CHAPTER VI

AN IMPROVEMENT OF THE POLARON THEORY
AT FINITE TEMPERATURES

In this chapter, we shall discuss an improvement of the
polaron theory at finite temperatures based upon the use of a
new trial actlon which resembles that of Osaka but which has

two additional parameters.

VIiI.1l Statement of the Problem

In the prevlous chapters, the polaron theory at absolute
zero temperature was first presented and then it was shown how

this theory had been improved by Abe and Okamoto'l3?. It 1g
therefore of interest to attempt to improve in a corresponding

manner the polaron theory at finlte teuperatures as already
discussed in Chapter V. It is reasonable to expect that the
polaron energy thus obtained will be accurate and will have a
slightly lower value than that obtained by using Osaka's
original treatment,

To evaluate the polaron energy, the canonical partition

function Z is requlred. Since
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then the density matrix of the system must be determined first.
To do this, we have to evaluate the path integral
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where S 1s the polaron action, given by
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The difficulty with the path integral (6.2) is that the polaron
action S 1s not quadratic in r_ , and iel' Since only quadra=
tic actions lead to integrable path integrals, we nmust then
introduce a trial action S1 which is integrable and resembles

the exact action.

VI.2 The New Trilal Action

Osaka has made & choice of trial action S1 at finite

temperatures as
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We shall consider instead the trial action
J
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which roughly approximates the exact action S, and where the

inverted distance terms are replaced by the parabollic terms
|£et(t)1ch(S)]2. The physical meaning of the trial action
Sl is that of an electron Interacting with two fictitious

particles. The strength of the lnteractlion 1ls described by
a harmonic potential, and the frequencles can be varied by

means of the parameters Cq» 02 andtdl, wy « The four variable
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parameters wlll be later adjusted to minimize the polaron
energy. We note that the trial action (6.5) resembles that
of Osaka closely, but that the former has two more ad justable

parameters.

VI.3> Evaluatlon of the Polaron Energy

In order to evaluate the polaron free energy, comsider

first the partition function Z which is given as

2 =8 "% : (6.6)

and f
y 4 =f P LB (6.7)
where vy ‘
POl LesR) = dgd(*)es . (6.8)

\
The partition function ca{i be expressed in terms of path

integrals. By substltuting (6.8) for (6.7), we obtain
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Similarly the partition function assoclated with the trial

action S:L can be written as

~€
z, =f0%gc\(*)es'd£c\ = &P, (6-10)

So that 2t
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By using = o, Sy tﬁe above equation can be reduced to
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where the average value of eS=S1 1is taken over all paths
with the same initial and final points and the weight of each
path 1se'®Dr,H, including all possible values of r., in the
averaging process.
By using the general inequality

< eV N red%?

for any variable x, (6.13) becomes
o- P(F=By) s (s-s;) (6.14)

Therefore we obtain the varilational principle
pCF-F) £  -<8-57

or F = r,-/-;<s>+p¢<5.>- (6.15)

We note that the Feynman variational principle of the ground
state polaron energy is now replaced by the varlational principle

of the free energy. The problem is to find the trial free energy

B = Fi-p(8) = 1(S)

Il

-L(Inz r<syedsy) (6.16)

and then to minimize with respect to the four variable parameters.

Thus we require the values of (S) and(S;) which are given by
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and
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In order to calculate <S> , 1t 1s necessary to evaluate

VL, -ra®*) which is expressed by a Fourler transform as

(e, Lﬂ-fe\('é)l_‘) =f {axplin: (g - r\(s))]> . (6..\9)
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Therefore our problem is to find <exp [115.(;'& (t)"i‘:e[ (s)]> ,

and to subsequently apply the second order differentiation

with respect to K on this form, The averages {3) and (Sl)

can then be obtained if <exp [ilg. (£ ol (%)-r el (s )}> given by

féﬁx,\ () cxef-fiﬁ")« L\ dt] & ,(6.20)
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where fch) = ik (§¢t-v)=0¢+-6) -, can be determined,

