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CHAPTER III

FEYNMAN PATH INTEGRAL APPROACH TO THE POLARON
AT ABSOLUTE ZERO TEMPERATURE

In thls chapter, we shall present the detalled
evaluation of the polaron ground state energy at absolute
zero temperature by using the Feynman path integration
approach. The original idea of this formulation was given

by Feynman(6)1n 1954,

III.1 Elimination of the Field Coordinates

Conslder the Frohlich ldealized polaron model
introduced in Chapter I and the classlical Lagranglan of
the system (1.20) which is given by

x

L = .'7__ m!.‘et +%‘%R:(r)— w:g:_q:)]&! + 9(!_‘ ’rel)'fir‘ Q)] ‘P{ , (3.1)

where gr(z)is the polarization field induced by the elect-
ron, which is implicitly dependent on the positlon vector
£d, The constant ¥ depends on the frequency w_, and the

statlic and high frequency dielectric constants €, and € as

follows _
A 0 o
¥ uﬁ_( e ) , (3.2)

Dcr, ) is the dlelectric displacement arising from the
electronic charge, as defined by (1.3).
For simplicity, Eh(f) is replaced by a Fourier
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sum of standing waves with real amplitudes

Cos k.r
P, b a J2 e auh { %
wn a1 WA =)
where
ky >0
e - K {cos kl{k _ [cosk.y x 3.4)
~K \h\ Sin h.r Slnbx" kx(o .

Then the Lagranglan(3.1) becomes

T +§ b (- G50 4<re(g/_‘z'%;%§ {;‘:i\ii‘s, 3.5)
which consists of the three components arising,respectively,
from the electronic part, the lattice vibrational modes
and the electron-lattice interaction.With the condition
that the lattice vibrational modes are each coupled only
to the electron, and not to the other modes, we can write
the Lagrangilan of the arbitary mode for any glven path

of the electron {d(t) separé.tely as

L _ i, (%:- W %1) + LDy, ,  (3.6)

where m = ¥ > (3.7)
X c0S k.r\

i wekyz L | TN ~e o 3R
and P.‘S.(t) 4mes K {sm e

Obviously,LE 1s the Lagranglan for a forced harmonic
oscillator comparable with the Lagrangian(2.8), for which
the classical action,including the propagator, has been

provided in Section II.2 .
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Furthermore, it is Justifiable to represent the polaron
system by a system of independent harmonic osclllators with
coordinates %1 and action S , each oscillator interacting

with an electron with action Sel through the Lagranglan

%Qtﬂl(t) and the action

SQ = JAEU\I;(T)dT : (3.9)

~

If at some time t”the electron is at gi , and the
oscillators are in the elgenstate Qm , when at a previous
time t the electron was atziland the osclllators were 1in the
elgenstate Qn’ the propagator can then be written as

K({; ,Q‘Vj,(,%':),....._,Qm(c&”Nw ;_{c’i ,Qﬁ(%:),.-.,@nc%"g) = <~"e”\ ) Qm (@), »Qm G 141 £ 5 Gng),.
“.,an%gpsd+go+sr . (3.10)
In general, the problem concerning an lnteraction of
matter and fleld can be solved easlly by first eliminating
the field variables from the equation of motion of the matter
so that the behavliour of the matter can then be discussed
separately. Such a formulation has been found to be very
useful in solving quantum electrodynamical problems.(zo)
For the polaron system, it 1s also possible to inte-
grate the fleld coordinates of the oscillator part from the

system, and then we can concentrate our interest on the

20 B P. Feynman, "Mathematical Formulation of the

Quantum Theory of Electromagnetic Interaction'!, Physical
Review, 20 (1950), 440, .



