CHAPTER II

THE PARTITION IMUNCTION

The Partition Function *

By definition of the entropy in statistical mechanics,

we have equation (1,32)

- /BT - g
S = Nk iln éjgifg — ——=e(2.1)

7
From thermodynamics; thé//Helmholtz free energy, A, is defined

by T

Thus, ol > :
’ : —— f@iﬁkT_:’ P

A = =Nk Th}n\g g; © ( LB (270)
or

A = —uineplin'Q = (2.3)

where @Qis called the partition functiion.

The partition. function, Q, is defined hy
"‘ei/kT G vt
gy © e (2,1)

Tor o svstem of s degrees of freedom the energy surfaces
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corresponding to allowed states subdivide KU space into
. s A
regions of volume h” (h is Planck's constant). Therefore,we

would expect that
€, —3 € (p,q)

- 8
o 3 w ¥ = o 0é PRSP .
g ~—3> d W/h qul dps/h (2.5)

in meking the transition to an integral.

Thus, the partition fungtlonAQQ;OWea

f A A

Q = 2 c <3 e {

) §e; é;///// i;uﬁﬁwmﬂ (2.6)

Q e .i: [ 8 éﬁ) XClass1ca1) ~—==(2.7)
R ) ~ |

For the case of /& Syste " non-localized particles

sucih as a gas, we must ¥ N ! . This is equivalent

e A NAN o
XA A A\ S AN X
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to replacing (Q}Nx-g; — 9
% {hj
W

(Q N

N
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Thus, the equation (2.3) and (2.1) become
A = ~NkTln § + XT 1n N} e (2,8)

S . = Nk In Q - kX 1n N!+=:_l§ bompne{ 2,9}

We now consider a perfect monatomic gas enclosed in a
volume V. The energy of one atom of this perfect monatomic

gas 1s given by

[}
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where
g iz «0, inside V

U = o, -outside V

The partition function becomes

2 g
g Al B ~(p§+py+p§)/2ka o
Q = 3 [, e dp,dpydp,, / dx dy dz
—oo v
T W o, 2
v ﬂ#@mv/w-p2m1 w~%QMT
= [» e == Q4B t—¢ dp.f € dp,
h ¥ / > <~\<\/ s
ol .
Q ( 5 ——-~(2.10)
\Mhs 4
meme(2,11)

We: also obtain the. Sackur = Tebtrode ecuation

V - Nk 1n N -={2,12)

: 3/2
T
5 = Ho 2k 4 Nk 1n<?“m§T)
h

The partition function for the canonical cnsemble

ile can extend our definition of entropy to the case

off the canonical ensenble by defining the entropy of a
canonical ensemble whose mean energy is I as being equal to

the entropy of microcanonical ensemble with energy E. We

may do this because from thermodynamics we know that the
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entropy is quite independent of whether the system is isolated
or in thermal contact with a heat reservoir,
By definition of the entropy, S, we have

ofl

hﬂu

S = k In == ——=(2.13)

N being the number of particles in the system, s the number

of degrees of freedom of each particle, and Ofl the volume of!
phase space correspon dina to eﬂﬁ-cges between Il and & + 6E.

We can gain an estlﬁ//gégar 6ﬂfbv recuiring that OF be equal

to the range of reasan & p@Qbable valves of the energy of

the canonical ens emﬁt:}/i;ga,%y requiring that

p (B) = { B2L)

3
ey

Eguation (2.1L) followsxffbm the fact that we know that the

( A iten—

partlcles of the mﬁ%ﬁqg\ponlcal enspmble mist 119 in 0f and

their density p(Z) in 00 is a constant. llence,

52 = 1/ p (L) LRy sl 34 15]
and oy

8 =k 1ln (eh/k?/ Neg C)= -k 1n h?r C+T /T #==-(2.16)
Thus, A =B = TS e k¢ 1mfin T (21

But we have the normalization condition,

[se'E/mdﬂ = 1 $5(ay18)
and so since C is a constant,

% % [e"e/kT an —eem(2,19)



Hence we have

A= - KT 1n Q e (2,20)
where -
- &/ P
Q = s [e /KT an ———=(2,21)
(¢} th

Qc is called the system partition function and plays a role

similar to the partition fuﬁction, Q, for one particle,

Nz
except that \_S //

—— e —
f — P A4

o,f = (@) // -‘  —en(2.,22)

/
for a system of loc L,éd’ pa tlcles.