(explik (£,® - LN

-

Since the three rectangular components of the electron motions
(6.18) can be separated, we need to consider explicltly only
one component, say the x=-component, Hence, aside from a

normalization factor, (6.20) can be reduced to

<exP{‘\§,-(,{fd(t)-gd(d))]> ﬁﬁx(f)exp :‘4- dxm d’r_Ev M [/d%ds [xch-xe5)) e o lt-s)\
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The integration is carried out after substitutlon of x(t) b
X(t) + y(t), where X(t) is the classical path and y(t) is now
the variable of integration. The integration terms of y(t)

glve an unimportant constant independent of fx' Then we

obtain
Cexplikg(x(m=x@6)] > = exp{'—f /‘/;*dS[x(h- Resr]gets\

2 3,145\ 1
%)= X(SY e
e‘“" //dtds[xc e } i "“"t

ffdfds s sy g o ﬁ*d‘[“*’ xe]«
o 2 |t=8!
s N\ } +f¥,mzmd'f1 , (6-21)

where the classical pathd X(t) satisfies the principle of

least action., The action corresponding to the above express-

N
S '—fx ¢hdt- #wa{m 2(5)) & ""‘“ 5‘ ‘w‘ ew.\f-slg
eV =y
d*ds{xm—x(s)}i '“L“‘S‘ L gty
eB“"-u

(’nxﬁ)d’Y . (6.22)

lon 1is

Hence

§¢' = 0 = -.ﬁxd)dx(hdh ‘/;/;*dsz (Reh -Resy] 6 (xchr-Reo) {A]
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where -
e ' -w|t-sl | w |t-S\
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By interchanging the imaglinary time variables t and 8 of sonme

terms in (6.23), we obtain
3
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Consider the values of de{A.} and de{Az} ’
We have ’ °©
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0,
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Similarly ‘/dS{AI} VIS S U S (6.26b)
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We remark that the result of the integration does not depend

on p. Therefore if we takePp =, (6.26a) becomes

3
~w, | ¥ -3l :
fdse _ 2 (6.26C)

= cmmme 9
W,
o

which proves the valldity of certain expresslons that we have
used in the previous chapters.

By using (6.26a) and (6.26b) for (6.25), we obtaln the equation
of motion of the classical path X(t) as

2. By R
a i, i&(i(+)~2c.fds | & Pl .ec,,ms\i
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with the boundary conditions X(0) = X(B) = O,

Eq.(6.21) can be written as
B

<exp{.i\&x(x(t)—x(6)‘)}> = exy(-—x(hﬂ*)\ +lj)\d)x(’f)d* Q\'[[H“[MT) X(8)\ {A\

(4]

-u\[ﬁ’rds[mh-usxj A[S f* (’UXL‘f)d'Y}

After substituting (6.25) in the above equation, it becomes
(exp[_i\(,(x m-xm)]) = exp ffd’rds (Reh)- xm)sm) {AY- ci[[c\fds\xc1) X)) T(1){ AL}
-%f{ hHFdyar - fjdfds[xm-x(s)l {A\S
jﬁ’rds[xd—)- x$)] {Ak ff<+)xc1)dt

= ex?[LKi&.(i(t)—iwy)') . (0.29)
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We note that the above relation is the same as those obtained
from the polaron state at absolute zero temperature, v;z.(3.51)
and (4.9), but the classical path X is now the solution of the
more complicated integro-differential equation (6.27), which

can be converted to an ordinary differential equation by

introducing
B
P _oylt-st o }4-81
Yoy = o [dsgesy)—& LM 2
2'/‘ éew’-\ e *epw‘—‘ e y (0.29)
(]
and B
B =St .
Zd) = W dsi(s\i < .ewﬁ i ,e“‘\”\g . (6.30)
z PRy ePr -\
thus ©
"
X 49 R - 1€ XAy Alax - 401 Zehy -ty | (6.31)
d+1 @, Wy W W2

By performing the second order differentiation with respect

to time t on (6.29) and (6.30) we obtain

2
dYh | WY -xeh) , (b.52)
at?
and
d® 2 _ Co:(_Zd)' ig’f)l . (6.33)
dt>

The equations of motion of X(t), Y(t), and Z(t) can be easily
separated, The differential equation of motion of the
classical path X(t) is

