CHAPTER I

INTRODUCTION

I.1 The Polaron Problenm

The problem concerning an electron moving in an lonic
crystal has been of constant theoretlical and experimental
interest since the beginning of the systematic development of
solld state physics. The earliest direct approach to this
problem was made by Landau in 1933, when he introduced the
ldea of self-trapping of an electron in the sodium chloride
crystal(l). The principal idea 1s that as the electron moves
through the ilonic crystal 1t distorts the ilon lattices in its
neilghbourhood by virtue of the coulomb interaction and thus
produces a polarization. Thls polarization constitutes a
potential fleld surrounding the electron, which i1s then trapped
in the potentlial minimum. PFurthermore, tune electron always
carries with 1t the polarization field and hence possesses a
speciflic self energy as 1t moves through the crystal. Since
the lattlce lons are much heavier than the electron, they will
not return to thelr equilibrium positions during a half period
of the electronic motion in the trapping potential.

1 H. Frohlich, "Introduction to the Theory of the
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Whitfield, Edinburgh and .London: Oliver and Boyd (1962) 1.



The combination of the electron and the accompanying
self-consistent polarization field can be thought of as a
quasi=-particle, and this quasi-particle is called a "polaron".
The concept of a polaron(a) was first Introduced explicltly by
Pekar in 1954,

The principal effect of the polarization field on the
electron is that lts self energy 1s lower than that of a bare
electron., Slince its inertla is greater, it will have an
effective mass larger than the electron rest mass. Since the
polaron provides a particularly slmple model of a particle
interacting with a quantum fleld, 1t 1s certalnly of great
theoretical interest and indeed it was the first specific
problem of solid state physics to whlch the method of gquantum
field theory has been applied.

The polaron which we shall consider arises from the
strong coulomb interactlon between a single slow electron and
the lattlice of a perfect erystal. In this case the polarization
fileld 1s due to the deformation of the lattice. There are two
extreme types of polaron distingulshed by its size as measured

by the extension of the lattice distortion(3’. First, one has

2 J. Appel, "Polarons.", in Solid State Physics, 21,

Edg. F.Seitz, D,Turnbull, and H,Ehrenreich, New York and London:
Academlic Press (1968) 194.
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in Physics, Eds. G.K.T.Conn, and G.N.Fowler, London and New York:
Academic Press (1970) 33 .




nce much larger than
a lattice spacing, and for which one can therefore tregt the
lattice as a dielectric continuum. This 1s the particular form
of polaron which we are going to study in detalil., Secondly,

one has the gmall polaron where the lattice distortion is res-
tricted to the immediate vicinity of the electron. In this case
the atomlcity of the lattice must be taken into account and a
sultable treatment is the tight binding approximation. .

Polaron properties have been investigated by a number
of authors using different methods. The problem of fundamental
theoretical interest is 1ts self energy and mobility. In the
present research, the polaron self emergy will be studied by
using the Feynman(4) path integration technique in spite of its
rather tedious mathematical formulation, for the following
reasons. Flrst, 1t 1s the only formulation that covers the
whole range of the electron-lattice coupling constant < , and
this differs essentially from most other theories such as the
perturbation theory, which are only applicable to the polaron
with weak coupling constant. Secondly, the value of the polaron
self energy given by the path integration has shown a very good
agreement with or is lower than those of the other theories

which have hitherto been published.

:4A.P. Feynman, and A.R. Hibbs, Quantum Mechanics and

Path Integrals, New York: McGraw=-Hill (1965) 26.




In order to evaluate the polaron self energy, it 1is
appropriate to consider first the behaviour of a slnglg slow
electron in a perfect lonlc crystal. As an electron moves
through an lonilc crystal, it always interacts with the lattlice
lons in its neighbourhood, the positive and negative lons of
the lattice belng respectively attracted to and pushed away
from the equllibrium points, and thus producing the polarization
field. In the theory, it is usual to make the simplifying
assumption that the lattice long gre undeformable and rigldly
fixed to thelr equillibrium positions. By using thls assumption,
the single slow electron can therefore be consldered as a Ifree
electron moving in a periodic fleld of force with kinetic energy
E(k) expressible as a gquadratic function of the momentum fk,

E(k) = h°%%° (1.1)
o
where the perlodiclty 1s admitted by replacing the electron
mass by an effective mass m*.

