CHAPTER IV

AN IMPROVEMENT OF THE FEYNMAN ACTION

After the Feynman formulation for an effective evalua=
tion of the polaron ground state energy was published in
1955, various properties of the polaron have been studied
by using the same method. Recently this problem has agaln
assumed consliderable significance for the following reasons.

First, effective masses have been measured directly by
cyclotron resonance technlques in various materisls with the
polaron coupling constants ¢ lying in the region 1l{x<4. It
is therefore of interest to obtaln accurate theoretical values
for the polaron contribution to the effectlve mass. As yet
there 1s no rigorous way to compare the accuracy of the various
polaron effective masses calculated from different methods.

We can only assume that the method which gives the best ground
state energy will also imply the best value of the effective
mass. Consequently it is important to have a highly accurate
method of calculating the polaron energy.

Secondly, experiments on the lonization energy of bound
polarons require for thelr interpretation the theoretical
difference in energy between the free-polaron ground state
and the energy of the bound polaron. Since these energies
are usually calculated separately, it is important to have
good values for the free polaron ground state energy.

The method of improvement and the detailed evaluation
of the ground state energy by the new treatment will be
presented in thls chapter.
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IV.1 The Trial Action

According to Chapter III, the exact coulomb potential
has been represented by the harmonic oscillator potential of
the Peynman trial action. The schematic physical picture is
shown in Filg.4. It is clear that this approximation is not
sufficlent to desdribe the deep bound state., It is thus reaso-
nable to lmprove the Feynman action by choosing a more appro-
priate action.

Abe and Okamoto(13)(1971) have introduced the trial

action 1néthe form §

§

‘ dwe\'L - t ! e ™ e didsle ¢h-r (S)\2€w2|+—5l (4.1)
o o r

Note that the potential energy part i1s in almost the same form

S

as that of Feynman(3.37),but that the former has one additional
term. In thls case the stremgth and frequencies of harmonic
osclllators are varied by the four adjustable parameters
01 ,02 ’ w1 , and SP

The physical meaning of the trial zction S1 is considered
as that of the three coupled particle model shown in Fig.6,
and the schematic physical picture which represents the new

trlal potential is also shown in Fig.5.

IV.2 Ground State Energy

In this section, we shall evaluate the polaron ground

state energy when the trial action is giveh by (4.1).
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The polaron action at absolute zero temperature

is given in Chapter III by §

~\t-6)
oo L (SEY gt ¢ L [ &
5 =-7 G o 1 b5, @] P f42)

] o .
and an upper bound on the ground state energy E obtalned from
the variational principle 1s

By £ E= B -8 (4-3)

Our first objective is to find out 4, which can be
expressed as

g = <5“S’ = AvBAC , (4.4)
~1t=s)

where A = =€ fds e < 1 > , (4.4 a)

[ L) = Lo 1(5)]
cult-8l (4.4 b)
B = % f w, Qrei(*)‘rct‘s)‘> ,
and C = S [ -w’” d <|r(+)-r3\<5)\2> (4:4C)
z

To determine the A term, we express ‘ as a Fourler
- Lo () = Ly 9
transform, thus

=lt-sl|
by - (4:5)
A s/z st j Pyer <exP['K La (D k‘°‘($))]>

Then we need to study

¥ -
<9—"?["5-(X’.|d'*,{d<5>)]> - b ruch) exp [1%-(Fath = Yoi(9)]
(Srd(T) e

f s et [0 - ¢ [t omro
~w\t=-5i
w.\ - j:[ dtds| e - r, (S)\e'w‘ﬁ - [fm ,d)dt]

(4.6)




where a normalization factor is dropped out and the term
K. (Lt -r () 1s converted into the time integration form

by introducing

fh _ ik, (6ct-Ty-06ct-6)).

integral method as described . 1in Sectlon III.3,then the x com-

ponent of (4.6) becomes

(exP[in(x(t)~X(6))]> = "P[ dxm gl - Cﬂdtds [ -%cs)] g 1A

™ %j]étdsizm_ X(5)] el
+ffx(’n XhHdt } s (4.7)

where X(t) is the classical path which minimizes the express-
lon.By using the princliple of least action, we require that
the classical path X(t) satisfies the condition d5=0, where S
1s the action given by (4.7 )

Hence

$8 =10 =o f(dx(t))éxct)dt- C:/j/dtdsz[x(t) X(s)]e -2 a[xm X(9)]

ffdtds 2[Kety-x e 5[>’<d) - %) + f\‘x(t)di(bdt
2! -9 - -
- f [ ‘%‘é‘l - 1€, f d%hb-icsﬂg ¢ 20, f ds[xct)-ms)}e“llt °