2 2 s 2
[pmat) e cdutiim-wtol D ) = - PRhRah i, (634)

which can be solved by using Laplace transform., After the

transformation we obtain
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P E(P) = PR (0)-p* X(0)- PP% (0) - P K01 - P (0) “X(0) =_j§”{ D-whntwt) fet)dt -

. O .
‘CVlz*Vf)[P"f(P) - P R(0) ~ PX(0) = PX(0) = X (0) ] (b6.35)

+ (MW + ik wrek )[P1 fepy - P Xco) —?(o)}

We have neglected the translent terms in the case of polaron
at absolute zero temperature. But for the polaron at finite
temperatures, which we are now dealing with, the time interval
(0, p ) is finlte. Therefore the terms X(0), %(0), %(0),u...

...,“J;I“(O) must also be congidered} Eq.(6.35) then becomes

fioy _ =ik [p4- (v wi )P wiior] (&7, (P elPebe)+ (P baP)
Po (VN2 PTR AP PV AT e
where £(0) = 0y, E(0)/= Ggypeitu.enn., 1(0) = O,
A= v;‘w}+v;1w;"_w."w§ 9
and b2= Cs = (W+v2)C, 5
G

2 2
b4= CA — VTV ) Cy

The classical path X(t) can be directly determined by applying

inverse Laplace transform to (6.75a) The result is

Xy = %(hl + B, 6inhQT + B, 3inhagl + BsSinhagt+ Dicesh@,t
T= 0, & Parameters

+ Dy osh Qzt + Dy osh @31 (6.38)
where
(Car+0.Q +bs) , 8 = (GO* DT +by) By — (€,9a + b2Qy + 03)
3 =
Q(&E-G2) (62 ~68) @q (Q7-Q7)(@r-43) QA3(02-R1)(@3~G2)
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and

3 3 >
Dl _ (GG +0,Q)) R D7_ o (CaQ 04 Q2) . D5 _ (C2Q3 + b¢Q5\

Q(Q7- @3 (Q*- @) | Q2 (Q2-6))(@3-63) Q5 (Q%- 0%) (R2-QY)

The values of Bl’ B2, BB’ and Dl’ D2, D3 are obtalned by using

the boundary conditlons

x(0) = x(0) +D1+D2+D3= o,
Dl + D2 + ])3 = 0,
and
XCBY = X |+ B sinhGp+BsinhG P +Bysinha,p = 0O

T=0,4P
~ m,\(u. (sithQu( p-T) - 2inh 6, (p=6) ¥ L2 (8inh G2 B=T)= 8inh@y (=6)
*U;.(sinhQ3(fb—I‘)-SinhQac&-6)] Y\~ (B SINhQufo+ B, 8irh 6B+ B, sinhg 0 )

where the problem 1s consldered under the special condition

Dl — fD2 = I)3 = 0,
Hence
B, . 1K« (8iNh@,(B=T) - Sinh e, (3-8)) 25 Wela (Q?—w?)ce(‘: @) . (6.37a)
SinhQ, Qi (a*-@r) (Q “Q’:})
2 2 A
Bl - i Kx U, (S\Wth(&‘t)‘SlnhQ»L(fb‘d )) y U2 - (Qa ';CO\ Z (Q'I-z Q)?;\ N (6.37b)
Sinh G P QG -8 I(Q%-Q,")
5 . 2
33 iKx U5 (Sinh Qy (BT~ Sinh@a(R-6)) , U - (8 wT)LQé-wZ’) . (6.37¢)

Sinh Q3 Q3(Qy- @3y (a-a D)
Si . - 2 2
nce Ql’ Qz, and Q3, » satlsfy the cublc equation
P(’— (vf-v,f)PA-»- VOt + Vi - w?wi )P = O ,

one root of which 1s equal to zero, then (6.36) becomes
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Xety = =iKyx {u-,’&H(T’t) s'\nhalcr—z)— H(t-6)sinh Q\(T~6)B
+U{[u<\-c)s\n\naiﬁ-c)—H(T—é) stnh Gz (1= 6))

