CHAPTER VII

DISCUSSION

In the precedlng chapters, effective methods for the
evaluation of the polaron energy expressions for various
cases and situations have already been presented. An outline
of the theoretical arguments and the subsequent conclusions,
the results of numerical calculations, and some further recom-
mendgations for future investigations will be presented in

this chapter.

VII.1 Conclusions

In the present research, the path integral theory has
been appiied to the Frohlich idealized polaron model in order
to evaluate the polaron energy. The polaron has been considered
as a single slow conduction electron in an ionic crystal, that
interacts wlth the polarization fileld arising from the lattice
vibrations.

In an lonic crystal, there are at least two positive
and negative charged lons per unit cell giving rise to three
acoustic and three optical modes of lattice vibration. In
the acoustic modes, the positive and negative ions within each
cell vibrate essentlally in phase with one longitudinal and
two transverse modes for each wave vector k. The frequen-
cles of the acoustic vibrational modes are low. The associated

lattice potential energy depends on the complicated interactions
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between neighbouring unit cells, thus the frequencies of
these modes depend on the wave vector k. In the optlcal
modes, the two lons within each cell vibrate essentially
out of phase with two transverse modes and one longitudinal
mode for each wave vector k. The frequencles of the optical
modes of lattice vibration are high and the principal con-
tribution to the asspclated lattice potential energy arises
from the interactions within a unit éell. Therefore, the
frequencies of these modes are not very sensitive to the
phase relatlions between unit cells, and consequently these
vibrational modes are assumed to be characterized by a cons=-
tant frequency independent of X,

The constant frequency approximation is sultable for
the polaron arising from the slow electron but is not so
satisfactory for short wavelengths where the phase differ=-
ences from one unit cell to another are significant. Thus
1t 1s appropriate to treat the polaron as an electron dressed
by the phonons of optical vibrational modes, which have a large
probability to be carried along with the moving electron.
Furthermore, the electron-phonon interaction is very strong
for the longitudinal modes, the frequenclies of which can
Justiflably be regraded as belng constant. For the transverse
modes, in which the ions vibrate in the direction normal to
the directlon of propagation, the divergence of the polarization
field vanishes. Therefore the interaction between the electron

and these vibrational modes can be neglected.
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Accordingly, the polaron can be descriped as an electron
moving in the cloud of phonons arising from the longltudinal
optical mcdes. The strength of the interactlon is measured by
the dimensionless coupling constant « , which can be roughly
classified into three reglons. There are highly polar subs-
tances, such as the alkall halides, with«)3; intermediate
cases, such as the silver halides, with«~1.5jand weakly
polar crystals, such as the compound semiconductors, with
* < 1.

The polaron under considergtion is in the reglon of
strong coupling since i1t 1s created in an lonic crystal with
the strong coulomb interactlon. This is in contrast to the
polaron in covalent crystals, for which the interaction
between the electron and lattice ilons is very weak. The
crystal has been assumed to be electrically isotroplc, and
indeed 1t has been trgated a8 a macroscoplc dielectric con-
tinuunm instead of the ordered arrangement of positive and
negative lattice ions. Actually this approximation 1is quite
valid for the case of a large polaron that iIs of our parti-
cular interest.

Physically, the situations of the small and the large
polarons are rather different. The small polaron is created
in a narrow conduction band, with the conduction from a
lattice site to its neighbouring site taking place by a
hopping process. In contrast, the conduction of the large

polaroan is relatlively smooth and occurs by means of a band
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type process. The small polaron is in a rather localized
state in the sense that the electron-lattice interéction is
very strong, and the electron often clrculates and spends a
long time in the immediate vicinlty of a lattice lon. A4As the
temperature increases, its mobllity is increased as a result
of the thermally activated hopping from one locallzed state
to another. On the other hand, the motion of the large polaron
is mainly controlled by its occasional scattering caused by
lattice vibrations. Because the lattice ions vibrate very
vigorously at high temperatures, the mobllity of the large
polaron decreases with inereasing temperature.

After some physical discussion of the polaron behav-
iours, the steps of our theoretical investigation were then
proceeded as follows. The classical Lagrangian of the polaron
was determined first. On computing this, the electrons in-
trinsic to the crystal, i.e., the electrons in all the filled
bands, were assumed to follow instantaneously the ilonic
displacements of the lattice vibrations and the motion of the
slow electron in the conduction band. This 1s certalnly a
reasonable assumption in view of the fact that the frequencies
of the electrons in the filled bgnds are nmuch higher than the
lattice frequencies. The periodicity of the lattice ilons was
taken into account by representing the periodic potential in
terms of an effective mass m¥*.

It was found useful to convert the polaron classical
Lagrangian to the form of the quantum mechanical Lagranglan.