Tor the casn//t< nqn—lbcallzed particles we have

2t

§ it AN Z
Qp = (/N T “““(2'23>
Next, we cor

% monatomic gas, enclosed
fl i

in a volume V, and apan the method of the canonical ensemble,

We must evaluate

C

‘"-3-11\?"-; fe—-ﬁ'/k'.’? afl ---~~(2.21+>

The energy of the system is

3N p? 7
€ = 2 e A + U ‘ """-(2025>
1< 2m
where
U= 0 inside V

8) outside V

i
8
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Now i A
an = %y dgy dp;. e (2.26)
1
Thus, h VI. —E P?/kaT o
} i o e—p /2mkT i
NG [ i), 1
N
Q= %; (= uéfgviflf; (2, 27)
~ // <!

/< {

/ /¥ Al
Thus, the Helmholt#’ f Qtiog;for N particles is
/ / v \‘,-v\,‘:;‘ A .
/ $B/2
A= kT 1d (ST kT In M-NKT ——e(2.28)

We also obtain the Sackur<Tetrode eayation,

a4 = (EﬁAﬂ§575~5f2~ﬁk¢ﬁ£f&$(2wka/h Y E Nk 1n I

(2390

The partition function for the grand canonical ensemble

—

Vie define the entropy of a grand oanonical ensemble
as being equal to the entropy of a microcanonical ensenble
whose energy and number of particles is ecual to the average
energy and average number of particles of the grand canoniesl
ensenble, This is a necessary definition since any other
would imply that the entropy of a system depended upon its

surroundings.



S = X 1n (6Qfﬁﬂs)

27

e (2,30)

where Ofl is the volume of phase space corresponding to

energies between E and B
of freedom of a particle,

by requiring that

p(E,N) 80 = 1 }
— /1/’\/‘/:/' A 7 /1¢0
Hence, 5 = _k=n (_;e“{{g[h_,_Ns C e“ﬁ/ I’CI‘)
SIS g [ S —
o /’/ = . 1-\?8
= E/V/E W R/T=%k 1InC h
/ ’/// /4 ‘\ !_", ‘S . R
////_f/ A
But . 7o)
! / // /‘/ / \-\;,;;&’ { -
“1 Ns

E-T§ =

o)

7 i

/o/ FECER + kT 1n G

f

7 o
Pollowing Gibbs we deffnewtﬁeréfand partition

O £
by B =29
O B Y
p (@ - y M)
jyo]
But
1 SR |
= e TR [P 0o an
and so0 '
forel N=0 HNS

Thus,lq. (2.33) becomes

A = UN -X T 1n 9

ch
But the Gibbl's free energy is defined by

G = A+pV

+ OFE and & is the number of degrees

We can obtain on estimate of 6f1

—(2.31)
—m(2,32)

——e=(2.33)

function Q,

o

conem(2,30)

~~==(2.35)



and

'! G = HDN
e so we have

,;
! = P L4 o SR s, Wk 20 C
y pV kT 1n Qgc (2.36)
k‘ Vle now consider the pepfect monatomic gas and apply
%{ the method of grénd canonical ensemble, Ve have
gg .
e im
: T an= 3 oHWKT
: =0 o c
£ |
‘-'f ""‘““(2.37)

ience

30 we have

/ t ¥ - R
N = kT[-an {e”/kT V/QL;E> 42]

50 :
\ ot /4 V.T
y . 3/2 ¢« . 4
= My (-—-—=—-——27T = a2, 39}
ne
or
& T 3/ ) 10,
po= kT 111{11/4\7:/211-2115«\, H-—--(? 1,0)
. h
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pV = kTin Qgc=kTe“/k' /2’”1“1{”)3/2

which combined with Eq.(2.39) yields the perfect gas law
pV = NxkT ----(2 41)
We can also obtain the Sackur -~ Tetrode equation

S = 2 M+ 1n<-33—"‘ﬂ'-1§3) V-Nk 1n B ;-~-(2 12)
S\ J’////

S 2

EQE:AQEEQEim?ES;sg; déuieai\@roatmonb for Real Gas

e N

N ‘,
‘Qﬁfﬁpdenﬁiéal molecules in a volume

A r

V will be considere /o the esoentlal features of an

imperfect gas are o

 CALH LA.l Y*(
?#fve@?ﬁn.the noble monatomic gases as

well as in the more conmpricated polyatomic gases, it will be

. 5 NG @ 4 |
simpler to clhioosels

an example, and to

E) 43 ‘g‘i ]':] s *
assume that the molecules treated have no excited internal
degrees of freedom., Since, further, the behavior of the im-