+ (AJ\’ACO} [H(*“'C) S\ﬂh@}(."‘l\\ —H(*"é) Sihh&;(ﬁ'&&i
Q @F Qz Qy=0 Qa,

- ‘“’SLU‘I (5inh6,(3-T) - 8inh G, (B6))  gink Gt
S\nh Q\fb

+ U1 (31000, (B-T) = sinh @2 (A-6)) sinhQ.t

sinhazfg
+ e (sinh@m-t) <3inh B2(B~6) /> . 3inh Ryt l : (6.38)
Q\’-Q.Z‘ (Sth;;[ﬁ)/Qs (SEN Q,=0
where U/ . (O-@)(@-wn) o and Gl oo (@-0D@E-ol)
&2 (Qf - &}) Q2 (ai-&})
Prom (6.38), we have
XYy = —'\\(,‘{U\'[H(f-c)sinhQ\(T-t)-H(*-6)s'm\nQ.(’r—6)-(Sknho‘(rb*c)-SinhQ\(&'é))SinhQ\ﬂ

3inh QP

+ U{[H A-T)SsiNh Qe (A=TY=H (1=6)ginh Rt T-€) = (Sinh Q2 (P -T)-5inh6; ({s—6\)sinh Qzﬁ}

Sinh szg
7
b Orwn [H(Jf-c)u-c)—HH-s)H-n +(t-6>_&n * (:39)
&' ar P ’
Substituting (6.39) for (6.28), we obtain
. . Kz / “Q\‘t"6‘
{exp[\\(x(ﬂt)-’xw))]} = epr_T“{U\ K-cosha.\t-éhe + 4coshQ (p-1r4) sinha I T=6L
z 2
+6 -8\
4Cosh@, (rz : sinhQ, —7— ]
sinh Q\fb
1 - \T-4l <T+ . -6
+ U, K cosh@, |T-61+ e et w4 .Coshey (B*E5) sinhga 5=
ginh Q,

cosh@, (T+6) Sinh q, 1T-61 ]
7 2

+ @?_@_Z‘{-n-m(l- E:i‘)B ‘ (6.40)
a2 G f
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Referring to the average of exp DE’(E(Z)'S@ (6)] given in

Chapter V, 1f the coordinate Rl is 1Integrated under the condi-

tions R2= Rl and rl= r2 = 0, we shall obtain the condition

T+6 = p . The boundary conditions of the problem under

consideration are given by rel(o) = Eel(/zz) = O. The condition

T+ 6 = P 1s applied to (6.40) to give
K e tho,B
exp| i Kx ( x(x) = x(6) _ - kx U.{cosho 1T-61-1) +(1-€ ) - Co
< P[ *( )]> = eXP[ 2{ ( ) ) ._11_.
! —O‘I"6\
- (Coshg, 1[-61-:)]*\),_{((‘03th T~6i-)+ (1-e )
Zcoth Qz_IS(coshazn-sl-\)]ﬂa‘.wZ‘ 1z-61(i- ‘E:Ef‘)k] .
Hence $ ey
(6.4))
i - = 'Kz \\ 9 .
<‘3XP[\L‘.x(£C\(U “1;((6))» = exp( « G[\* 8\1} (6-42)
where
Gli-s] = 1 [ owolee=enty et L \ﬂS)(CoshV+lt*6\'—‘>§
NASE A 7 E
2 f % -y =gl 1 h ‘)
+ (V=0 ) (e —V-)i(\-< Yo CL-coth VB Y(coshv. | T-61 =
\J_S 2
L IR
00 | T~61 [~ l'c-6\} (6.43)
N e ( r ’
a e’ m Tutent ol ittrte b6 e | & (6.4 4)
an e = Vi = E{V'+V‘ t{(v.-v,_) + '6.%.313 ] .
v," = w4+ 4G , Vi = ot 4Ca (6.4:5)
@, Wy