Owing to the fact that the elect;on energy is suffi-
clently low, the electronlc wave functlon changes only very
little in one unit lattice dlstance., 1In this way, the crystal
lattlce can be treated as a dlelectric continuum and the
displacement vectors become a continuous function of position.
Furthermore, the electron interacts strongly with the polariza=-
tion fleld arlsing from the longitudinal optlcal modes of lattice
vibrations, which are assumed to be characterized by a constant

frequency(oL. This descrlption of the polaron was ideallized



by Fréulich‘®’ 1n 1954.

I.2 Outline of the Thesis

Generally, the Hamiltonian of a physical system is
the appropriate basis for the energy calculation. However,
in dealing with the path integration, the Lagranglan of the
system 1s the fundamental for the solution of the problem.
Therefore a derivation of the Lagranglan of the polaron system,
as ldealized by Frdhlich, will be given in the remaining section
of this chapter.

Princlpal ideas of constructing the Feynman path
integral, the method of writlng the propagator in the form of
a path integral and its application to the forced harmonic
system will be presented in Chapter II. It will also be shown
that the propagator is essentlally equivalent to the density
matrix, and 1ts relatlon to the ground state energy will be
presented in Section II.3.

In Chapter III, the original Feynman polaron theory(é),
which glives the formulation sultable for an evaluation of the
polaron ground state energy at absolute zero temperature, will

be introduced. This theory 1s extremely powerful, and indeed

> H, Frénlich, "Electron in Lattice Flelds.", Advances
in Physics, 3 (1954) 325,

6 R.P., Feynman, " Slow Electrons in a Polar Crystal.",
Physical Review, 97 (1955) 660.



1t has been shown by Schultz(7) that the ground state energy
thus obtained 1s lower than those calculated from other
theorles (8'9). Various properfies of the polaron have since
been studied by the same method(lo'le). Recently, the Feynman
polaron theory has been improved by Abé and Okamoto(l3) by
introducing two additional parameters. However, the subsequent

corrections are very small(l4).
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The reasons why this problem should agaln assume great
significance, some physical 1ldeas of the recent lmprovements,
and the detailed evaluation of the ground state energy by the
new treatment, wlll be presented in Chapter 1V.

In Chapter V, the Feynman polaron theory, which 1is
restricted to the case of polaron state at absolute zero temp-
erature, will be extended to the case at finlte temperatures
by using the model Lagranglan proposed by Osaka(15’16). It
seems therefore of interest to attempt to improve the polaron
theory at finite temperatures, and this wlll be discussed in
Chapter VI.

Finally, in Chapter VII, the results of the polaron
self energy calculated by different methods for various situa=-
tlons, as obtained from the previous chapters, will be presented

and compared with the corresponding results of other workers.

I.3 Lagrangian of the System

To obtain the Lagranglan of the polaron system, the
Frohlich idealized model as described in Section I.1 must be

recalled for further conslderation. The induced polarization

15 y. 0saka, "Polaron State at a Finlte Temperature.",
Progress of Theoretical Physics, 22 (1959) 437.

Ao M.A. Krivoglaz, and S.I. Pekar, "The Method of
Traces for Conduction Electrons in Semiconductors.", Bull

Acad, Scl, USSR, Phys. Ser. (English Transl.), 21 (1957) 1,13,



field at the position vector r is related to the electric
displacement D(r) and the electric field E(r) by

D(r) = E(r) + 4T.2(r) ’ (1.2)

where the electric displacement represents the external fleld
acting on the polarization of the crystal.

If the source of D(r) is the single free electron in
the crystal with the position vector Loy the electric displace=-
ment Q(g,gel) is defined by

D(rsxgy) = -2 (1.3)
~lrr,

L

Therefqre, curl Q(;,gel) = 0, 2.2(;,581) = 4ﬂ.e<{(£-;el),(1.4)
and D(r,r,q) = O in the absence of the electron.