+ f‘xd)] S xhdt

2
which gives the equation of motion of the classical path

d%xa) o fdsbm Resy)e ghitel zczfdslid) 20 guatrsi fih). (4.8)
dat*
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Eq. (4.7) can be simplified by using the differential equa~-
tion (4.8) as

§
- exp[iku& (Tr-%(6)] H= exp [—12- é%frl’.id 1., dd)jr’(-t) ESSL - jd’rds AUBISE
Ry s, 2 ffdfds[xm xesi] xes) € ke
fdedS[xd') "X x(h e S@al¥-3l

¥-s)
L defds{m)-x(s)]x<s>e“’1\

f fxch %t at ]
= ew[BEmeEe)] (4.9)

The last expression has been obtained by substituting the

NI T

classical path X(t) at time/ T 'jand & . Next the integro-

differential equation (4.8) must be solved. To accomplish this

we define Yon e,
Yity | o fe'w't ¢y ds (4.10)
03,'
and zd = w_1fe'w“t-5‘)'<(sxds ‘ (4.11)
2

(v}
Then, the classical path equation of motion(4.8) can be written

as

d'g = &C, (i‘(t)-— Y(b)+ aCa ( Reh-Za)-f,(h s (4.12)
dt* Wy Wq

where we have substltutedfds g suiy-sl andfds g w2 1131 by and 2

the valildity of which will be discussed in Chapter VI.
The differential equations of the variable y(t) and z(t) can be

obtalned by applying the second order differentlation with
respect to t to (4.10) and (4.11), thus
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2.
d Yih

- = ‘*’uz[YtT) - ?(‘f)} ’ (4.13)
d
2

¥ 2 - X A (4o 4)

and —dzz{i) = wz[Z(h X(T)] .

The equations (4.12), (4.13),and (4.14) are easlly separated;
the differential equation of the classical path then becomes

{ (D-w} ){(Di-wf‘)(D”‘— 4(_2.‘- 4C2) - 4C.wJ- 4c1w2(D1—w.1)} X = =(P-w)o-uh fch
v W

2 - 2 3
{Db-(\f?+\/,:)04— (V0 + Vi - wid) D } xct)y = ~-whHo-wh e .

(4.15)
We note that the Integro- differential equation (4.8) is now

converted to the ordinary sixth order differential equation

(4.15), which can be solved by applylng Laplace transformation.
To do this we first obtain

5 . e e s e o
Pb f(P) - P Xx(C0) —P“x(o) -PX 0) —::'x(o).. P X(0)V-X (0)

: & T -pt 2 a2 2 2
(v,uv;)[P‘f(p)_p’i(o)—v’?(m—Puo>- %0) ] = -|e (D-ws) (D-w) fchdt .

(Vo] + el il ) [ e = PROy=Xco}] (4.10)

o]

Since the time lnterval (O.g’) is very large we can neglect

transient terms in (4.16)., We thus obtain %
&P"- (VI PP (vt + i - whwdy P | P = =ike | &"(0- Wheub 0 s wlul)
(5(‘;_5)-5(1-6)) dt. (4.17)
By usling the properties of the Dirac delta function, the right
side of (4.17) can be integrated. We then have

2 ~PC -p¢
{_p"- (av2y P w2 + Vi - wlw?) P ] ) = —in[P“- <w3~w§)v‘+w."w§](e ~e )

-PT .P¢
f — -'\Kx[P‘~(w?+w3)P1+w,‘w,f] (e -¢ )

(4.18)

: " 3
Po- OV Ph 4 (Vte ViR - wied) P
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The desired classical path X(t) can be directly determined

by applying inverse Laplace transformation to (4.18). To
do this we shall use the equality

_\ T
L M (P) M Mcan o
l: N (P) - ‘“L_ﬂw’(a.\) , (4.19)
where NP — (pP-an(p-az)....... (P-am) . (4.198.)

The inverse Laplace transform of (4.18) is

xch = X(,Ty+xct,6) (4.20)
where , .
%(tT) = = {f(p,t)} y (4.20a)
f s O N | -PT
{<P)t) — —‘Kx{P (w. (Oz)P-rCO.(AJz}e " (4.20b)
oA (V) PY 4 (V3o + VR wf- ot )
and
- -l
xct, ¢ - (4 {{' (P,d)} s (4,20c)
< b 2 2 2..2 -P¢
fp,6) = oK (P-wdvahdraiwiie (4 004)

P e (VAR Pl e (v W) ~ wiw])
The denominator of fip;t) can be separated into six factors;

then we obtain

_ 4 M(P,r)} (4.21)
X(t,o) = L {N T3 ’
where -
Mp,T) = iy [ P cwiewd) By wiwl] et
and »
Ny = (P=GCP+ Q) (p-Q2)(P+ Q@) (P-Q)(P+Qp).

By using the equality (4.19), (4.21) then becomes
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—i K Q)= @) (62~ ) H(t-T) sinh G (1-T)

Q\(G? "QLL) (Q?"