For the behaviour of the electron could then be discussed
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separately by applying the path integration to average out
the contributions from the phonons. Thus the interactlon
between the electron and the lattices with many vibrational
degrees of freedom could be convenlently represented by the
interaction of the electron with a fictitlous particle
through the nonlocal coulomb potential. The polaron proper=-
ties were then described by the action and this formed an
important basis for the subsequent studies of the varlous
polaron problems using the path integral formalism.

The polaron actlon gt - absolute zero temperature was

derived in Section III.l, and(gas given by
o0

2
S=-1 {E§§;l at + /x/ 1lat as emlts! (1)
: Az )z ()

at
o °

For the case of finite temperatures, it was glven by
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as determined in Section IV.1l .

After the phonons have been averaged out, thelr effect
acting on the electron is taken into account by the trapping
of the electron in the retarded coulomb potentlal dependling
on its own positions at two different times t¥ and s. This 1is
contributed in the second part of the action. The reaction of
the phonons on the electron depends on the time difference

|t-s] and the electron distance between these times. The
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disturbance in the past time, arising from the fact that the
lattice distortion produced by the moving electron takes some
time to relax, still survives. At absolute zero temperature
the phonons are in the ground state initially and also finally
so that the electron 1s dressed by the cloud of virtual phonons.
In the case of finlte temperatures there are the real phonons
in the initial and final states. The effect of the phonons

on the electron, contributed in the second part of the action
with the strength of the electron potential energy, depends

on the average number of the phonons 1 ='E%W:T_in each mode.

It should be reminded that the units used arse such that the
electron effective mass and its accompanyling longltudinal
optical phonon frequency(oL are unity. The time development

of the electron is closely related to the temperature devel-
opment., Initlally the electron may be considered to be at
infinitely high temperture, and then it reverts to an arbitrary
temperature T'= _1 on a slowly cooling process. To attaln

the polaron statg at absolute zero temperature, it is required
to take infinite time in the development. In the case of a
polaron state at arbltrary finite temperatures the time in-
terval is finite, as given by (O,P). The action (7.2) which
describes the polaron at finite temperatures is reduced to
depilct the polaron state at absolute zero temperature by taking
f—+ . Consequently, the action (7.2) becomes (7.1) and the
average number of phonons i =—2L _is zero at absolute zero

e 1
temperature.
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As the path integration of the polaron actlon could not
be carried out directly, an appropriate trial action had to be
introduced. When the variational principle had been applied,

we obtained the variation of the ground state energy as

El -

-5 s Egi , (T+3)
4

at absolute zero temperature. For the polaron state at finlte
temperatures ,the above expression was replaced by the varla-

tion of the free energy

S-S
Pop = Fl"<-—-—/81> 20§ . (T.4)

In or derto obtain the upper bound to the ground state energy
ard the trial free energy, the average-Values of the exact
and trial actioms, {(S) ‘and <Sl? , were required. This led
to the attempt to find (gxp[ig. (£el(t)75el(s))3 > , which
turned out to be a very important step in the solution of
several problems in this research.

In determining the average of exp{ig.(sel(t)1gel(s)] s
we used the path integration measured by the trial action Sl..
By using the Gausslan integral method the path integral could
be carried out, and we thus obtained

Qexp[i,lg. (rgq (t)=r (s ))] )= exp[_i%. (Zoq (T )-fel(S)_)] »(7.5)
which implied the knowledge of the classical path gel(t).

At absolute zero temperature, the integro-differential
equation for the classical paths could be easily converted into
the ordinary fourth order differential equation. Thils equation

was solved by using Laplace transformation and ignoring some

transient terms.
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For the case of finlte temperatures,the integro-
differential equation was more complicated. The difficulty
in solving this equation could be avolded by representing the
path integral of the trigl action S1 by that .of a simple
physical system with the Lagranglan introduced by Osaka. It
was glven in Section V.2 by

2 2

L = 32 + 3B® - $x(r-B)2 + £(t).z . (7.6)
The final result obtained from this treatment depends on the

variables R1 and R, which can then be integrated out under

2
the condition R1= R2. It differs from the former treatment
where the coordinates representing the fictitious particle
in the trial action have first been eliminated.