31

behaviour of the electron alone. This 1s the advantage
acquired through using a Lagrangian form of quantum mecha=-
nics to describe the polaron., Here,we are going to integrate
the paths of the osclllators out by expressing the propaga-

tor in two parts as
§ g ¥ g 4 ‘ - " K 3 011)
NRCLITP AR e, (s Qa't) = (& \Gm\é'd?s (
? ¢

where Gpn 1s a functional of the path of the electron
alone, given by

Crmin

T <Qm (3 111:Qn (‘k’k) )
K ~ 2 Sw-&—SI
I 3
- Tk 3:12
& Gmn 2 : )

where G, 1s the propagator of each oscillator
5 - X " ! /
G'mn o= f' '''' Qm(%s) QXP [jk-(s&o + S}})l Qm (%£) d%'l\t‘ d%.’;s D@ 81('(‘t) . (3.13)

By using the path integration technique, Aé%kct) can be
written expliclitly as

LoDt (B - M 4 TN g1
Ghy =[] S ool [y Groh- mebi Oy
Gnlge)- 980 db oW 9% L)
" A A A

where t-1=je, =% and %= B

Eq.(3.14) 1s reduced to
G* = f/‘d‘m(%hj\ K(%g,’tﬂ;%‘: ,1) Qn (%’:) d%)s? d%h:‘ , 3.15)

mn

where Ki%kj ,t"; By 1) 1s the propagator of a forced harmonic
oscillator, inltially at time t atqoand finally atg,; at
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time t", and was determined in Section II.2 with the exp-

licit result glven by (2.46) and(2.45). It is obtained by

replacing x" andx' by 9,0 and g0 respectively; the result is

K(%k” ’9’ 0,1 = '(1““@\?&&”_{) eXPK S°‘] s (318)

) .
where Sc“\ 1s the classlical actlon calculated along the classi-

cal path between end points (%kj . 1" ) and (%ko ,T’),given by

~ 2 2 ]
Scl = L“".‘_K(%3+%o)cosw,_(t”—t) ‘Zﬁkj%o
2smw, (A=O)L Kk k™ Ok
_LH
< 2% dt L) sinw ct-t)
Mw.
L t 1|| .
- " .
A 2 df[;m sinw_ (1'-1) ,
me *' tl/ t
-2 dat [" ¢ty sinngt'~tifdsT(S)x
m? w? K X
L t’ 't,
Sinw, (s-1) ] (3.17)

As the polaron state under consideration is at abso-
lute zero temperature, all oséillators are in thelr ground
states initlally and also finally. Therefore the propagator
of each oscillator, Gs'o > is given by

K . " ' N
GOQ = ﬂgt (%‘)&D K(%.‘SJ .TS %’E" 5t) QO(%.VDO)d%!&,O d%&) » (3.18)

where Qo(Qyiland Qo (q,0) are the ground state harmonic
oscillator wave functions obtained from the solutions of

the quantum mechanical problem as

a .
Qo (§) = ('Q“")}ep(— _ﬁ’i“.% Jexp (-3 iwl), «z19)
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e Qo = (TONE exp(-§ LB exp (414) L 520

‘ & * K . 1.u
In order to determine G » Wwe substitute Qo(%k')), (Q’k’?

(o]\]

0’1") and Qo(%g’) from(3.19),(3.20) and(3.16) into(3.18),
and thus obtain

2
oo - 2 (znh‘mSmwT\ ( )6XP“63/:/;'XP a%° a% 3=
-
b%‘; %bj + ic%&éﬂidgg;]d%‘50 d 3 ¥
where S (3.21)
T = t ‘_t ) 3
a = -Wum/(icdhwT -V)
2 R
b = _imw ) /d\°
st . e
i B s‘:nwn\/dt L0 3‘"“’L(t’l‘t) , "3‘
S S 0 W
¥ o1 :
d _ -——l\, < t-—t/) ——
B 8ipoa T/ OL [y sinw, ¢ :
¥ = '
't"
and e =-—"' c\ﬂ" Fysmw (=D ) ST, ()85 -1).
Hmeamex ¥ (3.22)

The integration of the form (3.21) can then be carried out
by using standard mathematical technlques;(m) the result is