Q3)

ek (G5 -©P) (R3- @) H (1-T) sinhQat-1T)

G, (83 -G*) (63 -Q3)

ke (@3- (G5 -w2) H(H-T) sinh Gs(t-T)

(4.22)

63 (@2 -G62) (@3 -G3)

Similarly, X (T,é&»

classical path (4.20) can be determined.

%ty —

Q (aF- 87) (@2 =83)

has the same form as (4.22), and thus the

The result is

-\ Ky (@~ @B E-02) {un-w sinh 6, (T-7)- K =8y sinha,(t- 6)]

- i Kx (@20 (B -0%) {H (1=T) 3inh @, ¢ t-T) = H(1=6) s'th,_H“d)}

Q.0 - @)% /85)

. * 2 2 2
~ VRx {B3=0 Y( Q3 - Q2)
G5 (83~ &) (@5~ Q%)

Wel-T) sinh Q3(f-T) - H(+-4) s'\nkaU—d)] -

(4.23)

Since X(t) must satisfy the boundary condition xcdy = o "

we have

X(§) =o0=2ike (Qz0P)(6-w1)
(Q2-a}) Q¥ -G3)

LKy | (Q\°w\ )(Ql wz) CO&hQ(j 'c+6)

(@, - @) (aqz- ak)

cosh @ - T+8)
: 2.

-8
sinhQ.(t—Q_—)]
Q,

Sinh Qa (E26 ) ]
Qg

(T-6)

+Z\kx,(a3 ~o) (@3 -@2) {coahabtg z*'é) 8inh Q3 "= 3.(4.24)

(G3 G\)(Qa"e’l.)

Q3

Since the time interval 3— is very large, we obtain the condi-

tions
3inh & (T-4) _- 0 or
2
sinh @2 (T-&) — o or
2
and

3inh Q3 (T-6)/,
Q3 2

- @, (T-6)

sinh @ 1T-61 = i-e , (4.25a)
3inhQ T~ = .\~ -—erl: 5 , (4.25b)
(4.25¢)
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where Q3 1s zero.

By substituting (4.23) and (4.25a, b, c¢) into (4.9), we obtain
%Pl Ky (x(TY=X (S = xp - ¥x | Q-G [ r- 6ysinhG, (T-6) +H (6-T)8nh B (8 -T

<€ PY < ‘ ”)]> ’ P{ QK Q (a?- a;»K ’ -]

(07~ WH(6F-02) KHG-& sinh Q(T-6)+ H (6-T)Sink 6,(6-0)
Q} (Q;-QD

v DL Ty z-6y(T-6) - H““t’(““)ﬂ%
e Qf

O T -6,|T-61
- exPi-‘ﬁi - zK(Q' DO (e )
(Q?“Qz) ety

-Q@g\T-8) 2
Qa0 ) (=87 (r-¢ )+.°ﬁ°:_\c-s\ﬁ.(a-26)

Q2 ol as

2 2
Now Qp, Qg and Qy are the solutionsof the cubic equation obtai-
ned from the denominator of (4.18). If we let P2=y, the cublic

equation 1is

\/’~(V.‘+v,f)y'+ (V:(o;‘ f\]‘iw:_ w‘:.w:-)y _ o) ,
which may be reduced to
2 2 2 T T 2.2 _ 0
Y= (Vi + V2 )Y+ (V24 Yty -3 ) = s (4 -27)

where one of the solutions is QZ3=O.

The values of Qz andQZ are easily obtained from (4.27) as

a &
=Q:‘ = "i{(v‘l.*'v:) :{(\ﬁ VL)+4(V1 O.).)(V), w’- }1]

-l [(v\ ) i{(V;"-V;_')q'-\‘ 64 CiCa 3%_ ] . (4.2%)
. 'z W, Wy, .
where . ae »
vt = 0 + o= ) (4.293)
2 4Cy
Vi o= Wit o ’ (4.24b)

and Q? ,Q12 have been replaced by v: and vf ,respectively .



By using (4.26) and (4.28), we obtain

i 2
[ lrad —n @)D = exp{- ¥ elt-olf, (4.30)
where ,
Brit~el, & L [(\&—w?)(v‘vwb(u-g"dt-s;
wi- Vi) e
A

2 -V_\4-sl
L (E-wh (W= V) (1-e u s)},, wlwi 1t-s) | (4.31)
V_?' Vf'V_"

The result is correctly normalized since it is valid for K=o

By using (4.28) and (4.29a,b) , €, and Cp can be represented

by ¥, , ¢y and wy as

4C =l .= O - wH Ny ), (4.32a)
, (w2~ wt) :

4C: A ) kshfyviewh (4.32v)
Wq (Wr~ )

where W, > Wy > O and Cy, 02)0.
By substituting (4.30) for (4.5), the A term 1s determined as
o =)