It 1s reasonable to expect that if the trial action Sl
is chosen as that of the many coupled paritcle model with
more adjustable parameters, we should obtain a more accurate
result. Thus the improvement of the polaron theory at absolute
zero temperature has been performed by introducing two addit-
lonal parameters to the original Feynman trial action. In
this case, the integro-differential equation for the classical
paths has been converted into the sixth order differential
equation instead of the original fourth order differential
equation. We can then conclude that the trial action of the
n coupled particle model would give a 2nth order differential

equation. Similarly, if the trial action has N parameters
we should obtain a (N+2)th order differential equation.
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The improvement of the polaron theory at finlite temp-
eratures has been performed by using the trial action of the
three coupled particle model with four parameters. There has
been a difficulty in determining exp[ig.(gel(t)-gel(s)f]>
since the integro-differential equation for this case 1is
rather comblicated. However, we have a very useful guldance
from the results and conclusions of the previous treatments.
The more general treatment has been attempted by ilntroduclng
the model Lagranglan

2

L= 3% + 18T - o (2-Ry)%% BMORS = 3k, (z-B,)° + £(t).2.(7.7)

~ 1
The physical meaning of L is that of two particles jolned to
one particle with unit mass by two springs with force constants
kl and k2. This classical Lagrangian depicts the physical
system that is the same as the polaron system described by
the consequent trial actlon, under the conditionsaal = “/1’
Mfdi = 491, and u>2=af2, Médg = 4C,. The relationship between
the two systems 1s as follows. The particle with coordinates
r is just the electron. The two particles with coordinates
51 and 32, respectively, are represented by the two fictitious
particles in the trial actlon the coordinates of which are
first to be eliminated.

It is approprilate to separate the model Lagrangian into

sets of independent harmonic osclllators in the center of mass

coordinates. The classical Lagrangian (7.6) can be success=-

fully separated into two forced harmonic oscillators with
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coordinates q and Q,as mentioned in Section V.3. Unfortun-
ately, the model Lagranglan (7.7) canunot be identified with

the Lagrangian for the set of three independent forced

harmonic oscillators with the center of mass coordinates

Qs q and Q. So the comsequent complications do appear in
:%e igprovedopolaron theory at finite temperatures as presented

in Chapter VI.

VII.2 Comparison of Results

The results of numerical calculations of the energy
expression (3.70) performed by Schultz(7> are presented in
Table 1. The parameters, the polgron ground state energiles
for various electron-phonon coupling constants o , and the
resulting self energles obtalned from other theories(8’9’22)
are included in this tabulation., On comparing these results,
the Feynman polaron ground state energies obtained by using
the path integral technigue are seen to be better than those
of other theories for the whole range of coupling constants
3¢ € {1l. This should clearly indicate a great advantage
in using the path integral formalism.

22 7,D. Lee, F.E. Low, and D, Pines, Physical Review,

90 (1953) 297.




Table 1 Feynman’s parameters and comparison of ground state energies

oK 3 5 7 9 11
v/ by 3. 44 4,02 5.81 9.85 1545
@ [y, 2,555 2.1 1.60 1.28" 1,15
Eg/th
Feynnan ~3.1333  =5.441 -8.1127 -=11,486  =15,710
Lee, Low, and,Pines _3 0000 -5,0000 6 -7.0000 - 9,000 -
Lee and Pines -3,10 -5.30 =7.58 -t9,95 =12kl
Gress ~3,09 =5 .24 o -9.65 -11,.88
Pelzar, Bogolubov _ [ 26,83 ~10,%1 ~1k.7
and Tyablikov

Table 2 Improved Feynman’g parameters and comparison of ground state energies

1

X 1.0 1.5 2.0 2.5 3.0 3.5 kO 5,0
v,  12,63311 12,7375% 12.69110 1o .80K81 12.91203 13.02719 15,05363 13,08958
w1 1248989 12,52077 12.39799 12.43427.12.45977 12.48812 12,41545 12,16584
v, 2,12389 2,20729 2.28588 2.37936 2.47885 2.5878 2.69957 2.90375
wg 1.96874 1.96006 1,93677 1.91388 1.88115 1.83845 1.77847 1.57952
“gfby,

IﬁlDrOVed _1'01328 _1'53076 _2'05611 -2,59106 —3.1358 —3-69190 -4.2610 -5011’*72

Feynnan

Foypman  =1.0130 -=1.5302 ~2.0554 -2,589% 341333 —=3.6885 ~242565 ~544401

o S A MRS OB o 5 S 5263
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Fig. 8 Polaron self energy and average energy for « =3,
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The Feynman polaron ground state energles versus the
coupling constants « are plotted in Fig.7 and compared with
the result obtained from the second order perturbatlon theory.
As can be seen in this figure, the ground state energles
vecome lower as the coupling constants increase. In the weak
coupling region, the results obtalned from both theories are
in good agreement. However, in the strong coupling reglon,
the ground state energy gilven by the path ilntegration 1is def=-
initely lower than that of the perturbation theory. This
reflects the fact that the perturbation theory is only appli-
cable to the polaron with a very weak coupling constant.

After the Feynman theory has been improved, the new
energy expression is given by (%.49). The numerical calcula-
tions have been performed by Okamoto and Abe(l4). The four
variational parameters Vs v_,caland w > which give the minimum
values of the ground state energies, and the ground state
energies for several coupling constants in the region l& <5
are presented in Table 2, A comparison of the ground state
energies before and after the improvement 1ls also presented
in the tabulation.