21B.Friedman, " Principles and Techniques of Applied

Mathematics.", New York : John Wiley &Sons, (1956),105.
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| = |
K Wi m" \ZTiwT (Ge). /T _<1',__A_T_)] i
G =7 (ziﬁ‘s\an) exp(5=) exe de'fAexP[ A

(3.23)
Qa b C !
( % %) ) T = (d) . (2.24)

K
On substituting the coefficlent of (3.23), Gs becomes

[}

where A

k _ _ -
Giow = exp(ie) exp [ 1 ’4A J‘>]
. : a -3
Since A = "m _g 5 5
4
c | ac -b.g > a 2 2
d ~! = —_—0) A = —(C d_.£<‘-_d_
an (t,a'1) <(d\; =5 (ad _gg> aup:*( + a)
L 7 &
we have N ‘
koo - LN, c+d7'-M] .
Goo = &3P S1F) exP[ qa'l—b‘( a )

Now, consider the factor 'E%—_S’T « If we substitute into

this the value of a and b from(3.22), 1t becomes. D

4wm
Thus —a 2 2
ch = exp (ie)exp |2 (evd ‘b—;d—)} : (3427)
By substituting the value of e, c¢*, d* and % into the

above equation we obtain after some simple mathematical

_*II
magnipulation, 1t
k \ . Ny !
" = R f “1 sine_(s-1)
G_, oxp{ e wusin*wlﬂ‘ d'rdsTY':c )Ecs)choswg sinwy(T-Nsinw,_
'

! i/ . b o !
+ 8in wLLT'—-T) sinw, (T=5) + sinw_ci-1 5mw‘_(5—1’)]}.
(2.29)

If the clrcular functlions are re-expressed im the exponenti=-

al forms, (3.28) then becomes

K

t t
Goo = e"P{' ?;;‘TJdeTdsTk(f) T, (5) exp [_—i w..d"S)]]- (3.29)
. Ay
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Pinally, recalling (3.11),(3.12) and (3.29), we can write the

polaron propagator at absolute zero temperature as
1’

K°°(Y°\’J[’ °"t) = ‘/jbrdd) exp lh !-Y:I/“e\ c\’rl'ﬂ G~

-iw, |T-sl
= ,‘Dre\d‘)exp V\ 2 ...e,\ AHmw dfdse %tf’r)\"x(s;}.

(3.30)

In computing the ground state energy, the following trans=-

formations are made: il-> T, i5+d8 | Therefore (3.30) becomes

3 d!-e\ ?.dz_ ' "wdt'dl
Koollels T5.5157) = /hr, \w)exp (d‘ﬂ) * R,/ [dTdde )Evémzs)-

(3.31)
The summatlion > 1 1,7 is readily performed
kK % K

' COS k.1 (7). COS K. 1, (6)
Zr a6 = 4mé(d 2= { “ , k
K k k (V\) % K s\nk.n'd(t).Sm Lﬁ're\(&\

\
= 4“62. -
Ir <T) = r ) s

Thus(3.31) becomes

¥ d
K°°(~cl’ |,'C) = @V‘I(wexp[‘— l"¢l 4ﬁm0)‘/:/;td6 _:;_] +(3.33)

AUE A

On substituting m from (3.7) and (3.2) into (3.33) and

introducing the dimensionless coupling constant o ,y WE

obtain .
¢ 8
¢ =gl S -

| 1690109k
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Then the polaron propagator at absolute zero temperature becomes

-1T-6]1
Koo(scl’rl °| ,T) & (.G)exp —"" drel)df-{- > d‘[dG—_e— Q] ) (3.34)
d 2" 1L\ (0 = Lo

where our units are such that EwL and the effective mass m¥
are unity.
The polaron action after the phonon field is averaged,

is glven by the above equation as

S1v-6)
S = l dt+-~ drde , (3.35)
\r,‘m Ve 6))

which describes the electron at any particular time interacting
with the produced fleld at 'a past time as a retarded, nonlocal
coulomb potential with exponentlially decaying time factor.