-‘t-s‘ 2 %
- -5
A _ 33}'-_ f dS e de_ an’gexpz %Glt ﬂ}

2> 21 K?
o % - 00
_ 2% [ dse™? JTF‘
‘2 ' Gt=-5)
% oo
£ d c:—y

mh Jew) ’

o
where G 1s glven by (4.31).
The next problem is to find the B term. To do this the value

of (ir, =g, 5 I*) must be determined. First, we differentiate
both sides of (4.26) with respect to Ky

<= (xety - x(s))"ex‘,[ in(X(t)-XLS)):l) = {-G\t-S\q—K:Gr\t-S\} exp {-K_:'x G 1t-sl }
: 2
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((xeH=X)y = é<§&ﬁ**ﬂﬂﬁs”a> = Glt=sl, ° (4.34)

where we have taken the limit Kx=0 and have assumed the medi-
um to be isotroplc.

Then the B term can be determined by substituting (4.34) into
(4.4b), thus

0
~wik-s1 ~vyl =51
B - 3¢ |dse { . [(vi-wh(v*‘—w:) G-e )
2 V}—V: V+34
o
(X 2 voix-sl
QW) e ) 4 wlwl (1) ]
v vive
= B[V N AW =) 2 Ve o
2 v+ﬁ -yt v Wy (Va+ W) V+z" V..z
F e R LA P S A wiws iﬁ}
3 W (V= 00) WivE o @
2
. [ (4.35)
w, Vo Vo (Vi V)
We can obtain C in the same manner, thus
2
C = 3C| V-v +t ] . (4.36)
W2 V4 V- (V++V—)

We have already determined A,Band C, and our objective in

finding » in(4.4) is now accomplished,

Finally, we must evaluate the value of Eq{. Recall the

expression o =
f£ re\.d.) esl -~ 6E|5 (4.37)
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and the trial action

E' = -4 dx‘e\ C“'.. C\¥ d‘i‘dSIY ). = r (S)\ w\” sl
S el
dt 2

—ty 14- 81
& C_gff dtds |, ch - ry | e ol , (4-39)

4

where we have replaced 01 and 02 by C1f and C. ¢

2
By differentiating both sides of (4.37) with respect to ¥

we obtain

-, |t-S) \ -
- | dr a):{fL tdslr,h=reie o Ea fldtds|r, - V(a\c“ﬁs ~ -5E.eaj
~el 2 ~e ~cl 2 6.‘

$~d(n ¢ [_u ddelV"tT) v (s)lz W, (=51 .c_z.z d*dS\Vd(T) V"(S)l ""le-S\]

]
ng!e\ oty e "
w, |51
i.[mlIdwse (w(h rgwﬂ)+ciﬁfwdse‘ (\rp)y sy ] 0 E,
Y
5%

Leg+c) = o&
L §¥

i
o,
o

(4.39)

The ground state energy E{ can be obtalned by integrating the
I

above equation
¥

E =

where the value of B+C can be obtained from (4.35) and (4.36)

as
B+C

g{(V.,+V_) - (&)?+V+V_)(&):+V*V_) ) . (4.4‘3
" VeVa (Ve t Vo)
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From (4.28) and (4.29a,b),we obtain the relations

Vi Vo = [ wiw; +4C,Tw, fw, + 4 C\ ¥ wy /W, ]E 5 (4.42a)
and

\
)
Vi+ V. = [mf+w7;+ac.t/w.+4(‘,ﬂ/w,+2 w?wtwcsz.‘/wg4C,*cw:/w,] ‘ (4.42b)

Then the integration (4.40) is carried out as

E, =Jd_* é{cvwv-) - (W VRV (wy + Vs -)\5 (4.43)
J v 4 Vi Vo (V, + V2 )
= .2 (V.,"'V_"C‘)"‘ 0‘)1) >
2

where we have used (3.41), (3+42a,b) and the fact that E
when ¥ =0 .

1=0

Finally, we obtain the upper bound to the ground state
energy (4.3) by using (4:(43) and (4.41). The result is

= =  E ~A-B-E

_ B (VetVEWCW) -2 {mw—x- (W BV (W, +V*V—3} ~A
. = VaV_(V, +V-)

_ . 3—. —\_—— ‘-v*v_ (V+*V-~w“(5)1\’.+ (V.‘, A U|(‘>1)1} -A ) (4. 44)
4‘ V..,V. (V-b*"v.-)

where A given by (4.33)

In order to obtaln the polaron ground state energy,
the upper bound on the ground state energy expression (4.44)
must be minimized numerically with respect to the four varia-
tlonal parameters Vo V_ ,cu1andcu2 « The results of numerical

calculation and some discussions of this improvement will be

given in Chapter VII .,
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