-

perfect gas is not due to quantized energy levels, bLt occurs
at temperatures and volumesg, in the heavier gases at least,
for which the classical egations are valid, we shall use the
classical ;ntegration methods throughout,

The 3N cartesian coordinates of the molecules, and

their conjugated momenta, will be used, The indices 1 and j

s Pt ot et Wt i it B B B i s W B Bt Wi Bt Bt

3 Joseph Edward Mayer and llaria Geoppert llayer.
Statistical lechanics (New York ; John Wiley and Sons, Inc.,
19L0), pp.263-266
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as subscripts will indicate the molecules 1 and j. The
Hamiltonian contains the sum of 3N kinetic energy terms
p2/2mc The additional potential '~ energy terns,

functions of the coordinates alone, will be responsible for
the difference between the equations derived and those of the
perfect gas. The phase integral Q may be integrated at once

over the 3N momenta from minus to plus infinity, leading to

T mkT QéN /A
Rt

Q = e (2.143)

C h2\¢///; : -
’_///‘ “y \ .
The configuration :9/ % is
@) = “\\,(—%‘)/]{l d-r‘ ooor ooodr T ""‘""(202-!-)-‘-)
N WA 1 N
which
ar, = 2 e (2,015)

X

=~ J

and U(q) is the poggntial energy of the systen.

The potential energy, U(q), will be assumed to have
certain simplified characteristics, which are probably almost
erxactly obeyed in almost all real gases composed of chgmically
saturated nolecules. It will first be assumed that U(q) can
be written as a sum of terms, each depending only on the
distance apart rij of two molecules i and j., This assumes
that the potential of three molecules, all close together,

is the same as that of three independent pairs of molecules

having the same distances apart as the three pairs which



can be Tormed of the group of three, In the system of N
molecules there are + N(I-1) different pairs which can be
formed, so that this assumption is that U(q) is the sum of

% N(N-1) terms, namely,

i=N =N~
Ule) = 3 3 alr), —=—=(2.16)
ixj =1 ’

where u(r ) is the potentlal energy of the pair of molecules

i and j as a Tunction of: uh dlstance apart rlj,

The Llnctloﬁ;ufbjiha the same general characteristic

form Tor all newtraij; ally saturated molecules. It is

(
zero Tor large valqgs of the‘argument r, decreasing to a

ninimum negative valﬁq at\é dlsiarce r of a few Angstrom

4 ‘1
units, and then 1ncrea§fﬁ§:ﬁé§idly, as r decreases, to very
0 =4 2
high positive valiles for smaller digﬁances of approach.
e < /
NG~ Jrh

o)
with (2.46) for U(q) the exponent of the integrand in

(2.1l) for O 48 a sum of terms, The integrand itself is

then a product. However, the coordinates of two molecules
occur in each term of thg product, and the coordinates of
each molecule occur in N-1 different terms of the product.

The complete integral is not to be written as a product of

integrals as were the momenta integrals. One may write

o U(a)/kr - T o BTy MY _~-~(2 L7)
; . B Py o
Bach term e-u(rij)/kT becomes unity for large values of the

argument rij’ for which u(r ) is zero, so thav it is
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convenient to define a function,

—u(rij)/kT o
= = ol e 2-
f(rij) = fij e 1, (2.48)
which. becomes zero for large values of ri.. Siqa;
~u(rij)/kT
(S ’ = 1 + fij )
equation (2.L7) may be written as

- N33 +d
This product may be -expanded into a sum of terms,
o U(Q)/RT _ 4.3 Ve

+E 2 R , 1Y taed F eovecy “”~“(2'50>
w13,/ 4 1

1]

in which each term bécomes zero if the argument r is large

ij
for any pair ij occufring ag a function fij in the term. Using

=T

(2.50) in (2.4L4), we obtaing

O = [/[[“ N;f;jzﬂfi,j*;.':-]diia"'dfi"'dFN ;;";.(2‘51)