The disturbance that acts back on the electron in the past time

dles out since 1t takes some time for the lattice ions to relax,

III.2 Variational Principie

The polaron actlion after the phonons of the lattice
fleld have been averaged is given by (3.35) as

dr -|t-sl
S = Akl gr+ £ pif [dlds =——— , (336)
lre¢1>—;,<sn

where the time variables T and ¢ are now replaced by t and s.

It 1s difflcult to evaluate the path integration of
this actlon which is not quadratic in X and g, since only
quadratic actions will lead to integrable path integrals.

To determine the polaron ground state energy, an action:
which is slmple, integrable, and imitates the action$ in rough

approximation, must be supposed, and then the variational method



37

can be applied.
Feynman introduced the trial action In the form of

wit-sl
S, = /drel dt /ﬁtdSlFe\(T) Lo e s (3.37)

where the klnetic energy part 1s the same as that of the exact
action (3.36) and the potential energy part resembles the
harmonic oscillator potentlal with the strength and frequency
which can be varied by the two adjustable parameters ¢ and w.

Now conslider

. i ‘/g}r(t)e|<ss.)
K o(..el tj!é\ :t) = ‘/;ch‘(h es = : ‘/;Z) Y'e\(t) 6
ijrﬁh e

3=~5, 3 .
<e >febret(t)€s' ) (3.38)
By using the general inequality for any variable x

(e*) = 8 7 _AY

then (3.38) becomes
ogahe 4 (S=s) Y o)
Koo st s 5y 1 & e Dr he . (3.39)
Recalling (2.57), we have

-Eqd
$ 9
Koo « e,\ ft} cl’-t) = /oD ,!'el('f) € ~ € ’ (3.40)

where the imaginary time interval 1is (O,g) with 3—»&

and EB is the exact ground state energy.

Similarly, R
J/é)r(t)e o~ e , (3.41)
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where E1 1s the ground state energy corresponding to the trial
action S1.
Since, for large ¥ ’ S-S1'1s proportional to f -

<S"S‘> )8§ . (5.42)

Substituting (3.40), (3.41) and (3.42) into (3.39), we then

obtain the very useful expression

E = E1 -4 o ‘"/' .‘a ,«';.wl/ (3'43)
AL 2>/

g &/ 557K
v N
v S ‘\
Mrou

This 1s the variational principle, which provides an upper

bound on the exact ground state energy. The problem is thus
to determine E1-.'.,6and then to minimize 1t by means of the

ad justable parameters C and w:.,

III.3 Ground State Energy

In order to evaluate an upper bound to the ground

state energy, we must determine both E1 and 4:« Let us con=
slder first .

a4,

]
A
w

[}
w2
N
]
[
+
w

(3.44)
wpere $

ol
A = £ Ja. > y  (3.442)
2%2 <\ ‘cf) Lo 9] '

- < H-r 9] (3.44 b)
B = < [dse <\'”\< SN
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We are concerned with the imaginary time, initially
at t'=o, and finally at t"=J which is very large.
Our first object 1ls to determine the A term of-

|

(3.44a). In 1t we can express D= pyl

by a Fouriler trans-

form,

3
| d’K
= S5 explik T) - (&) . (3-45)
| £, (01 = g (O] /2«\@ P{ L - }

Then we need to study
| [t & eneli 5,1 0]
<exp[i5.({‘<t) ~f (cs)]>
el el f&ﬁc\(t) e

2
‘/;‘brc\ct)exp[ f dr,\ fod*dslﬁ\‘t"!c\(s’l
'w\t o f{(t) £ ¢ c\‘t} ) (3.46)

where fcb = iK (8t -8¢t-6)), and' where a normalization fact-

or is dropped out.
Since the three rectangular components of (3.46) can
be separated, we need to consider only one component, say

the x~-component. Therefore (3.46) 1s reduced to

<e>q> [inQ{(r) —X(6)) /;O xch exp {—-f ar- :[ﬁms{xm-x(s)

-1 t-5]
g f{ (T)xcf)dT] (3.47)