The varlables Cl and 02 are represented by v+ , w, , ©, as

4G o L (vEoh (V- Wl , (6.46)
W, C\)'z—k)ll

4 . L v et (e ' (6.47)
_C\-)_; &.’--wll ‘
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Although the method we have Just used for the determination
of exP'[ig'(ﬁel(t)75el(s)ﬂ> can under suitable circumstances
lead to the desired results in a relatively simple maﬁner, it
is not very generally applicable. A more general method will
now be 1lntroduced,

Owing to the difflicultlies in solving the complicated
integro-differential equation (6.27) in the general case, the

polaron model that corresponds to the trial action S, will be

1
introduced. Since the physical meening of S, in (6.5) is that

of an electron interacting with two fictitious particles through

the harmonic potential, we can represent the action S, of this

1
simple physlical system by means of the model Lagrangian L' for

the three coupled particle model, viz.,

1 = 52 52 g -, - 2
Li= 220+ 1My = U (ER,)° + 1 MR - L kp(z-Ry)7,

& (6.48)
where m, , W, refer to the masses of the two fictitious particles.

)2

By a method similar to that used in Section V.2, we obtain
the motlon of the electron that is described by the trial action
S, as the solution of (6.48), and we can represent gel(t) by
_ 4C ! L
r(t) under the conditions k= 1, W= 0w, lel = 401 and

40 / '3 = E

Then the path integral of the trial actions S1 is replaced by
. the path integral of the Lagrangian L', The path integral of
(6.20) can therefore be replaced by the following Lagrangian

2 2 2
5= ka(r-R )

o 22 2 :
L=1r°+1MRy -1k (r-R,)+ 1 M,R5~1
: 5 1~1 3 1~ ~1 5 2w 5 ~ o~
' by

+ £(8).x 4 (6.49)



90

Let us introduce new variables in the center of mass coordinate

system as follows

_ " _r + MRy + MR

1l + M1+ M2
Then the Lagrangian (6.50) is written as
L=} Adf L k1q§ + M £(t)eqy + 1 Bég -1 kzqg
a -~ 2 . MT ~ 2 - 2 ~
M . . 1\4 .
+ 2 £(6)egp = Cydy + 2 Q5 * Qg.£(8), (6.51)
‘ g

where the total mass of the system is glven by MT‘= 1+Mi+M2 ’

and
a= My A1) g MGy +1) g MM (6.52)
My Mo Mg
The equations of motion of El’ 22 and‘go can be derived from

the principle of least action. Since we have used the imagin-
ary time in the trial action then the Lagrangian (6.51) must
also be written in the from involving the imaginary time and

we thus obtaln ® P

JS-— 0= -ﬂ%,
R &%1 K, yh-thXé % +[_‘5‘tz )‘z"t “’h MLM‘“%

+[md, + feb] 400 dt :

It follows that

gy - 0y - kg + 1L £(8) = O (6.53)
e
Bip- 0d) = kpap + fg £(¢) = 0 , (6.54)
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'c,io = _£(t) . (6.55)

The variables qland 4 in equations of motion (6.53) and (6.54)

can be separated. The results are

[(AB-C"D*~ (K, A+k,B)D kkalg, + [M(BU-k)* (DM £y —

= 0 , (b.56)
M+
4 2L
[ (ABR-CH D" - (K, A+kB)B-C Dl'j:h + (M- k)+ "M ] fdy = o, (6.57)
~ M _ .
where D = dt. //}9ig£:fw
I/‘;l‘;. ///1 “, 5\
We rewrite (6.56) in the simple form ii\ f*ﬁw |
(D=61)(0-Ql)g, = LOMBreMA DM foby | T (g gg)
N M|M7_
where
. 1
Qi

_ (k,,A-yk‘s):[(k:Ai—k\B)?‘—lL(AB-C")k\kz');'

2 (A -c¥)

" - '
=0 TR TV E Wy ) b Cale \* ]