For examnle of calculating QN’ we may assume_that the
contribution to the integral of the unity, and thg %N(N—1)
terms containing only one fij’ need be considered, and that
all the other terms méy be neglected. The integration over
the unity leads to a factor V for each molecule, since the
configuration space allowed to each molecule is the volume
of the system. The product of these factors for all N
‘molecules is VN. If u(r) were indentically zero for all r's,
thcn'allwthe fij’s would be zero and this term alone would

%be present,’
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The integration over each of the & N(N-1) different

fij's gives the same value. I'or each such term, containing

one. L., integration over the configuration space of a mole-

i3’

cule other than i or J leads to V as a Tfactor, There are

N-2 such nolecules, so that the term is
- i &

w2 R B 88 AT,

J 1J € J

Now fij drops rapldly‘»o zerc‘éé’ Ty 5 becomes large, so that,

o

if' the position Oiaizégéénﬁat happen to be within molecular
distance of the f//}é f the vessel,

2ap = B —=em(2.52)

/4 t:_
since d rJ can be eypnﬁsseég' spherlcal coordinates Wlth
molecule i as a céi "A;ﬂéﬁd uhé”i'jggratlon over the angles

0

performed, The integral B has_ the dimensions of volume. f3

is independent~of the position: of molecule i, at least to

within a few Angstromsof the wall, so that
[pas, = sv.

There are = N(N-1) such terms, and since N is very

large this is practlcally Nz. One may write

N 1 52 B |
or -
3
QN & NII N (1 + Jf N -é;)’ ---—-—(2»53)
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with the introduction of the volume per molecule,v,

B

The cluster integrals b

s

i S
. g
We shall now consider the general teﬁm ' the sum

e o s

Z‘l s % '*‘ZZ f-- f-l-l +0000-—~(2055)
>1733 13 137

/1171
e-U(q),lu 2 5 x
n#

/

It is convenient to. makc a bné = 1o - one correspondence

/ y / ~

between the terns off his sum, which are composed of a defi-
/

nite product of L-e/papilcular functions, fij’ and certain

diagrams which nay‘be dgawn iu a plane, If all the IT mole~

’ 4

cules are repreoenued”b¢,numbered circles in a figure such

e

as Fig.l, and a line” 1° “drawn betwecn the two circles i and

—_— —7

for every fﬂﬂOblOﬂ{ﬁ \ocggnllng/iﬁ]the term, then every term

O HY D ® ©

® ® ® @ @ 6—
© GO

5 ®
&8
|

S—®

Figure 1 Dlawran corresponding to the term in (2.55)
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of the sum (2.55) may be represented by one such Ligure, and
every Lisure corresponds to exactly one term of the sum,

The first term, unity in the sum, corresponds to the
fisure which has no line, The & W(N-1) Tigures which can be
drawn with only one line connecting any twovof the numbered

circles correspond each to one of the + N(Il-1) different terms

containing only one T

ij° ,
./ / .
The functions f\appr@ééﬁ/ ero for large values of

their arguments r
~3

FOﬁD&P&d to molecular distances of

10" ¢cn.. The contry 'én to the confl‘uvﬂtlon integral QN

of one term arises ,bfor ; only¥.from that part of the
r‘/’ \(\” (I
space for which all % e,di“tapgeu represented by a line of
CAA

the ilﬂure are sma]l /\Mﬁ;m&i sﬂeak of the molecules which!

/

are connected by mlncs in +he f:@ure3 or Punctions T in the

&erm, as belnrr bouﬁﬁ\taqi___gﬂﬁmﬁﬁﬂn.that tern.

In any spec1fled 1“J.fru.re,’Jf,ha"c is, any specified pro-

.

i

ARy B

duct of fij's,sﬁch as that sketched in I'ig.1l, there will be
groups of clusters of molecules which are all bound to each
other directly or indirectly by lines, and not bound to éﬁy
molecules which are not members of the cluster. Such mole-
cules will be said to be part.of a cluster, and by this
criterion every molecule of any figure may be said to he one
of a cluster of a certain number of molecules.