The electric dipole moment of an infinitesimal volume
d3; around r 1s 2(;)d35, and it thus follows that the inter-

actlion energy between the electron and the lattice displacement

1s
3
- a0 Rodx | ,
where P(r) is defined as follows:

4TPD = 7 . (1.6)

On substituting Q(g,,gel) and P(r) from (1.3) and (1.6), respect=
/1ve1y, into (1.5), we obtain |

-_'fv e _pbmdr = -edxa) (1.7)
. ~l!--le\‘ N ,



The polarization P(r) has two principal contributions:

B(r) = P(r) + Pip(r) : . (1.8)
where go(g) arises from é deformation of the electric orbitals
of the lattice ioms, and‘gir(g) is due to the displacement of
‘whole ions and is also due in part to the component of the
motion of the electrons which adiabatically follows any lonic
movement. Each component of P(r) corresponds to an optical
absorption in the ultravlolét and infrared reglon, respectively;

and in the external field‘Q(ztal) they each satlsfy the forced

harmonic equations of motioh

)

Bo+ ¢80/l dDugan o
e ,
P+ @P@ el DEE/d (1.10)

where ¥ and d are constants Eqr the respective dlsplacements
which we are going to detefmine.‘
On substituting into Eq.(1:2) the relation D(r) = E(w)g(g),

we obtain

arBo+ ko) | = G-gdw. (1.31)

Now consider in turn the static and the high frequency

cases,for which the electron ls elther at rest or oscillates

with a frequency w, , where Wypldw,&wye On applying the former

limitimg case to Eq.(1l.11), we obtain

#(Pw+ Bw) = ¢-gnm . (1.12)
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For the high frequency case,‘gir(g) can no longer follow the
electron adlabatically. Its value is very small compared with

Eo(E) and can thus be neglected. Eq.(l.11l) is then reduced to

41 BT = (-2, (1.13)
where es and €, are, respectively, the static and the high
frequency dielectric constants . Hence‘gir(g) can be obtained
by elimination offgo(g) in (1.12) with the use of (1.13), and

thus

aBE = GoEdm . @)

The parameters ¥ ‘and ¢ can be obtalned by considering
(L.9) and (1.10) for the gtatic cése, where ﬁo(g) =-§1r(£) = 0,
with a substitution of 20(5) andlgir(g) as given by (1.14) and
(1.15):

1 mo
3 = = (| "gt . (1.16)

For a slowly moving'electron, go(g) will always be
excited, independently of the electronic motion; and consequently
1ts 1lnteraction potential will be stationary and lattice periodic.
Hence 1t can be lincluded in the effective mass approximation
(1.1), and we can therefore leave it out from further discussion.
Born and Huang(l7) have suggested that the frequency dependence

of the dielectric constant in the infrared reglon 1s of the

17 M. Born, and K. Huang, Dynamical Theory of Crystal
Lattices, Oxford: Clarendon Press (1956) 91.
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form illustrated in Fig.l and the dispersion curves are of
the form 1lllustrated in Fig.2. From the dispersion relation,
1t follows that, at all wavelengths in the region being
consldered, longltudinal vibrations are only excited at the
single frequency(uL which 1s related tOt»r. the maximum fre-
quency of the transverse wave in the infrared region, by the

relation
2

We shall thus justifiably identify the infrared frequency(air
with the unique and constant frequencycuL.

The equations of motion of the polaron are clearly the
same as that of the polarization field (1.9) associated with
the electronic motion, which can be immediately re-expressed
in terms of the interactlon energy (1.7) as

*

mE = egﬂgSqeL) (1.18)

~e

The classical Dagranglan that describes the polaron

equations of motion (1.9) and (1.18) 1is

2 A a 3 3
k=3 ’“tf; + i’f [B+(T) - 6Bz )dr +ﬁ~)(2’zel)fh(£)dl' ,  (1.19)

where the independent variables are the three components
of r,, and one of gir(g) at the field position r. 1In solving
the polaron problem, the Frohlich Lagranglan of the form (1.19)

must first be written in the form of a quantum mechanical
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Lagrangian, and then the equations of motion can be expressed
as a path integral. The dctalls of this formulation will be

presented in Chapter III.
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