(6.59)
0, Wy ?
under the conditions
M, . i(_: - 4c M2 Kk 4Ca .
M+) V|1 \/\z W, ’ MZ'H sz Vllw’l—
To solve (6.58) for q, we apply Laplace transform, thus
4 2. 2,2 2 a2 5 .2 'L.-V T (BM+ CH )P K,M, SFe %6
Lo @+ ah)r+a ;) fepy -[P-(aqir@rrlg, = -] 2 }@ ~= )y
MMg

-[ ¢*- (Q?—Q:)]%‘(b)

under the conditions ql(o) = Qqqq » ql(o) = qlzand H(o) = 0,
d,(0) = o, |

The varlable ql(t) can be obtained directly by applying inverse
Laplace transform to
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'f(p) el -\K [(EMHCMI)P—-R,; \'_\("Pt,_ ‘P) [P (Q+Q,_)p]
MMz (p2-@2) (P2-a1) (-0 (P-a))

t

+ [P -(av ] o
(P*-0d)(p™~@;) ~

Hence
3(*) = K U.EH(’t-z:)s'th.d—t)—H(+~6) sSinh @, (1 -6)]
7! MMy
+ Uy [H (42 Sivh @, (101~ HLH-6) smhach-a)}}
2. Q’:
-% { coshal + 2 cosh & F
(Ql Qz) (Q.f_'-
74 .
~' Q6% -Q) QZCQ:‘OL")
where
U _ eMecm)E kM, e, M) By -km.}  (6.602)
Ql(Q;L"Q:) QZ(QZ \
Now

M Mq

@ =1 = ;“f_{u‘[sinhmp—w-s'mhQ‘c/b—é)]+Ul[smhchﬁ—z)-ainhazc/a-ﬂ]S

~fu {Q:wshQ\(b-G)'; wshQ,_’f’S
@-a)

8
~1 Q‘ ‘.Q Qz ) Qz (G]_ )

After substituting &(o) obtained from the above equation for
~
(6.60) we obtain
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%f“ - %{U{H(f—r)smhq, =) H(1-6)sinh@,(+-6)] + ul[Hu_C)sithzﬁ_c)

i)
-H-6) Sin\an(\L-é)] + [U,(s‘mh Qu(B-T) ~sinh(p-6)) + Uy (
sinh@a([b-t)—sinhql(/5~69]/(Qfsinha\rs—O(”'Sinh QP) .

]
Y_st’th.T ~ @, coshq,t ) §

~ %u {(QZcosth—Q,zcosth’r)‘(G?%Cosh@\fb—afwxhaz{b1.
(Q?"@f) (QF sinhe, g ~&>sinh @, B)

(@3sinhad = Bsinn eyt ) . (6.61)
(Qfs‘mh (01} 2t G\bs‘mhal )

(stinhaj - Q? sinh Q,_H} » Z

2

Similarly, Eq.(6.57) can/be solved for a,(t). The result is

e = -iK U\'K’H(*-r)sinhq‘(’r—m-\-\(*-6)S"I’MQ\(*“)]
~% MMy

+U, | 8inh@i(B=T) = sinha, (B=61)

+ Y_U‘ICS"ﬂhQ.(Ib'C) =sinh @ (p-96) *U:.(S"nhaz( /A-C)-sinhodﬁ"))] '
(Qi5 SinnQpy - @fs'mhqu)

[ Qf’ SinhQt - Q3 sithzﬂS

T u \(@fcosha.‘r -Qlcosh g ) - (G COSNQB -QLWsh@2B)
COplcly (@7 sinha b= 623 nhq,p)

3 3
(@2 sinh @t - Q2 s&nofnj - %12 (@2 8inha\T =& sinh@,1)

. (6:62)
(Q3 sinha,p- 628in& @)
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under the conditions 32(0) = Qpq o 32(P) = qy5, and
'q'2(0) ='q,(0) = 0, with the substitutions

v [(AM1+Cm.)Q1‘_k|M2\ , U, _ [(Aml»«CMZ)Q?;—k,MZ] (6.62 8)
Q. (G- a) Q2¢Q; - &)
We have already solved the differential equation in the same

form as (6.55) in Chapter V. The solution of (6.55) can thus
be obtained easily under the conditions QO(O) = Ql and
Q,(p) = Qys The result is