The path integration of (3.47) can be carried out by substi-
tuting for x(t) the classical path X(t) and its variation
y(t), and by using the method described in Section II.2,

The result can be separated into two parts, viz., the terms
that are directly dependent on the classical path, and the
integration terms of y(t) that give an unimportant constant

depending on T only. Then we obtain
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éxp[in(X('C)—X(&):D = exp\-_ fdxct) dt- /\/:;Hds[i(t)—i(sﬂae-w‘t_g
| +f¥x<t)>"<(’[> d’t] : (3.48)

The actlon corresponding to this expression can~ be

written as

3 ) sl
S m-4L (i’i)qdf -c drds[id)—xcs)]iew\ti fhrzchrdl. (3.49)
2 dt 2

The classical path xX(t) is given by that function which satis-
fles the principle of least action §s=0 .

= - L %t 5 Tt % ~awlt-5l »_ _=
ds 2\/\z (_—_Ad‘; ))éXct)dt— %j]dtds 2{xct) x(sqe S[EH-R©)]

+/¥,<t) §&xcfydt

Hence

a*xch (e oy gt = =
— /l T oy ds[xd) ASS)]e +Fx(f)] 3x(‘t)d\; O,

which glves the equation of motion for the classical path

2 oot
.&. X_‘;‘_)_ = 2f/ds[x<t) ms)]e“”t oy L) . (3.50)
4t

under the boundary conditions  X(0)= E(5)=O which are chosen

for convenience.

Thus (3.48) can be simplified by using (3.50) to

GXP[‘KX(’““’"“‘)D = ex?[ L dith xd')l fé_cﬁ:f_)_ x(hdf

- -é/:/‘dfds [xch- i'(S)]ze'wIt-m_.ffxd')ic‘r)d'r

IKx (X(T)-X
= exp [._2_". (x(Ty xté))] v (3.51)
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To obtain the above quantity, we must solve the
equation of motion (3.50) and substitute X(%) and X(4) into
(3.51). To do this we define

')

Yty = gfe‘“‘t‘s‘ £¢5)d5s , (3.52)

Then the classical path equation of motion (3.50) can be
written in the form involving y(t) as

d*%ch) = AC TR -V ] - £ p (3.53)
dt" .
where we have substituted deséw”h&‘ by fr , the validity

of which assumption will be discussed in Chapter VI.

By performing the second order differentiation with respect
to time t on (3.52), we obtain the differential equation of
Y(t) as

d?Yct) = W [Ych-%ch) . (3.54)
at”

It is desired to eliminate the Y(t) term in (3.53) in order

to convert the classical path integro- differential equation

into an ordinary differential equation. To do this, we multi-

ply(3.53) by}%(na-m?) ( where D= %t ), whereupon we obtain

D (D*- v*) (1)

2
- (D= ah f (D (3.55)
where we have used

(3.56)

;1
|
€
+
elR
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Finally, we can solve for the classical path x(t) in the
ordinary fourth order differential equation (3.55) by .applying

Laplace transform.

Thus Eq.(3.55) becomes o
P fp) - P°%(0) - PR (0)-PR@-XcO) = - [e’P+( D= ) fx(MHdt . (3.57)
- Vz(Pif(P) - PX(e; -fw) o

The transient terms in the solution at the end points can be
neglected, since the time interwval (O,y) is very large and
most of the contribution is certainly not from here. Then

(3.57) is reduced to

AN
PR P -vh f(p) ke § e (Dh o (§(t-T)-get-8)) dF

]

-7 -¢8 =PT -P6
_"k,,(e—e )+ |KxCU( € )'(3.56)

fep)

p? - v? p2(P-Vv?)
The classlical path can be obtained directly from (3.58) by

taking inverse Laplace transform, The result is that

X = - 1Ry [ oinhv (t-2) H(t-2) - smHV(T-S)H(T-G)]

4= 22

[ sinhv(t-t)H I-1) - smh‘\r(+-6)HH—6))