The simplest cluster is that con31uu ng of a single

molecule, not bound to any other, that is, its lndex does

i 1La87263
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not occur as a subscript to any £ in the term. The number of
these single clusters of one molecule each, in any term, will
be designated by m1.
The cluster of two consists of a bound pair off mole-

cules, neither of which is bound to any other molecule. In
the term the two indices i and j of the molecules in one

cluster of two occur as subscripts to the same £, but to no

' 4
/7

. \ ¥ 0 . S /
o) e i, / // ey . -
other £. The number @f=such qiﬁsters of two will bhe called
. = =
0 el <
' 7,
m2 ° - ///

/A

7 : . |
| = . < 2 . .
A cluster Of/;g;%%y9§§01fled molecules, 1i,J, and k,
L ’/'/ / /,’ ¥ 77N I S
may be formed in any/yfff_; (Vrays :
g -

o\

P A L >

Jifi Rifn - ffik fiiffin

The terms, in, whieh -the 'same-nolecules are hound to
each other in the clusters have in common the property that
they differ from zero only in that part of the configuration
space for which the molecules in the same cluster are close

to each other, ©Since the larger clusters may be formed from

/

the same molecules in several ways, there will be a consider-
able number of such terms. We now propose to collect these
terms together,

In any term the number of clusters of 1 molecules _
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each will be designated by ml. The total number IT of mole=

cules is the sum of the number per cluster 1, times the num-

ber of clusters of this size my, or

N = 3 -1mn ~===(2,56)

The integrals over the molecules which are in different

clusters of one term will be, independent of each other, since
W 4/

the clusters are so definod t he integrand contains no
/

ﬂé coordln tes of two molecules in

//

functions that depend

different clusters /infbwral of the term will be a pro-

41

duct of the integrdls en zﬁe molecule in the same cluster,

We shall sum the 1nte€7@is“&f a11 the products that occur

when the same 1 molecul

.

this the cluster ;j}tlpllcatloq by a norma-

lization factor 1/1@§>\\3ﬁf7733j///é cluster integral by is

defined as

= sl B B0i@ 7 ,,,8 7P ——we(2,5
by v _[/A‘”/.]?Ziﬁ;ﬂ 1] 1 1 (2.57)
some over all products

consistent with single cluster.

/

The dimension of bl is volume to the power 1 - 1

L]
There are at least 1-1 f's in the product, and at most

1 - Ry . N T - . . 7 ST S

7z 1(1-1) ©'s in any term of the intesrand of the cluster

integral,
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The first three cluster integral are

3
b, = %/dr1 = 1, ey 2. 58

& ik - U] 2
Rt ¥ o [/ f(ry,) dar, dr, = ‘?FL’“WI’ £(r)ar,

k e (2,59)

& - ” : : i I
LU ‘6’\7[” (f31f21+f32f31+i’32f21-.~f32J.31f21)

d- T ~.' ’/ y //“ d T ———— -0 \
", dr? _,dr3 vz, (2.60)
= ( <
The equation for the elddter integrals in terms of irreducible
3 ) < J /) hiRg
integrals B ' /=S

>y [
Bouations (2.58)rand {2;59) for b, and b, respectively,
show that no difficul%ﬁ}igféggguntered in evaluating the

first two numberstef the series. THe third cluster integral
’ = —- — "

s e _ 7 .
b3, (2,60), howevega\is~appreeiaﬁﬂﬁﬁmore complicated., It

+

has already been! mentioned that 'all “the Tirst three of the
four terms making up b3 had''the 'same numerical value of Vﬁg.
This can be readily seen.

Consider the integral of the first term wihich is
,// f31f21 dr, dr, drs. ————(2,61)

The coordinates of particle 3 occur in the integrand only in

f31, and only as the distance r31 Trom the position of parti-

cle 1. The function f31 drops rapidly to zero as this dig-

tance becomes. large, so that integration over the space.dr3

et Bt et i ot it et S S it Bl gt Bt Bt Wit

Ll-.sl—.b&j.-_g' y DPD.278~280
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leads to a definite integral as a factor, This integral will
be designated as f,, and it is the first of a series of

irreducible integrals ﬁ& which will be introduced. It is

OQ . ” &R
oy = —_ 2\. 75
B = / £ drg [ L £ (r)dr, ————(2,62)
since the volume element dfg may be replaced by hﬂ'r§3 dr13;
Similarly, in this term (2 51), integration over dF

2
leads to the factor 8 = and 1étégratloﬂ over the coordinates

of the last partlc1q4/6?;, UlVCS the factor V.