Qoth

Q.&{(QZ—Q\)- "_b(v-é)j . L“x{(’f-tmﬁ-t)— C""‘)Hﬁ“é)g . (0.63)

5
My Mt

3 2
Consider the value of.MT in the form of W, , w,, Q% and Qg
obtained from (6.59), weé have

=%

1 £ /[ IR \ (6.64)
2.2

M Q95

By substitution of (6.64) for (6.63), %e obtain

Qoch) = le(QrQ\)"% wr @i (E-&Sl -k Qi SK(W) Hc+-c>—<f—o’>H<+-6>§ (6-65)
- Qr Gt MIneadal

By using (6.53), (6.54), and (6.56), the path integration (6.20)
can be carried out with the use of the Gaussian integral

method, thus

B
{explik.(ry @ L@y Z exp {‘/‘[_%.Azf‘- _:.‘%2‘ + Tbj\':'—fd)'%"—liB -
%02 Bz °
%219920

Qu, Q,A s dch.g 4 €}, -4, + _’_"LQi +Qo.{d)}df§
~ 0 RN 2 ~
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Cexp[ig-(fu0=r )]y = exP{-

N>
130
LRO
o
\
© e
1
'b
2
~
+
®le
2
150
»
+
[ (RS |
o

pe

P
—,“1199\ ﬂ f<1)cg+ m%»faﬁbdf}
1 o %
4]
o {?xp\'il_c‘((d(m—fe\w))lg : ie’\?[}iQ‘u(n'&\(d\)]go’Q "
Zu,%n. L

B daas P
(6-66)

where the first part is given by

expl-MMas)) (2, KM 6
— et )) (0P § (BY-4%/(0) § 0)) + LK %, (T)- 9 (
Pi 2(4+m+M7_)(% BN B AN +M )( 3.)

Mg CM41) (%(p)%(m—?(m%wo LM (%(U—‘Zy (5‘)
R 2

2 (14 M+Mg) Gty +Hg) 7

NP © e B
201 EM+1,) “

and the second part is given by

exp |- QeMrt) Qo (8. Qu(P ~Go (0 Q(0) + 14 K (60®)- ()4

By substituting Q. (p), Q,(0), and Q (), q (<) obtained from
(6.65) for the second part of (6.66), we obtain

{exp[ 1K (e (T) —re‘CG))]} =  exp {_ Q*H* M) (@2-00) [(Qz"Q\ ) =ik ey ‘t"S‘J
) QZQQ|i‘b Lfs

N

L -
+ ._’é[cqz @) -k Lo iTog) 29
: 4t k

. (”5)1. w.l(.)g,z'l-c_6‘€' ) (6_6"?)
2 QllQL‘I.
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By substituting (6.61) and (6.62) for the first part of (6.66),

we obtain

{exf{ \5.([e\m-~vfc\c6)ﬂ}

||,%I1

%‘21’%'Ltyp

expi G iu\gmha\\'c-é\ +U, 3inh &, 1T-6)
€ My Mg

+[ 0, (Sinh @, (A7) = 51 G, p=6Y Uy (8iNG (BT

- 8inh @y C p-6Y] -

Y SihQ,T - $inh G €) - R (sinhG,T ~8iNNG,€)

ai sinh O, R — Q?Si"V‘Qzﬁ'

N 2 ’ L
L) {u,ynhaup41»%£mhazw—&
e ™ M-\'H‘

+ [_ U|,(siV\hG|(ﬂ)"c)'S’lV]h 0‘ (ﬂ—é))’\' UZI.
(Sihh Qz(ﬁ-ﬂc) ~ 3inh Qz(ﬁ'g)}“ s

3 :
a3 (51, T-sith@ 6) -8\ (SiIhQT=ginh Gy é)

(G2 s QP = @ $inh G )

—

- (i8YFM (r—m(lf_‘i\_, ‘)
7 @lte? fo

4+ ferms depend on 8|H%vz_’7z\7%zz’°\l1Ql§

(6.69)