The improvement gives better ground state energies than
those of Feynman in the region 1£& £5 but the corrections are
not large. Presumably, it may be due in part to some 1lnappro-
‘priateness in representing the exact coulomb potential by
two harmonic potentlals, especially in the nonlocalized state.

The polaron self energy and average energy expressions

(5.56) and (5.55) have been minimized with respect to the
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parameters  and v for the coupling constant «=3 by Osaka(lS).
The results obtalned in the reglon of low temperatures,

0¢ kT(:O'é are shown in Fig.8. A comparison with the results
of Fulton(23) and Yokota(24) is also presented. As can be seen
in this figure, the average energy obtained by thls treatment
agrees qualitatively with the results obtalned by Yokota. .

But a qualitative difference is obtained 1ln the comparison
with that of Fulton, which may be due to the neglect of the
entropy part in the free energy of a polaron.

A qualitative explanation of the temperature dependence
of the polaron energy is as follows. As the témperature rises,
there 1is more gain in entropy when phonons are increasingly
free from the electron that has been dressed by the cloud of
phonons. Therefore the average energy is decreased, whereas
the self energy 1s increased. When the temperature falls,
the self energy 1s decreased, tending towards the ground state

energy at absolute zero temperature.

VII.3 Recommendations

Several polaron theorles already discussed in Chapters
III, IV, V and VI can be successfully related to each other

by considering further the expression <exp[i§.(£el(t)1§el(s)ﬂ>

23 T. Fulton,"Self-Energy of the Polaron for Intermediate
Temperature.“, Physical Review, 103 (1956) 1712.
24

T, Yokota, "Interaction in the Electron-Lattice System(I)
Correspondence Princlple.ﬂ Busseiron-Kenkyu, 69 (1953) 137.
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that evidently has been of much importance in the evaluation
of the polaron energy.

As the polaron systems can be characterized by the para-
meters Cl’ 02, a)l,cug, and f , the various limiting cases of
the variational parameters C and the temperature parametex-ﬁ
will be considered.

1) For C,=0 or ve=y2 ve=ve= w2, the result of the improved
27 + 1 YT T2T T 2? =

polaron theory of Abe and Okamoto reduces to that of the

original Feynman polaron theory under the conditlons vy =V

and W (4 I

1 =
2) For p =, the Osaka polaron theory at finite temperatures
reduces to the original Feynman theory.
3) If we fix p » as 02 -+ 0, the improved polaron theory at
finite temperatures will be reduced exactly to the Osaka theory,
and will become the original Feynman theory as F approaches
infinity.
4) TPFor fixed Css asP-—+co, the improved polaron theory at finite
temperatures reduces to the improved polaron theory of Abe and
Okamoto at absolute zero temperature.

We note that one of the expressions for<§xp[i§.(£ﬂ(t)1£L(s)1>
. presented in Chapter VI successfully reduces to those of all the
_previous theories but it has been obtained only under special
conditions. For the general treatment, we have obtained a new
.expression, within which the second term is in a rather iIncon-
plete form so that numerical calculations and further lnvesti-

gations are still needed for 1ts full justificatlon.
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Other interesting problems which snould be considered
in tﬁe immediate future include an lmprovement of the trial
action of Abe and Okamoto by using six parameters, from which
we expect to obtain one more factor of the form (l-e'v3lt’sl)
in the expression for <exP[i§‘(£e1(t)7£el(s)ﬂ>>’ numerical
calculations of the polaron energies at various coupling cons-
tants, and a further improvement of the polaron effective mass
at finite temperatures. The evaluation of the polaron energy
by including the higher orderAterms'of the expansion <éxp(S-Sl)>

in terms of the cumulants, Viz.,

exp{((s-sls) + 3 [ (s=87) 0 = {s=s, N?] + } R
and the possibility of choosing other forms of the center of
mass coordinates which differ from those presented in Sectlon
VI.3, should also be investigated.

Finally, it shonld be noted that eur view on the dlsper-
sion curves of lattice wlbrations based on the conslderation
of Born and Huang(l7), as presented in Sectlon I.3, is in fact
over simplified. Recently, the details of the phonon disper-
sion relétions have been extensively investigated and much
developed. It is now evident that the simple forms of the
phonon dispersion relations as presented by Born and Huang does
not always provide an adequate physical picture, especlally
in the region of the electronic phase transitions and at high
temperatures. Therefore, some of the simplifying approxima-
tions as mentioned in the first section of this chapter will
indeed be no longer permissible. It is hoped that in the
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future, there will be attempted more rigorous formulations
of the polaron theory that will more realistically take into
account all the known details of the phonon dispersion behav-

jours. This is certainly very important for a still deeper

understanding of the nature of the polaron.
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