The term (2.61) is }&én HEO8

__, AN y\"" { \ ) C )
:U £31%01 1, drgd%— v B, e (2,63)
From (2.59) and (2, 62/ it is seén that O = ¥ 4» 80 that the
term (2.61) is Ju§$‘iﬁ2b2)  5:
o~ 74#///7
All L:lI'ee OP‘LI.‘LC 'plr‘ "L‘ll‘aee tef ns Of 'b

-s €aquation
) g

(2.60) may be handled in exactly the same manner, and lead
to the same numerical values after integration. The last
term, however, has an entirely different value, and will be

used to define ﬁg, the second irreducible integral, as

r e
[ /.f32f31f21 aF, aF, afy = 276, e (2.613)

With this nomenclature one obtains

by = B8+t -—-=(2.65)

W

In general, any single one of the terms making up _the
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integrand of the cluster integral bl can be represented by a,
figure of 1 numbered c1rcles, with a line connecting the cir-
cles for every Ifunction fii in the term. In order to be a
member of the cluster integral the figure must have every

circle connected hy at least one line to other circles, and

all circleg must he directly or indirectly connected by lines.

Such a figure is drawn in l10.2, for 1 = 8.

0

Figure: 2. One

If, in such.a d ‘ny circles are connected by

- /‘_/n A /\\\

only one line to g}"md 5 are in the figure

shown, integration™over tThe coord%ﬁﬁtﬂs of these paeiticles

in the corresponding term gives factors /% for each to the
total integral Qf the term., If two particles, such as 7 and
& of the figure, are joined by a line, and both joined to a
common particle, as lL,by lines, but to no other circles,then
integration over the coordinates of these two (7 and 8) con-
tributes the factor ﬁ% to the integral of the term. Subse-
guent integration over the other particles allows similar
Tactoring of'the integral into a product of simpler integrals.

For instance, in the figure shown, the contributions of

integration in the order indicated are as follow: integration



cive B,, over d55 give B,, over d§7 and, drg gives .

over dle1 g

gives ﬁz, and final inte-

i~

B, over dr, gives B,, over dr o
o Ly 3

grafion over dfG leads to the factor V. The value of the

integral over all eight particles, of the term represented

by the figu

=
0]

ﬂf

The norma1lzatloa factor in frgnt of the integral is, from

NK\J

(2.57), 1/8! W, so0 tﬂa*,fmﬁ cantrlou ion to b8 of this term
o " // \

4

3 2/ pO

A
/ ol ), \(/ {
v \r‘\"‘f‘.'\/\ \

4

P

In general, lt w11‘“£requcnt1J happen Llab two groups

of molecules in a figuﬁé*&?&“gfﬁﬂlv connected, that is, they

have one moleoulenﬁg&e@mmeﬁ»—ba%f%né;e are otherwise no
lines between molecules of the dif%érent groups. If the co-
ordinates of the common particle are thoughtof as fixed, and
the integration performed over the other particles, the in~.
tegration of the two groups is quite independent and the in-
tegral cbrresponding to the picture reduces to a product of
two integrals. In this manner the integral over any figure
consistent with the cluster may be analyzed into a product
of integrals over groups of particles to which this process
‘can no longer be applied and which shall therelore be termed

irreducible integrals, In the figure corresponding to an

irreducible integral, which we shall term a frame, every
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circle is connected with at least two others, except of'Cqurse
in Lﬁo The frame is said to be at least doubly connected,
that is, one can go from any one circle of the frame to every
other by two or more entirely independent paths of lines which
do not eross at any circle.

The irreducible integral @{ is defined as an integral
over the configuration space of k+1 particles, multiplied by
a normalization factor. < The normulization factor is 1/k! V,
The integrand is the um of all products of f, j'q of* k+1

particles which caanou»be furthev reduced into a product of

/ J

integrals. This means that 1n the corresponding firure all
the circles are more thag 51nglJ connec ted.,

The deflﬁltlon may be writton as

vvvvv

1 R Irig a 'd . '( 66)
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All products which are
more, than singly connected.
The dimensions of @k are volume to the power k.
The Tirst three irreducible integrals are

1 e S
ﬁ1 i [/ f12 dar, dr2 = ]ﬁ>hﬂ'r2f(r)dr ———(2.,67)
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The origin of the coefficients 3 and 6 in ﬁ% is due to the
Tact that there are respectively 3 and 6 products, differing
only in the numbering of the particles, containing the same
number of the Tunctions f as these terms, and leading to tho
same numerical values after integration. This can be scen in
Fig.3, which shows the ten diagrams corresponding to the ten

irreducible products with make up ﬁ%.

// //

Figure 3. The ten terms composing fA;.
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