Q}{(T-z) H(A-T)- (=6 H(t-6) ] + .59
V'L

Now %(t) must satisfy'yhe'following'boundary condlitlon; :

ch) “ O = (- K "\:‘—;‘Hsinhvcf-t)-sinhvcf-ﬁ]

~ kg™ [ d-ty - -1

v?.
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As & approaches «,
. _ _'K Vot = . B -0
0 = (- 1K s ‘—é‘%-)[zcosh%(zf z-6)sinhy.(T-6)] - 0,
whereupon we obtailn a condition

<sinhV(T-6) = o or coshvIT-61 = 1 . (3.60)
2

By using (3.59), Eq.(3.51) leads to

<€X [iK (X(t‘)-X(é))]) E" 2¢ K (coshv\r—d;_ng‘d')_xiw"‘r—é\]
e = QTR Ve o
2 “VIT-6l
= WxpIhX (- e ) - Keo* | -6l ],(3.01)
ALY 2V?
80 that
o, ~Vlt-s| . . : )
<<’-XP['\K.(Y'-\H)—5€‘<5))]> = 7D’ | - 28K (1-¢€ ) - kKW It-s| |, (3.62)
r = Viw 2y*

We have obtalned the result that is correctly normalized,
since it 1s certainly wvalid for K=0, Now we can determine the
A term by substitution of (3.62) and (3.45) into (3.44a),
thus

§ | %
A = -i—/;ﬁ é”’s‘ d’% exp [_ 2¢cK” (‘_QVH'S\) - sz"\f-sll
2% 2q°k* Vi w 2%
° —00
0o
LV -T VT -k
= ﬁ dT e [ (V=) (=€ )+ Wi } = . (3.63)
v

Our next purposoe 1s to find B; therefore we need the
value of < e, —Z’e\“)\z),‘l‘o obtaln this we apply second order
differentlation with respect to K, %o (3.61), and then take
the limit K, ©0 zero,thus
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~vit-sl a2
| L ¢H) = Lo |2 = 3¢ (xh —x() = 126 (1= Hy+30it-sl,
(i fach - Lot 1) < Py = 22 g

The B term can now be easily integrated out by using (3.64).
The result is

B = 3¢ , (3.65)
vw
. o0
~alf-9l
where we have used the equalityjfe d - 2 , for any arbi-
a

tary a which 1s independent of 5, in performing the integration.
The final object is to evaluate the ground state energy

E1 that corresponds to the trial action S1. To effect this,

we recall (3.41)

-E,3
/o% !‘e‘('ﬁ eS. ~ eEI

After differentiating both sides of this equation, we obtaln

’{"/oﬁ Lo (D es'{jfé'rds[ Lelth - gy e.wlf—s‘] _ $4E,

dc
5
D = 8B, (zee)
Ve dc

By substituting dC obtalned from (3.56) into the above equation,

1t follows that
dE, = 34V« 3V -3w) dw. (3.67)

4aNw

Comparing (3.67) with

dE, = ii_E_l.dV + 8B . dw ,
v dw
we obtaln
SE,  _ 3
. SV 2 ’
and hence '

E: o= _'E‘V + 'F(UJ) . (3.68)



45
By using the condition E1=O when 0=0, we can find f(w)

explicitly as_3w . Therefore, the ground state energy By can
2

be determined, 1l.e.,

E,

E_(v_w) v (569)
Z

Pinally, the expression for the upper-bound of the
ground state energy can be evaluated by employing the results

that are readlly determined from (3.44), (3.63), and(3.65).
We obtain

E = E-g = 2 (V-w)-3 (Vo) -4
2 v I
- 3/ (N-w) - A ) (3.70)
4V

where A is given by (3.63).

We remark that the adjustable parameters C and w are
now replaced byv and w whiech can be varied separately to
minimize E. The complete evaluation of E requires numerical
integration of A, whleh cannot be performed in closed form.
The numerical work has been carried out by Schultz by using
a dlgltal computer. He has caloulated the values of v, w
and E for sevaral values of£, and his results will be pre=-

sented in Chapter VII,
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