3.18)
(qu)3/2 P 4 /6’ 78 b

Theorem of Fourier transform-on graph

Define the @&mcted‘ praphl without additional line of
= -
t+1 vertices by '

-

B(r,~r OHUT [...‘[ K(r1-—r2)K(r2-'-r3).aeK(rt-—rt_!_,! ATy, .0 AT,

i &= 5(5,19)

If Pipqg —T> T, , we have a ring,

BO) = [os [REFRE,). . KEF ), 0F,
~—-=(3.20)
Let y
17‘1 —— T t;t—!-ﬂ —=> 0 , equation (3.19) becomes



BE) = [oon REERE, )00 K(F I, .05,

Multiplying both sides by "”LB /z.elp'r and integrating with
: (21r)

respect to dr, we have

/

5. =y AP = 1 [ ip.P = =
3/p K/»P(I‘) e dr = /O.o', (53 K(I‘ 1‘2)

(2m) (2m) /2 .

...df

2

BB y-T5) 00 K (F ) AR .

By Jaciobian transforma'tion; ar,ap, > d(?,| -—1_’*?) ar

RS 2

ArAT, .. .d0]

2 )dr

“”""’> d(I‘~I‘2)d(I‘ 3 -..CL(I'

"t 1%

; " A <) ' ip. r—rz)
. k,_g)_yz,fp(r)e = (9-5«72‘ [Ix(r-—r )e’ dé’f"-rz)

3 _ o o P 4 4 v - N
[{ k(%) ot g ft]-w—(B.zl)

By the definition &l Fourier transform, let

K (p) m -(*241-;)-3--/2 [K(E) o'PT oz ———=(3.22)
]_?' (f)) = ‘&-;‘-]-’75-3-/2 /‘F(;) eip'r d-I: "'—""'(3.23)

Thus, equation (3.21) becomes

i) = [ (2am¥/2 x<pﬂ —(3.2L)
and |

wnln . __&_1__“ T Fay "i_.i‘. - o

e 1 [F6) 7P o —nm(3.25)

Tor a ring ¥ ~—~=> 0
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| . img o §F -
= 1 S rmy A 1 3/2 go= ~
7,(0) = =10y, [§F)ap = —1=; [[en>2 k)] a5 —(3.26)
L (2ﬂﬁ3/2 J (2w)3 i[ ]
We also define
B [wa) dry = V F(0) -=-=(3.27)

For the connected graph with additional lines, we define,

G‘(51 —-I-.'t""l ) = [o e [K(;,] —52>I{(§2"§3)K(F1 ‘-;3) ® 0 oI((Ft~£r+1 )dizo . Odft

/

e (3.28)

1 5t+1-—~“é 51, it _bPecomes) a ring with additional lines
0 = ce e .—v’“'- LD T, -7 co.IC._"_ -‘uoo-
a(0) ‘[ .[K(rﬂ T, JR(E rB)K(r1 ¥5) (rt ?1u;)dr2 dr,

We also define

B = [cr<6)q3.,*a§1 _v.e(D) e (3.30)

T T T

\\// :

(a) A ring without additional (b) A ring with additional

line lines

Figure L, The ring diagran
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We now consider the terms f12f23f13, f12f23f3uf1“9 in

the irreducible cluster integral which we have

~u(r. .)/kT -, .
it 28 +d -1 = & *d o g
1J
h =G > = /KT,
where u(rij) Uy e B 1/

T'or 3-particles ring : .
: _ﬁU. ‘81107 ..-ﬁu_131\

O Y - )

I

£y0T13T03

& ("@5hﬁgbjﬂ3)+Iﬁﬂmromhrtmms

Wle can write in the-Fing/ diagran

| i
g il . :”// + + 55 © e ¢
RS A A JARVAN
2/ [RE

For li-narticles ring

=X

A2 Iy 53 . .
S (= [ +higl r terms
f12f23f3hfh%; (=B) ‘(u12u23u3uuu1) higher order fern
bﬂﬁ e . X
£12T23 3,50 E - * I T
4 3 ‘ -

For the real gas with electrostatic interaction, we know that

the interaction potential between molecules i and J is delfined

e 2.8 ..
A = SEE (350

But ecuation (3,18), we have

Z.Z . &
: = e kT _C (3
u(p) = ?2253/2 « T 5 =% (3.32)

By the theorem of Fourier transform on graph, a ring of
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t-particles is definéd by

1,0 = [4p) 88 = [(3)* ©F & -me(3.33)
¥ 2

We find that the higher order terms of the irreducible inte-

gral’have negligible values in comparison with the leading

term, therefore, we can neglect these higher order terms.,
Therefore, in what follows we shall neglect the ring

with additional lines. Ror eXafples, we retain only such

terms as.

/ 3
(A 2

2

£ 0T03 3,04y =5

Lo

By the definition ofithe irreducible cluster integral, we

have Eqd2.64)

] AT, .. .47
L R e L

All products with more

than singly connected.

Tow we define gko is a ring without additional 1line which

contributed to @k.

| it 1 ek (i) N = J;;l
Ao =X 7P {‘137%'{"2'5[,;@}\/‘ 6Fyyq ====(3.34)
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The factor %if}%-ﬁ is due to the way to count for the ring :
in the irreducible cluster integral,

By the definition of Fourier transform on graph, we obtain

1 k+1 =
et o al3
%o ov (=5) i F1<+1(O)

ﬁko

| - -~ / k-1 PRI
'12" (—ﬁ)k+1 1 ’{[(277)3/2 u(ﬁ)} 35 ~=m(3.35)

(2)

Trom the equation (3.10), we Have

X ,'V?:—‘ 4 “r T .
Q = ol e@_fxg IN= J ——==(3.36)
T Gl 1 ;}0 N / Ik
Let S(,O) = ﬂl P
k=1 X
[ o; ' ’@{H = AP
| stehaet = 3 L@l 22 <y
O

> e) = expi'-lg foS(p') dp’] e (3,37)

For a ring without additional line, we define

» R,

- o k : = \
OO(P) = 11 'Bko 2 ———=(3,38)
o (Y S Z,: 1 E k41 342k k+1 _
5P = 2473 (2m)> ( 2 f(?‘ ) “(p)} dp
oo k41
P S om¥2(_pya
Froan [ . F[(2m 2yt
Let a = [@m¥2 (8 @]
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oo ) i R | T
* p/% 1+(27T)3?2/3P a(p)

\:'S {
)’ N

Use the symmetrical spherical coordinate, we have

dap
Thus,

& . L
Uo(p/

s_ (p)

l;.z? 22. el‘L ﬁzp > /
At l2 [ z . Te 2y
é ! pPepp(PiBg e §
’ 3/2 S
Y Z 1L ﬂ 1 1
=\L) L e (J°39>)
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