After substituting (6.67) and (6.68) for (6.66) and .connecting

the variables Ay77 Qp7» C:z1 and Q1o Gppo Q2 in the Lagrangian

L with the varliables r

12 Byy» Rpy and 1, Ryp, Rypy
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we obtain

(MO* MU [ -QIT-S1
et

-+ (1-cosh@,|lT~6)
M-r M Mg

(exp L@ 8)) = expl% |

+ 5N G (A=T) - sinh @, (B ~6)
Q7 8inh®, B~ @I sinh &b

L Q‘Z (Sivh QT -5inhe,6)~ @?(einh QT - §inh aLs)]

! -0,)T-6
+<M|U1*HLUL)K-(Q Ut _\,\)4- (\=cosh@,1T-61)

MT ™M, ML

£ slnn B2 (B-T) = 5inhGy (6D

Q2 sianBo b~ Q1 8inhGy 1>
[GB( s'mhg\'c-sth‘K) - @;b(s'mh Q,T -.sinho;ﬁ 7]

[/ gbadiv-o (o | 5 (es9)
—_———— {L
T

aside from some terms that depend on G131+ 9p71° Q1 and SOy

4220 Q2, which must be integrated out under the condition

Ry=R,. By using the relations (6.60a), (6.62a), and (6.52),

/ /
the coefficlent terms WUy * MpUy) oy (MUs + MoUs) ooy pe

A I Mot Mo
glven in terms of Ql’ Q2, w, and W, as

’ e I
MU+ MaU, (0 - ) (Qr-Ws) MUy + Moy (R~ y (W)
= 9 —

Mr MMy Qd (al-eh MM My @ @r-a;)

(6.70)
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Using the above relations for (6.69), we obtain

-v,[t-6!

- - (a6 oy - -4I
(exp \f‘{[d(t:) fe\(&]) = exp{' 2 { {(n ~e )+ (1=coshv, [T -61)
i 0\3 (Q. ‘Q'L)

+ Sinh G (B-T) = 5NhQ\(F-0) . (g (sinh6,T ~sinh @€
Q3 sinh @ fB-@3sinhap

- G (Smha,_t-smhoé\] olar g é\( V- lt-é\)ﬂ
ora: n

5 ex?[-{fs[w—é\}] _ (6-71)

The average of the exact action S can be determined by using

(6.17), (6.19), (6.42) and (6.71)

o0
@ 132
5y = & [ [dras)—&/ e.\1r s é*'s‘U"”d“ exp[£" GLit-51]
e =\ ,.9..““" ot kT

-F T g
_ & 4t = = ’( e . (6.72)
B “'h.lb_/ {eﬁ"‘ * e - ;

0

The average of the trial action Sl is determined by applying

the second order differentiation with respect to K %o
(exp ig.[rel(t)-rel(é)” , and then(lrel(t)-rel(s,)|2> is
obtained by taking the limit of 5 to zero as

Fer(t) = 7oy (8)1?y = 3 6[1t - 5] . (6.73)

Substitution of the above relation in (6.,18) leads %o

Wy w‘\f-s\ Eoliae
(sy = & 3//d‘rds e S el
e =y
—0, |4~ -3\
- S8 dtds e”‘“ S e a -5,
A k
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P
AL
A e ’U.t \ La)|t
Sy = «”_C\_@/dr{ o€ e S G\\C\X
: e e =
° B
Aoy T
-3Cp /4Tl e ;@b \ ,e‘% Glici) , .7
T-/ {e’w‘.—l.e ’ A L6:74)
o

After substituting for Gﬂ(ﬂ in (6.74) and (6.72) and integrat-
ing the expression out explicitly by using a digltal computer,
the trial free energy (6.16) can in principle be evaluated
completely. The trial free energy can then be minimized with
respect to the four variagble parameters Vo Vi and w, , w, ,
When the free energy is krown , the self energy and the average

energy can be determined by using the relation

.ES = ..____6(@?) Qs KT ) (6.75)
sp - *
and -
E =0 3(AH : (6.76)

P
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